## MC14532B

## 8-Bit Priority Encoder

The MC14532B is constructed with complementary MOS (CMOS) enhancement mode devices. The primary function of a priority encoder is to provide a binary address for the active input with the highest priority. Eight data inputs (D0 thru D7) and an enable input $\left(\mathrm{E}_{\mathrm{in}}\right)$ are provided. Five outputs are available, three are address outputs (Q0 thru Q2), one group select (GS) and one enable output ( $\mathrm{E}_{\mathrm{out}}$ ).

## Features

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load over the Rated Temperature Range
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant
- NLV Prefix for Automotive and Other Applications Requiring

Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
MAXIMUM RATINGS (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}$ )

| Rating | Symbol | Value | Unit |
| :--- | :---: | :---: | :---: |
| DC Supply Voltage Range | $\mathrm{V}_{\mathrm{DD}}$ | -0.5 to +18.0 | V |
| Input or Output Voltage Range <br> (DC or Transient) | $\mathrm{V}_{\text {in }}$, <br> $\mathrm{V}_{\text {out }}$ | -0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$ | V |
| Input or Output Current <br> (DC or Transient) per Pin | $\mathrm{I}_{\mathrm{in}}, \mathrm{I}_{\text {out }}$ | $\pm 10$ | mA |
| Power Dissipation, per Package (Note 1) | $\mathrm{P}_{\mathrm{D}}$ | 500 | mW |
| Ambient Temperature Range | $\mathrm{T}_{\mathrm{A}}$ | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $\mathrm{T}_{\mathrm{stg}}$ | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| Lead Temperature (8 Sec Soldering) | $\mathrm{T}_{\mathrm{L}}$ | 260 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Temperature Derating:

Plastic "P and D/DW" Packages: - $7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{DD}}$ ). Unused outputs must be left open.

TRUTH TABLE

| Input |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Output |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{E}_{\text {in }}$ | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 | GS | Q2 | Q1 | Q0 | $\mathrm{E}_{\text {out }}$ |  |  |  |  |  |  |  |  |
| 0 | X | X | X | X | X | X | X | X | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  |  |  |  |  |  |  |  |
| 1 | 1 | X | X | X | X | X | X | X | 1 | 1 | 1 | 1 | 0 |  |  |  |  |  |  |  |  |
| 1 | 0 | 1 | X | X | X | X | X | X | 1 | 1 | 1 | 0 | 0 |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 1 | X | X | X | X | X | 1 | 1 | 0 | 1 | 0 |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 1 | X | X | X | X | 1 | 1 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 1 | X | X | X | 1 | 0 | 1 | 1 | 0 |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | X | X | 1 | 0 | 1 | 0 | 0 |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | X | 1 | 0 | 0 | 1 | 0 |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |

[^0]
## ON Semiconductor ${ }^{\circledR}$

http://onsemi.com


## PIN ASSIGNMENT



## ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ORDERING INFORMATION

| Device | Package | Shipping $^{\dagger}$ |
| :--- | :--- | :---: |
| MC14532BCPG | PDIP-16 <br> (Pb-Free) | 500 Units / Rail |
| MC14532BDG | SOIC-16 <br> (Pb-Free) | 48 Units / Rail |
| MC14532BDR2G | SOIC-16 <br> (Pb-Free) | $2500 /$ Tape \& Reel |
| NLV14532BDR2G* |  |  |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}$ )

| Characteristic | Symbol | $V_{D D}$ Vdc | $-55^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ |  |  | $125^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Typ (Note 2) | Max | Min | Max |  |
| Output Voltage <br> "0" Level <br> $V_{\text {in }}=V_{D D}$ or 0 <br> "1" Level $V_{\mathrm{in}}=0 \text { or } \mathrm{V}_{\mathrm{DD}}$ | V OL | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | - | $\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$ | - | 0 0 0 | $\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$ | - | $\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$ | Vdc |
|  | $\mathrm{V}_{\mathrm{OH}}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | $\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$ | - | $\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | - | $\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$ | - | Vdc |
| $\begin{aligned} & \text { Input Voltage } \quad \text { " } 0 \text { " Level } \\ & \left(\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc)}\right. \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \\ & \\ & \\ & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$ | $\mathrm{V}_{\mathrm{IL}}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | - | $\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$ | - | $\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$ | - | $\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$ | Vdc |
|  | $\mathrm{V}_{\mathrm{IH}}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | 3.5 7.0 11 | - | 3.5 7.0 11 | 2.75 5.50 8.25 | - | 3.5 7.0 11 | - | Vdc |
|   <br> Output Drive Current  <br> (VOH $=2.5 \mathrm{Vdc})$ Source <br> ( $\mathrm{VOH}=4.6 \mathrm{Vdc})$  <br> $\left(\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$  <br> $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$  <br>   | $\mathrm{IOH}^{\text {a }}$ | $\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | $\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$ | - - - | $\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$ | $\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$ | - | $\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$ | - | mAdc |
| $\left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right)$ Sink <br> $\left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right)$  <br> $\left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right)$  | $\mathrm{I}_{\mathrm{OL}}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | $\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$ | - | $\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$ | $\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$ | - | $\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$ | - | mAdc |
| Input Current | $\mathrm{l}_{\text {in }}$ | 15 | - | $\pm 0.1$ | - | $\pm 0.00001$ | $\pm 0.1$ | - | $\pm 1.0$ | $\mu \mathrm{Adc}$ |
| Input Capacitance $\left(V_{\text {in }}=0\right)$ | $\mathrm{C}_{\text {in }}$ | - | - | - | - | 5.0 | 7.5 | - | - | pF |
| Quiescent Current (Per Package) | $\mathrm{I}_{\mathrm{DD}}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | - | $\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$ | - | $\begin{aligned} & 0.005 \\ & 0.010 \\ & 0.015 \end{aligned}$ | $\begin{aligned} & \hline 5.0 \\ & 10 \\ & 20 \end{aligned}$ | - | $\begin{aligned} & \hline 150 \\ & 300 \\ & 600 \end{aligned}$ | $\mu \mathrm{Adc}$ |
| Total Supply Current (Notes 3, 4) (Dynamic plus Quiescent, Per Package) ( $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching) | $\mathrm{I}_{T}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(1.74 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(3.65 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(5.73 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$ |  |  |  |  |  |  | $\mu \mathrm{Adc}$ |

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF :

$$
I_{T}\left(C_{L}\right)=I_{T}(50 \mathrm{pF})+\left(C_{L}-50\right) \text { Vfk }
$$

where: $I_{T}$ is in $\mu \mathrm{A}$ (per package), $\mathrm{C}_{\mathrm{L}}$ in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.005$.

SWITCHING CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ (Note 5)

| Characteristic | Symbol | $\mathrm{V}_{\mathrm{DD}}$ | Min | Typ (Note 6) | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Output Rise and Fall Time } \\ & \mathrm{t}_{\mathrm{T} L \mathrm{H}}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$ | $\begin{gathered} \mathrm{t}_{\mathrm{T} L \mathrm{LH}}, \\ \mathrm{t}_{\mathrm{THLL}} \end{gathered}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | - | $\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$ | $\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$ | ns |
| Propagation Delay Time - $\mathrm{E}_{\text {in }}$ to $\mathrm{E}_{\text {out }}$ $t_{\text {PLH }}, t_{\text {PHL }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+120 \mathrm{~ns}$ $t_{\text {PLH }}, t_{\text {PHL }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+77 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+55 \mathrm{~ns}$ | $\begin{aligned} & \mathrm{t} \mathrm{t}_{\mathrm{LLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | - | $\begin{gathered} 205 \\ 110 \\ 80 \end{gathered}$ | $\begin{aligned} & 410 \\ & 220 \\ & 160 \end{aligned}$ | ns |
| Propagation Delay Time - $\mathrm{E}_{\text {in }}$ to GS $t_{\text {PLH }}, t_{\text {PHL }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+90 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} 57 \mathrm{~ns}$ $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+40 \mathrm{~ns}$ | $\begin{aligned} & \hline \mathrm{tPLH}^{2}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | $\begin{aligned} & - \\ & \text { - } \end{aligned}$ | $\begin{aligned} & 175 \\ & 90 \\ & 65 \end{aligned}$ | $\begin{aligned} & 350 \\ & 180 \\ & 130 \end{aligned}$ | ns |
| $\begin{aligned} & \text { Propagation Delay Time }-\mathrm{E}_{\text {in }} \text { to } Q_{n} \\ & t_{\text {PLH }}, t_{\text {PHL }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+195 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+107 \mathrm{~ns} \\ & t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+75 \mathrm{~ns} \end{aligned}$ | $\begin{aligned} & \hline \mathrm{t}_{\text {PHL }}, \\ & \mathrm{t}_{\mathrm{pLH}} \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | - | $\begin{aligned} & 280 \\ & 140 \\ & 100 \end{aligned}$ | $\begin{aligned} & 560 \\ & 280 \\ & 200 \end{aligned}$ | ns |
| $\begin{aligned} & \hline \text { Propagation Delay Time }-D_{n} \text { to } Q_{n} \\ & t_{\text {PLL }}, t_{P H L}=(1.7 \mathrm{~ns} / \mathrm{pF}) C_{L}+265 \mathrm{~ns} \\ & t_{\text {PLH }}, t_{\text {PHL }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+137 \mathrm{~ns} \\ & t_{\text {PLH }}, t_{\text {PHL }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+85 \mathrm{~ns} \end{aligned}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{t} \text { LLH }}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | - | $\begin{aligned} & 300 \\ & 170 \\ & 110 \end{aligned}$ | $\begin{aligned} & 600 \\ & 340 \\ & 220 \end{aligned}$ | ns |
| $\begin{aligned} & \text { Propagation Delay Time }-\mathrm{D}_{\mathrm{n}} \text { to } G S \\ & t_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+195 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+107 \mathrm{~ns} \\ & t_{\mathrm{PLLH}}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+75 \mathrm{~ns} \end{aligned}$ | $\begin{aligned} & \hline \mathrm{t}_{\text {PLH }}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$ | - | $\begin{aligned} & 280 \\ & 140 \\ & 100 \end{aligned}$ | $\begin{aligned} & 560 \\ & 280 \\ & 200 \end{aligned}$ | ns |

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.


| Output <br> Under Test | $\begin{gathered} \mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\text {out }} \\ \text { Sink Current } \end{gathered}$ |  | $\begin{gathered} \mathrm{V}_{\mathrm{GS}}=-\mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V}_{\mathrm{DS}}=\mathrm{V}_{\text {out }}-\mathrm{V}_{\mathrm{DD}} \\ \text { Source Current } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | D0 thru D7 | $\mathrm{E}_{\text {in }}$ | D0 thru D6 | D7 | $\mathrm{E}_{\text {in }}$ |
| $\mathrm{E}_{\text {out }}$ | X | 0 | 0 | 0 | 1 |
| Q0 | X | 0 | 0 | 1 | 1 |
| Q1 | X | 0 | 0 | 1 | 1 |
| Q2 | X | 0 | 0 | 1 | 1 |
| GS | X | 0 | 0 | 1 | 1 |



Figure 2. Typical Power Dissipation Test Circuit

Figure 1. Typical Sink and Source Current Characteristics


Figure 3. AC Test Circuit and Waveforms


Figure 4. Logic Diagram
(Positive Logic)


Figure 5. Two MC14532B's Cascaded for 4-Bit Output

## digital to Analog conversion

The digital eight-bit word to be converted is applied to the inputs of the MC14512 with the most significant bit at X7 and the least significant bit at X 0 . A clock input of up to $2.5 \mathrm{MHz}\left(\right.$ at $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ ) is applied to the MC14520B. A compromise between $\mathrm{I}_{\text {bias }}$ for the MC1710 and $\Delta \mathrm{R}$ between N and P -channel outputs gives a value of R of $33 \mathrm{k} \Omega$. In order to filter out the switching frequencies, RC should be about 1.0 ms (if $\mathrm{R}=33 \mathrm{k} \Omega, \mathrm{C} \approx 0.03 \mu \mathrm{~F}$ ). The analog 3.0 dB bandwidth would then be de to 1.0 kHz .

## ANALOG TO DIGITAL CONVERSION

An analog signal is applied to the analog input of the MC1710. A digital eight-bit word known to represent a digitized level less than the analog input is applied to the MC14512 as in the D to A conversion. The word is incremented at rates sufficient to allow steady state to be reached between incrementations (i.e. 3.0 ms ). The output of the MC1710 will change when the digital input represents the first digitized level above the analog input. This word is the digital representation of the analog word.


Figure 6. Digital to Analog and Analog to Digital Converter

## PACKAGE DIMENSIONS



NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS

WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE

MOLD FLASH
5. ROUNDED CORNERS OPTIONAL.

| DIM | INCHES |  | MILLIMETERS |  |  |  |
| :---: | ---: | ---: | ---: | ---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |  |  |
| A | 0.740 | 0.770 | 18.80 | 19.55 |  |  |
| B | 0.250 | 0.270 | 6.35 | 6.85 |  |  |
| C | 0.145 | 0.175 | 3.69 | 4.44 |  |  |
| D | 0.015 | 0.021 | 0.39 | 0.53 |  |  |
| F | 0.040 | 0.70 | 1.02 |  |  |  |
| G | 0.100 |  | BSC | 2.54 |  | BSC |
| H | 0.050 |  | BSC | 1.27 |  | BSC |
| J | 0.008 | 0.015 | 0.21 | 0.38 |  |  |
| K | 0.110 | 0.130 | 2.80 | 3.30 |  |  |
| L | 0.295 | 0.305 | 7.50 | 7.74 |  |  |
| M | $0^{\circ}$ | $10^{\circ}$ | $0^{\circ}$ | $10^{\circ}$ |  |  |
| S | 0.020 | 0.040 | 0.51 | 1.01 |  |  |

## PACKAGE DIMENSIONS

SOIC-16
CASE 751B-05
ISSUE K


NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. CDNTROLLING DIMENSION: MILLIMETER.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
5. MAXIMUM MOLD PROTRUSION 0.15 ( 0.006 ) PER SIDE.
6. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

| DIM | MILLIMETERS |  | INCHES |  |  |  |
| :---: | ---: | ---: | ---: | ---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |  |  |
| A | 9.80 | 10.00 | 0.386 | 0.393 |  |  |
| B | 3.80 | 4.00 | 0.150 | 0.157 |  |  |
| C | 1.35 | 1.75 | 0.054 | 0.068 |  |  |
| D | 0.35 | 0.49 | 0.014 | 0.019 |  |  |
| F | 0.40 | 1.25 | 0.016 | 0.049 |  |  |
| G | 1.27 |  | BSC | 0.050 |  | BSC |
| J | 0.19 | 0.25 | 0.008 | 0.009 |  |  |
| K | 0.10 | 0.25 | 0.004 | 0.009 |  |  |
| M | $0^{\circ}$ | $7^{\circ}$ | $0^{\circ}$ | $7^{\circ}$ |  |  |
| P | 5.80 | 6.20 | 0.229 | 0.244 |  |  |
| R | 0.25 | 0.50 | 0.010 | 0.019 |  |  |

## SOLDERING FOOTPRINT



DIMENSIONS: MILLIMETERS

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and (ON are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold sCiLLC and its officers, employens, subsidiaries, anfiliates, and distributors harmless against atr claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative


[^0]:    X = Don't Care

