# **RF Transistor for Low Noise Amplifier**

# 20 V, 30 mA, f<sub>T</sub> = 8 GHz typ. RF Transistor

This RF transistor is designed for RF amplifier applications. SSFP package is contribute to down size of application because it is small surface mount package. This RF transistor is AEC-Q101 qualified and PPAP capable for automotive applications.

#### **Features**

• Low-noise Use: NF = 0.9 dB typ. (f = 1 GHz)

• High Cut-off Frequency:  $f_T = 8$  GHz typ.  $(V_{CE} = 5 \text{ V})$ 

• High Gain:  $|S21e|^2 = 10 \text{ dB typ.}$  (f = 1.5 GHz)

• Low-voltage, Low-current Operation ( $V_{CE} = 1 \text{ V}, I_{C} = 1 \text{ mA}$ )

 $f_T = 3.5 \text{ GHz typ.}$ 

 $|S21e|^2 = 5.5 \text{ dB typ. } (f = 1.5 \text{ GHz})$ 

• SSFP Package is Pin-compatible with SOT-623

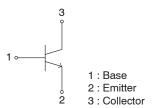
• AEC-Q101 Qualified and PPAP Capable

• These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

#### **Typical Applications**

- RF Amplifier for RKE
- RF Amplifier for ADAS
- RF Amplifier for Remote Engine Starter




# ON Semiconductor®

www.onsemi.com



SOT-623 / SSFP CASE 631AC

#### **ELECTRICAL CONNECTION NPN**



#### **MARKING DIAGRAM**



MN = Specific Device Code

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

#### **SPECIFICATIONS**

#### **ABSOLUTE MAXIMUM RATINGS** at Ta = 25°C

| Parameter                                  | Symbol           | Value       | Unit |
|--------------------------------------------|------------------|-------------|------|
| Collector to Base Voltage                  | V <sub>CBO</sub> | 20          | V    |
| Collector to Emitter Voltage               | V <sub>CEO</sub> | 10          | V    |
| Emitter to Base Voltage                    | V <sub>EBO</sub> | 1.5         | V    |
| Collector Current                          | Ic               | 30          | mA   |
| Collector Dissipation                      | P <sub>C</sub>   | 100         | mW   |
| Operating Junction and Storage Temperature | Tj, Tstg         | -55 to +150 | °C   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

#### **ELECTRICAL CHARACTERISTICS** at Ta = 25°C

|                              |                       |                                                            | Value |      |     |      |
|------------------------------|-----------------------|------------------------------------------------------------|-------|------|-----|------|
| Parameter                    | Symbol                | Conditions                                                 | Min   | Тур  | Max | Unit |
| Collector Cutoff Current     | I <sub>CBO</sub>      | V <sub>CB</sub> = 10 V, I <sub>E</sub> = 0 A               |       |      | 1.0 | μΑ   |
| Emitter Cutoff Current       | I <sub>EBO</sub>      | V <sub>EB</sub> = 1 V, I <sub>C</sub> = 0 A                |       |      | 10  | μΑ   |
| DC Current Gain              | h <sub>FE</sub>       | V <sub>CE</sub> = 5 V, I <sub>C</sub> = 10 mA              | 90    |      | 200 |      |
| Gain-Bandwidth Product       | f <sub>T</sub> 1      | V <sub>CE</sub> = 5 V, I <sub>C</sub> = 10 mA              | 5     | 8    |     | GHz  |
|                              | f <sub>T</sub> 2      | V <sub>CE</sub> = 1 V, I <sub>C</sub> = 1 mA               |       | 3.5  |     | GHz  |
| Output Capacitance           | Cob                   | V <sub>CB</sub> = 10 V, f = 1 MHz                          |       | 0.45 | 0.7 | pF   |
| Reverse Transfer Capacitance | Cre                   |                                                            |       | 0.3  |     | pF   |
| Forward Transfer Gain        | S21e   <sup>2</sup> 1 | V <sub>CE</sub> = 5 V, I <sub>C</sub> = 10 mA, f = 1.5 GHz | 8     | 10   |     | dB   |
|                              | S21e   <sup>2</sup> 2 | V <sub>CE</sub> = 1 V, I <sub>C</sub> = 1 mA, f = 1.5 GHz  |       | 5.5  |     | dB   |
| Noise Figure                 | NF1                   | V <sub>CE</sub> = 5 V, I <sub>C</sub> = 5 mA, f = 1.5 GHz  |       | 1.4  | 3.0 | dB   |
|                              | NF2                   | V <sub>CE</sub> = 2 V, I <sub>C</sub> = 3 mA, f = 1 GHz    |       | 0.9  |     | dB   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pay attention to handling since it is liable to be affected by static electricity due to the high-frequency process adopted.

#### **TYPICAL CHARACTERISTICS**

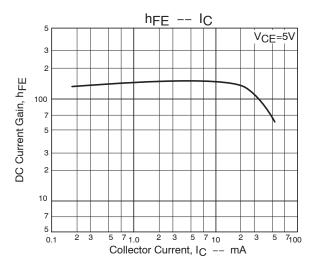



Figure 1.

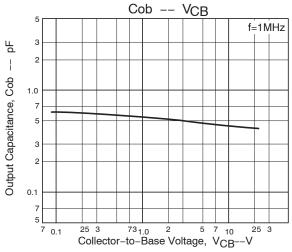



Figure 3.

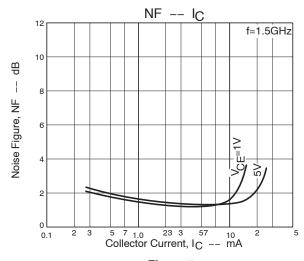



Figure 5.

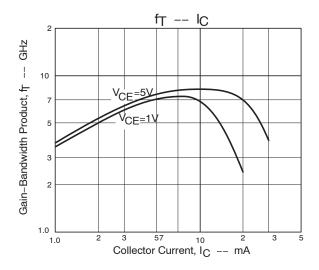



Figure 2.

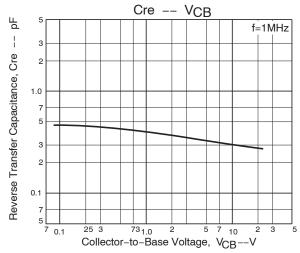



Figure 4.

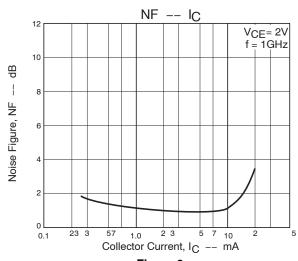
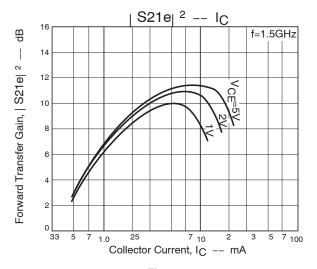




Figure 6.

# **TYPICAL CHARACTERISTICS**



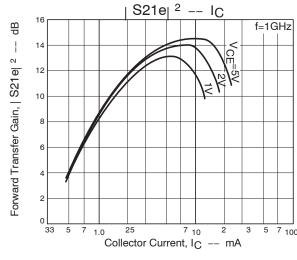



Figure 7.

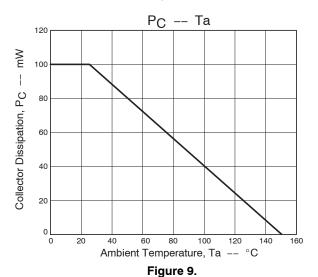
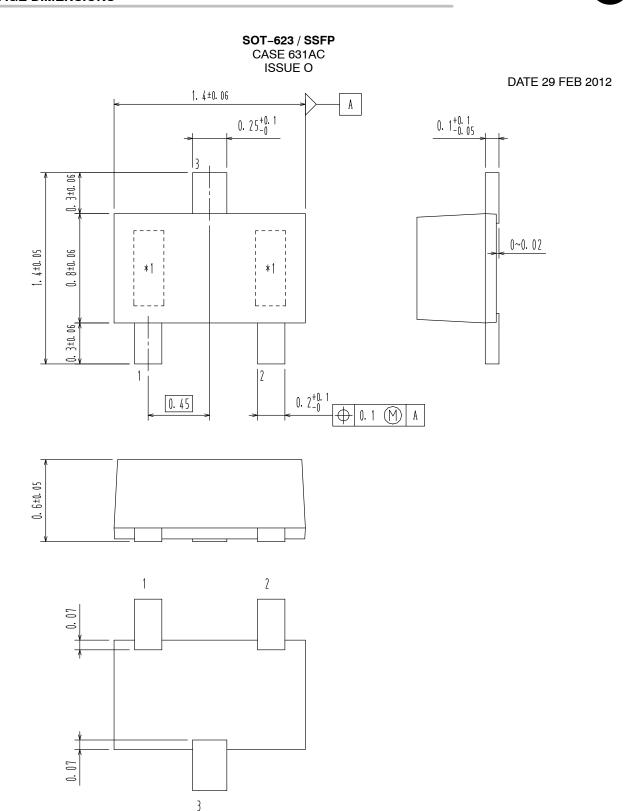



Figure 8.

S PARAMETERS (COMMON EMITTER)

| Freq (MHz)                              | S11                       | ∠ <b>S</b> 11 | S21    | ∠ <b>S21</b> | S12   | ∠S12 | S22   | ∠ <b>S22</b> |
|-----------------------------------------|---------------------------|---------------|--------|--------------|-------|------|-------|--------------|
| V <sub>CE</sub> = 5 V, I <sub>C</sub> = | 5 mA, $Z_0$ = 50 $\Omega$ |               |        |              |       |      |       |              |
| 200                                     | 0.782                     | -37.1         | 12.043 | 148.4        | 0.038 | 69.7 | 0.889 | -19.5        |
| 400                                     | 0.623                     | -65.4         | 9.431  | 126.6        | 0.057 | 60.8 | 0.758 | -28.3        |
| 600                                     | 0.502                     | -85.6         | 7.415  | 112.2        | 0.072 | 56.5 | 0.646 | -33.3        |
| 800                                     | 0.420                     | -102.4        | 6.000  | 101.5        | 0.083 | 55.2 | 0.577 | -35.9        |
| 1000                                    | 0.369                     | -114.7        | 5.025  | 93.6         | 0.094 | 55.1 | 0.538 | -37.6        |
| 1200                                    | 0.339                     | -127.2        | 4.323  | 86.7         | 0.105 | 55.6 | 0.513 | -38.7        |
| 1400                                    | 0.311                     | -137.2        | 3.785  | 80.6         | 0.115 | 55.6 | 0.490 | -39.7        |
| 1600                                    | 0.296                     | -144.9        | 3.391  | 75.3         | 0.127 | 56.7 | 0.480 | -41.3        |
| 1800                                    | 0.285                     | -156.5        | 3.018  | 70.1         | 0.139 | 56.4 | 0.466 | -43.5        |
| 2000                                    | 0.277                     | -164.2        | 2.767  | 65.7         | 0.150 | 56.7 | 0.460 | -45.5        |


# S PARAMETERS (COMMON EMITTER)

| Freq (MHz)                              | S11                          | ∠ <b>S</b> 11 | S21    | ∠ <b>S21</b> | S12   | ∠ <b>S12</b> | S22   | ∠ <b>S22</b> |
|-----------------------------------------|------------------------------|---------------|--------|--------------|-------|--------------|-------|--------------|
| V <sub>CE</sub> = 5 V, I <sub>C</sub> = | 10 mA, Z <sub>O</sub> = 50 Ω |               |        |              |       | L            |       | L            |
| 200                                     | 0.641                        | -52.7         | 16.527 | 137.8        | 0.031 | 67.4         | 0.820 | -22.9        |
| 400                                     | 0.468                        | -85.4         | 11.299 | 115.7        | 0.048 | 60.5         | 0.643 | -30.2        |
| 600                                     | 0.377                        | -106.6        | 8.303  | 103.1        | 0.060 | 60.0         | 0.549 | -32.2        |
| 800                                     | 0.321                        | -124.1        | 6.502  | 94.0         | 0.072 | 60.9         | 0.499 | -33.2        |
| 1000                                    | 0.293                        | -136.1        | 5.342  | 87.4         | 0.084 | 61.9         | 0.477 | -33.9        |
| 1200                                    | 0.280                        | -146.7        | 4.546  | 81.4         | 0.097 | 62.7         | 0.462 | -35.0        |
| 1400                                    | 0.266                        | -156.6        | 3.947  | 76.4         | 0.108 | 63.0         | 0.449 | -36.2        |
| 1600                                    | 0.263                        | -163.2        | 3.527  | 71.4         | 0.123 | 63.7         | 0.444 | -37.8        |
| 1800                                    | 0.263                        | -173.5        | 3.121  | 67.0         | 0.136 | 62.8         | 0.435 | -39.9        |
| 2000                                    | 0.264                        | -179.8        | 2.864  | 62.8         | 0.150 | 62.4         | 0.434 | -42.4        |
| V <sub>CE</sub> = 2 V, I <sub>C</sub> = | 3 mA, $Z_O = 50 \Omega$      |               |        |              |       |              |       |              |
| 200                                     | 0.851                        | -30.4         | 8.644  | 154.1        | 0.042 | 73.0         | 0.937 | -16.4        |
| 400                                     | 0.724                        | -55.7         | 7.310  | 133.8        | 0.073 | 61.3         | 0.820 | -27.9        |
| 600                                     | 0.612                        | -76.1         | 6.083  | 118.6        | 0.093 | 54.2         | 0.709 | -35.7        |
| 800                                     | 0.521                        | -93.0         | 5.085  | 106.9        | 0.107 | 50.4         | 0.628 | -40.4        |
| 1000                                    | 0.461                        | -106.1        | 4.343  | 98.1         | 0.118 | 48.3         | 0.572 | -43.7        |
| 1200                                    | 0.423                        | -118.6        | 3.806  | 90.0         | 0.128 | 47.5         | 0.536 | -45.8        |
| 1400                                    | 0.382                        | -129.4        | 3.349  | 83.3         | 0.137 | 46.9         | 0.506 | -47.3        |
| 1600                                    | 0.366                        | -138.0        | 3.036  | 77.5         | 0.147 | 47.4         | 0.485 | -49.5        |
| 1800                                    | 0.341                        | -148.8        | 2.685  | 71.7         | 0.157 | 47.2         | 0.463 | -51.9        |
| 2000                                    | 0.333                        | -157.7        | 2.479  | 66.7         | 0.167 | 47.6         | 0.453 | -54.1        |
| V <sub>CE</sub> = 1 V, I <sub>C</sub> = | 1 mA, $Z_0 = 50 \Omega$      |               |        |              |       |              |       |              |
| 200                                     | 0.945                        | -18.7         | 3.431  | 162.9        | 0.053 | 78.1         | 0.982 | -10.3        |
| 400                                     | 0.892                        | -36.9         | 3.263  | 147.1        | 0.099 | 66.9         | 0.939 | -19.7        |
| 600                                     | 0.826                        | -52.9         | 3.004  | 133.2        | 0.136 | 57.5         | 0.879 | -27.7        |
| 800                                     | 0.754                        | -67.9         | 2.765  | 120.4        | 0.164 | 49.7         | 0.815 | -34.8        |
| 1000                                    | 0.691                        | -81.1         | 2.539  | 109.9        | 0.184 | 43.4         | 0.758 | -40.0        |
| 1200                                    | 0.639                        | -94.3         | 2.366  | 99.8         | 0.199 | 38.4         | 0.727 | -44.3        |
| 1400                                    | 0.589                        | -104.9        | 2.143  | 91.2         | 0.207 | 34.1         | 0.683 | -47.8        |
| 1600                                    | 0.558                        | -114.1        | 1.969  | 83.6         | 0.213 | 31.7         | 0.653 | -51.4        |
| 1800                                    | 0.522                        | -124.4        | 1.797  | 76.2         | 0.218 | 28.7         | 0.621 | -54.9        |
| 2000                                    | 0.490                        | -134.9        | 1.701  | 69.7         | 0.219 | 27.0         | 0.601 | -58.1        |

# **ORDERING INFORMATION**

| Device        | Marking | Package                                    | Shipping <sup>†</sup> |
|---------------|---------|--------------------------------------------|-----------------------|
| NSVF5490SKT3G | MN      | SOT-623 / SSFP<br>(Pb-Free / Halogen Free) | 8,000 / Tape & Reel   |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D



| DOCUMENT NUMBER: | 98AON67431E    | Electronic versions are uncontrolled except when accessed directly from the Document Reposit<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |
|------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| DESCRIPTION:     | SOT-623 / SSFP |                                                                                                                                                                                 | PAGE 1 OF 1 |  |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

# **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

**TECHNICAL SUPPORT** North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

 $\Diamond$