LC01707PLF

CMOS LSI
FM multiple tuner IC
ON Semiconductor ${ }^{\circledR}$
http:/lonsemi.com

Overview

LC01707PLF is a vehicle-mounted FM multiple tuner IC with FM-FE, IF, IF-Filter, PLL, FM-DEMO and LPF incorporated. An FM multiple tuner can be developed with this one chip. It makes up a small-sized FM multiple tuners which can be mounted on PND.

Functions

- It is the FM tuner IC exclusively for the FM multiple.
- Image reduction complex BPF is incorporated
- Narrow Band IF AGC is incorporated
- LNA is incorporated
- Wide / Narrow Band RF AGC is incorporated
- DLL detection method is adopted for the FM detection circuit, and it is not necessary to adjust.
- LPF for the carrier removal is incorporated.
- IC requires fewer external components.
- It is a BUS control tuner IC which can be controlled by controlled by I ${ }^{2} \mathrm{C}$ BUS.

Specifications
Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD}} \mathrm{max}$		4.3	V
Maximum input voltage	$\mathrm{V}_{\mathrm{DD}} \mathrm{H}$		4.3	V
Maximum output voltage	$\mathrm{V}_{\mathrm{DD}} \mathrm{L}$		4.3	V
Power dissipation	$\mathrm{Pd} \max$	$\mathrm{Ta}=85^{\circ} \mathrm{C}{ }^{*} 1$		700
Operating ambient	Topr		mW	
Storage temperature	Tstg		-40 to 85	${ }^{\circ} \mathrm{C}$
Maximum junction temperature	Tj max		-55 to 150	${ }^{\circ} \mathrm{C}$

*1: Board size: $80 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ Glass epoxy double-sided board

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

LC01707PLF
Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	V_{DD}		3.0 to 3.6	V
Recommended supply temperature	V_{DD}		3.3	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$,

$$
\mathrm{fc}=83 \mathrm{MHz}, \mathrm{VIN}=60 \mathrm{~dB} \mu \mathrm{VEMF}, \mathrm{fm}=1 \mathrm{kHz} \text {, Audio filter: } \mathrm{HPF}=100 \mathrm{~Hz}, \mathrm{LPF}=15 \mathrm{kHz}
$$

Resister setting: IF AGC (02h) $=6(110)$, RF AGC (00h) $=0(0000)$
DLL demodulator loop gain setting $(09 \mathrm{~h})=1(01)$, Mono multi center setting $(09 \mathrm{~h})=7(0111)$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Practical sensitivity 1 (S/N30dB)	SN30	$22.5 \mathrm{kHz} \mathrm{dev}, \mathrm{fm}=1 \mathrm{kHz}, \mathrm{S} / \mathrm{N}=30 \mathrm{~dB}$ input level		12	20	dB $\mu \mathrm{EMF}$
Practical sensitivity 2 (S/N10dB)	SN10	$7.5 \mathrm{kHz} \mathrm{dev}, \mathrm{fm}=76 \mathrm{kHz}, \mathrm{S} / \mathrm{N}=10 \mathrm{~dB}$ input level *1		27		dB $\mu \mathrm{EMF}$
S/N1	SN1	22.5 kHz dev , $\mathrm{fm}=1 \mathrm{kHz}$	34	44		dB
S/N2	SN2	$7.5 \mathrm{kHz} \mathrm{dev}, \mathrm{fm}=76 \mathrm{kHz} * 1$		21		dB
Total harmonic distortion rate 1	THD_1	22.5 kHz dev , fm=1kHz		0.5		\%
Total harmonic distortion rate 2	THD_2	75.0kHz dev, fm=1kHz		0.5		\%
AM suppression ratio	AMR	AM 30\% mod	34	44		dB
Image rejection ratio	IMR	$22.5 \mathrm{klHz} \mathrm{dev}, \mathrm{fm}=1 \mathrm{kHz}$		32		dB
Audio output level 1	AD01	$7.5 \mathrm{kHz} \mathrm{dev}, \mathrm{fm}=1 \mathrm{kHz}$ *1	26	39	70	mVrms
Audio output level 2	AD02	7.5 kHz dev , fm= 76 kHz *1	15	23	41	mVrms
Consumption current	IDD	No signal input		106	170	mA

*1: Audio filter: HPF=100Hz, LPF=OFF

Package Dimensions

unit : mm (typ)
3408

LC01707PLF
Example of applied circuit (constant is tentative)

* Culprits oscillation circuit is used in this IC as a crystal oscillation circuit. Caution is required for layout of the board because oscillation between pin25 and power source and GND line.
* The margin of crystal oscillation changes due to the combination of the IC, a crystal oscillator and a board layout. This independent IC does not quarantine the oscillation operation.
* This IC uses the signal of FM band frequency (VCO divided into $1 / 4$) which leaks into ANT pin. If the VCO leakage affects the performance of the system, make sure to connect an isolator on ANT pin path.

Component	Parameter	Value	Type	Supplier
L1/L2	Local OSC coil	2.7 nH	C2012H-2N7D-RD	SAGAMI
L3	Differential input coil	120 nH	C2012C-R12G-RC	SAGAMI
X1	Crystal	2 MHz	SMD-49	KDS
			AT-49	KDS
		EXS00A-A01145	NDK	
			EXS00A-A01146	NDK

Pin Description

Pin No.	Pin name	I/O	Function
1	NAGC	0	Narrow band AGC detection capacitance connecting pin
2	WAGC	0	Wide band AGC detection capacitance connecting pin
3	$V_{S S}$	P	GND pin for IF
4	NC	-	
5	NC	-	
6	V_{DD}	P	Supply pin for LNA
7	LNA_A	1	LNA +input pin
8	$V_{S S}$	P	GND pin for LNA
9	LNA_N	1	LNA -input pin
10	NC	-	
11	NC	-	
12	$\mathrm{V}_{\text {SS }}$	P	GND pin for $1^{\text {st }}$ Mixer
13	CP	0	PLL charge pump capacitance connecting pin
14	$V_{\text {DD }}$	P	Supply pin $1^{\text {st }}$ Mixer
15	$V_{\text {DD }}$	P	Supply pin for local oscillation
16	LO_1	\bigcirc	Inductor connecting pin for local oscillation
17	$\mathrm{V}_{\text {SS }}$	P	GND pin for local oscillation
18	LO_2	0	Inductor connecting pin for local oscillation
19	NC	-	
20	NC	-	
21	NC	-	
22	NC	-	
23	DEVER	1	Device address setting pin
24	$\mathrm{V}_{\text {SS }}$	P	GND pin for PLL and logic
25	XTAL	1	Crystal resonator connecting pin (Clock input pin)
26	SD	0	Station detector pin
27	NC	-	
28	NC	-	
29	NC	-	
30	INT	0	Test pin
31	SCL	1	Serial data clock input
32	SDA	1	serial data input-output
33	$V_{\text {DD }}$	P	Supply pin for PLL and logic
34	SMETER	0	S-meter output
35	$V_{\text {DD }}$	P	Supply pin for IF
36	LPFO	0	Demodulation output (after band limitation)
37	DEMOO	0	Demodulation output
38	LPFI	1	Demodulation signal input pin
39	DEMOC	0	Capacitance connecting pin for demodulation detection
40	NC	-	
41	NC	-	
42	NC	-	
43	NC	-	
44	GND	P	GND pin

Pin Function

Pin No.	Pin name	Function	Equivalent circuit
1	NAGC	Narrow band AGC detection capacitor connection pin.	
2	WAGC	Wide band AGC detection capacitor connection pin.	
3	$\mathrm{V}_{\text {SS }}$	GND pin for IF.	
4	NC	No connection.	
5	NC	No connection.	
6	$V_{\text {DD }}$	Supply pin for LNA.	
$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	LNA_P V_{SS} LNA_N	Pin 7 is + input pin for LNA. Pin 8 is GND pin for LNA. Pin 9 is - input pin for LNA.	
10	NC	No connection.	
11	NC	No connection.	
12	$\mathrm{V}_{\text {SS }}$	GND pin 1st mixer for the $1^{\text {st }}$ mixer.	
13	CP	PLL charge pump capacitor connection pin.	
14	$V_{\text {DD }}$	Supply pin for the $1^{\text {st }}$ mixer.	
15	$V_{D D}$	Supply pin for local oscillator.	

Continued on next page.

Continued from preceding page.

Pin No	Pin name	Function	Equivalent circuit
$\begin{aligned} & 16 \\ & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { LO_1 } \\ & \text { VSS } \\ & \text { LO_2 } \end{aligned}$	Pin 16 is inductor connection pin for local oscillator. Pin 17 is GND pin for local oscillator. Pin 18 is inductor connection pin for local oscillator.	
19	NC	No connection.	
20	NC	No connection.	
21	NC	No connection.	
22	NC	No connection.	
23	DEVAR	Device address setting pin.	
24	$\mathrm{V}_{\text {SS }}$	PLL_logic GND pin.	
25	XTAL	Crystal oscillator connection pin (clock input pin).	
$\begin{aligned} & 26 \\ & 30 \end{aligned}$	SD INT	Station detector pin. Test monitor pin.	
27	NC	No connection.	
28	NC	No connection.	
29	NC	No connection.	

Continued on next page.

Continued from preceding page.

Pin No.	Pin name	Function	Equivalent circuit
31	SCL	Serial data clock input.	
32	SDA	Serial data input/ output.	
33	V_{DD}	PLL_logic supply voltage pin.	
34	SMETER	S-meter output.	
35	V_{DD}	IF supply voltage pin	
36	LPFO	Demodulator output (After band limit).	
37	DEMOO	Demodulator output.	
38	LPFI	Demodulator signal input pin.	

Continued on next page.

Continued from preceding page.

Pin No.	Pin name	Function	Equivalent circuit
39	DEMOC	Capacitor connection pin for demodulator detection.	
40	NC	No connection.	
41	NC	No connection.	
42	NC	No connection.	
43	NC	No connection.	
44	GND	GND pin.	

Communication specification

Communication specifications are indicated as below:
Serial Interface ($\mathrm{I}^{2} \mathrm{C}$-bus);
Sending and receiving data through $\mathrm{I}^{2} \mathrm{C}$-bus that consists of two bus lines of a serial data line (SDA) and a serial clock line (SCL). This bus enables 8 -bit bi-directional serial data to transmit at the maximum speed of 400 kbits (fast mode). This is not compatible with Hs mode.

Terms used in $\mathrm{I}^{2} \mathrm{C}$
The following terms are used in $\mathrm{I}^{2} \mathrm{C}$

Terms	
Transmitter	Device to send data to the bus
Receiver	Device to receive from the bus
Master	Device to start data transmission, generate signal, and terminate data transmission
Slave	Device of which address is designated master

[Start] and [Stop] conditions
[Start] condition is required at the start of data communication and [Stop] condition at the end of data communication. The condition in which the SDA line changes from [H] to [L] with SCL at [H] is called the [Start] condition. The condition in which the SDA line changes from $[\mathrm{L}]$ to $[\mathrm{H}]$ with SCL at $[\mathrm{H}]$ is called the [Start] condition.

Data transmission
The length of each byte which is output to SDA line is always 8 bits. An acknowledge bit is needed after each byte.
Data is transmitted sequentially from the most significant bit (MSB).
During the data transfer, the slave address is transmitted after the [Start] condition (S).
Data transfer is always ended by the [Stop] condition (P) generated by the master.

Acknowledge (Receive acknowledge)
When the master generates the acknowledge clock pulse, the transmitter opens the SDA line. (SDA line enters the [H] state.) When the acknowledge clock pulse is in the [H] state, the receiver sets the SDA line to [L] each time it receives one byte (eight bits) data. When the master works as a receiver, the master informs the slave of the end of data by omitting acknowledge at the end of data sent from the slave.

Software reset

If the communication is interrupted (microcomputer reset, etc.), it is possible to communicate normally by entering the below signals and resetting the CPU in software.
*These signal timings restore the communication after its interruption. The register setting is never reset.
*Software reset command is incompatible with $\mathrm{I}^{2} \mathrm{C}$-bus format.

Electrical specification and timing for I/O stages

Bus line characteristics

Characteristic	Symbol	FAST-MODE		unit
		min	max	
SCL clock frequency	fSCL		400	kHz
Fall time of SDA and SCL	t1	$20+0.1 \mathrm{Cb}$	300	ns
Rise time of SDA and SCL	t2	$20+0.1 \mathrm{Cb}$	300	ns
SCL "H" time	t3	0.6		$\mu \mathrm{s}$
SCL "L" time	t4	1.3		$\mu \mathrm{s}$
[Start] condition holding time	t5	0.6		$\mu \mathrm{s}$
Data holding time for $\mathrm{I}^{2} \mathrm{C}$ bus device	t6	0.3		$\mu \mathrm{S}$
Data setup time	t7	0.1		$\mu \mathrm{s}$
[Stop] condition setup time	t8	0.6		$\mu \mathrm{S}$
Bus free time between [Stop] and [Start]	t9	1.3		$\mu \mathrm{s}$
[Start] condition setup time	t10	0.6		$\mu \mathrm{s}$
Bus line capacitive load	Cb		400	pF

Example at $\mathrm{SCL}=100 \mathrm{kHz}$
100
3
7
10
3
10
20

Serial interface voltage level
VDD: Communication bus voltage

Characteristic	min	max	unit
High level input voltage	$0.7 \mathrm{~V}_{\mathrm{DD}}$	$\mathrm{V}_{\text {DD }}$	V
Low level input voltage	0.0	0.3 V DD	V
High level output voltage (open drain)	$\mathrm{V}_{\mathrm{DD}}{ }^{* 2}$		V
Low level output voltage (open drain)	0.0	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V

*2: Output impedance of open drain becomes high at the high level output voltage.
Output voltage equals to V_{DD} (voltage $=\mathrm{V}_{\mathrm{DD}}$) since drain is pulled up to V_{DD}.

LC01707PLF

Definition of each bit

1) Slave address

The slave address consists of seven-bit fixed address "1110000" or "1110001", which is unique to a chip, and the eighth-bit data direction bit(R/W). Sending (writing) is processed when the data direction bit is" 0 ", and receiving (reading) is processed when it is "1". The fixed address is set to "1110001" at DEVAR=1 and it is set to "1110000" at DEVAR $=0$.

R/W	BIT
READ	1
WRITE	0

2) Register address

Since the total number of internal register is 34, 2-bit data set on the MSB side becomes invalid. 64 addresses are accepted 6 bits are used, but only 34 registers are used.

3) Register data

Each register data consists of eight bits.

D7	D6	D5	D4	D3	D2	D1	D0
MSB							
LSB							

Command Format

1) Individual registers data writing

2) Individual registers data reading

LC01707PLF
Register Map 1

* HEX value is set by default.

Unused BIT

Register address	BIT	Bit name	Function	Bit operation	Read/ Write	Binary value	Hex value
ooh	7					0	
	6	SD_SL[2]	SD level detection setting	0:DRSO 1:DRS1 2:DRS2 3:DRS3 4:DRS4 5:DRS5 6:DRS6 7:DRS7	RN	0	
	5	SD_SL[1]			RW	0	
	4	SD_SL[0]			RW	0	
	3	DWAG[3]	Wide band AGC level setting	0:15.6mVp-p $\quad 1: 31.3 \mathrm{mVp}$-p $\quad 2: 46.9 \mathrm{mVp}-\mathrm{p} \quad 3: 62.5 \mathrm{mV}$ p-p 4:78.1mVp-p $\quad 5: 93.8 \mathrm{mVp}$-p $\quad 6: 109.4 \mathrm{mVp}-\mathrm{p} \quad 7: 125.0 \mathrm{mVp}$-p 8:140.6mVp-p 9:156.3mVp-p 10:171.9mVp-p 11:187.5mVp-p 12:203.1mVp-p 13:218.8mVp-p 14:234.4mVp-p 15:250mVp-p	RW	0	
	2	DWAG[2]			RW	0	
	1	DWAG[1]			RW	0	
	0	DWAG[0]			R/W	0	
01h	7					0	h'00
	6					0	
	5					0	
	4					0	
	3					0	
	2					0	
	1	IMSD_SL[1]	Unused			0	
	0	IMSD_SL[0]				0	
02h	7	CLKIN	XTAL current setting	1:Normal 0:Twice	RN	1	n'99
	6	dLocksel	LOCKDET output waveform selection	1:Number of comparing 60 :Munber of comparing 3	RN	0	
	5	DFSEL[1]	Phase comparison frequency selection	0:100kHz 1:50kHz 2:50kHz 3:25kHz	RW	0	
	4	DFSEL[0]			RW	1	
	3	ENPE	Entire circuit enable	1:ON 0:OFF (Entire circuit OFF)	RN	1	
	2	DNGA[2]	Narrow band AGC level setting	0:35mVp-p 1:111mVp-p 2:187mVp-p 3:263mVp-p4:339mVp-p 5:415mVppp 6:491mVp-p 7:567mVpppWhen the setting value is ether 0 or 1 and MSK $=4 \%$, error isdetected in BER.).	RW	0	
	1	DNGA[1]			RW	0	
	0	DNGA[0]			RW	1	
03h	7	ENCPLEVEL	Charge pump level comparison selection	1:ON 0:OFF	RN	1	h'FF
	6	DENPRO	Program counter enable	1:ON 0:OFF	RN	1	
	5	DENPD	Phase comparison enable	1:ON 0:OFF	RW	1	
	4	DENCP	Charge pump enable	1:ON 0:OFF	RW	1	
	3	DENREF	s -meter enable	1:ON 0:OFF	RN	1	
	2	denxtal	XTAL enable	1:ON 0:OFF	RN	1	
	1	debiemo	Demodulator enable	1:ON 0:OFF	RW	1	
	0	ENFST	Complex BPF block, IF AGC block enable	1:ON 0:OFF	RN	1	
04h	7	denleveldet	Capacitor bank control circuit enable	1:ON 0:OFF	RN	0	h'7F
	6	ENRFmix	RFMIX enable	1:ON 0:OFF	RN	1	
	5	ENIFLPF	IF LPF enable	1:ON 0:OFF	RN	1	
	4	Endet	Wide band AGC, Narrow band AGC block enable	1:ON 0:OFF	RN	1	
	3	Enlna	LNA block enable	1:ON 0:OFF	RW	1	
	2	densmeter	Reference counter enable	1:ON 0:OFF	RN	1	
	1	dLoen	Local oscillation enable	1:ON 0:OFF	RN	1	
	0	DENPLL	PLL block enable	1:ON 0:OFF	RN	1	
05h	7					0	h'03
	6					0	
	5					0	
	4					0	
	3					0	
	2					0	
	1	DNBAGC	IF AGC detection selector (Narrow band AGC)	1:ON 0:OFF	RN	1	
	0	dwbagc	RF AGC detection selector (Wide band AGC)	1:ON 0:OFF	RN	1	
06h	7	DFoosc[7]	Capacitor band value Oscillation frequency adjustment for master time constant setting		RW	1	h'80
	6	DFoosc[6]			RW	0	
	5	DFoosc[5]			RW	0	
	4	DFoosc[4]			RW	0	
	3	DFooscil]			RW	0	
	2	DFoosc[2]			RW	0	
	1	DFoosc[1]			RW	0	
	0	DFoosc[0]			RW	0	
07h	7	DBPFO[7]	Capacitor bank value Complex BPF FO adjustment		R/w	1	h'80
	6	DBPFO[6]			RW	0	
	5	DBPFO[5]			RW	0	
	4	DBPFO[4]			RW	0	
	3	DBPFO[3]			RW	0	
	2	DBPFO[2]			RW	0	
	1	DBPFO[1]			RW	0	
	0	DBPFO[0]			RW	0	

LC01707PLF
Register Map 2

* HEX value is set by default. \quad : Unused BIT

Register address	BIT	Bit name	Function	Bit operation	Read/ Write	Binary value	Hex value
08h	7	D2BPF[7]	Capacitor bank value $2^{\text {nd }}$ IF BPF f0 adjustment		RW	1	h'80
	6	D2BPF[6]			RW	0	
	5	D2BPF[5]			RW	0	
	4	D2BPF[4]			RW	0	
	3	D2BPF[3]			RW	0	
	2	D2BPF[2]			RW	0	
	1	D2BPF[1]			RW	0	
	0	D2BPF[0]			RN	0	
09h	7					0	h'17
	6					0	
	5	DDEMOG[1]	DLL demodulator loop gain setting		RW	0	
	4	DDEMOG[0]			RW	1	
	3	DMONOC[3]	Mono multi center setting		RW	0	
	2	DMONOC[2]			RW	1	
	1	DMONOC[1]			RW	1	
	0	DMONOC[0]			RW	1	
OAh	7					0	h'02
	6					0	
	5					0	
	4					0	
	3					0	
	2					0	
	1	ENIMRSSI	XTAL OSC FET size setting	1:Normal 0:Twice	RW	1	
	0	DIQC	Complex BPF injection changeover	1:Iower 0:upper	RW	0	
OBh	7					0	h'40
	6	DBL[6]	IQ balance adjustment		RW	1	
	5	DBL[5]			RW	0	
	4	DBL[4]			RW	0	
	3	DBL[3]			RW	0	
	2	DBL[2]			RW	0	
	1	DBL[1]			R/W	0	
	0	DBL[0]			RW	0	
och	7					0	h'0A
	6					0	
	5					0	
	4					0	
	3	DCP1REF[3]	Charge pump output current value setting	```0:0.1mA 1:0.2mA 2:0.3mA 3:0.4mA 4:0.5mA 5:0.6mA 6:0.7mA 7:0.8mA 8:0.9mA A:1mA B:1.1mA C:1.2mA D: unused E: unused F: unused```	RW	1	
	2	DCPIREF[2]			RW	0	
	1	DCP1REF[1]			RW	1	
	0	DCP1REF[0]			RW	0	
ODh	7	DPCNT_L[7]	N value of frequency divider (low 8 bits) N value of frequency divider $=$ $\left((4 \times\right.$ received frequency $) \pm\left(4 \times 1^{\text {st }}\right.$ IF frequency $\left.)\right)$ / (4 channel \times step frequency) * $1^{\text {st }}$ IF frequency is 1.2 MHz		RW	*	$\mathrm{h}^{\prime *}$
	6	DPCNT_L[6]			RW	*	
	5	DPCNT_L[5]			RW	*	
	4	DPCNT_L[4]			RW	*	
	3	DPCNT_L[3]			R/W	*	
	2	DPCNT_L[2]			RW	*	
	1	DPCNT L [1]			R/W	*	
	0	DPCNT_L[0]			RW	*	
OEh	7	DPCNT_H[7]	N value of frequency divider (high 8 bits)		RW	*	${ }^{\text {n*** }}$
	6	DPCNT_H[6]			RW	*	
	5	DPCNT_H[5]			RW	*	
	4	DPCNT_H[4]			RW	*	
	3	DPCNT_H[3]			RW	*	
	2	DPCNT_H[2]			RW	*	
	1	DPCNT_H[1]			R/W	*	
	0	DPCNT_H[0]			RW	*	
OFh	7	DCBANK L L 7]	Local oscillator capacitor bank setting (low 8 bits)		RW	0	h'00
	6	DCBANK_L[6]			RW	0	
	5	DCBANK_L[${ }^{\text {[] }}$			R/W	0	
	4	DCBANK_L[4]			RW	0	
	3	DCBANK_L[3]			R/W	0	
	2	DCBANK_L[2]			R/W	0	
	1	DCBANK_L[1]			RW	0	
	0	DCBANK_L[0]			RW	0	

LC01707PLF
Register Map 3

* HEX value is set by default.
: Unused BIT

Register address	BIT	Bit name	Function	Bit operation	Read/ Write	Binary value	Hex value
10h	7					0	h'01
	6					0	
	5					0	
	4					0	
	3					0	
	2					0	
	1					0	
	0	DCBANK_H[8]	Local oscillator capacitor bank setting (high 1 bit)		RN	1	
11h	7					0	h'oF
	6					0	
	5					0	
	4	dCBEN	Unused			0	
	3	DLOALC[3]	Local oscillation level setting		RW	1	
	2	DLOALC[2]			RW	1	
	1	DLOALC[1]			RW	1	
	0	dLOALC[0]			RW	1	
12h	7					0	h'00
	6	Denifcount	Frequency counter (analog block) enable	1:ON 0:OfF	RW	0	
	5	denfoosc	fo detection oscillation circuit enable	1:ON 0:OFF	RN	0	
	4	DENIFFREQ	Logic part reference clock enable	1:ON 0:OFF	RW	0	
	3					0	
	2	DSCTCOUNT[2]	Count frequency selection	0:unused 1:IF frequency 2:prescaler frequency 3:freacaler frequency 4:f0 detection oscillation frequency 5:f0 detection oscillation frequency 6:unused 7:IF frequency	RW	0	
	1	DSCTCOUNT[1]			RW	0	
	0	DSCTCOUNT[0]			RW	0	
13h	7					0	h'01
	6					0	
	5					0	
	4					0	
	3					0	
	2	Сте	Counter start trigger	1:ON (rrequency counter start) Charge to 0 automatically	RW	0	
	1	GT[1]	Frequency counter gate time selection	0:4ms 1:8ms $2: 32 \mathrm{~ms}$ 3:64ms	RW	0	
	0	GT[0]			RW	1	
14h	7	LOFQ L[]	LO_COUNT value (low 8 bits) Measurement frequency = counter value / GT[ms]		R	*	h'00
	6	LOFQ L [6]			R	*	
	5	LOFQ $[$ [5]			R	*	
	4	LOFQ_L4]			R	*	
	3	LOFQ_L[]			R	*	
	2	LOFQ L[2]			R	*	
	1	LOFQ_L1]			R	*	
	0	LOFQ_L0]			R	*	
15h	7	LOFQ_H[7]	LO_COUNT value (upper 8 bits)		R	*	h'00
	6	LOFQ_H[6]			R	*	
	5	LOFQ_H[5]			R	*	
	4	LOFQ_H[4]			R	*	
	3	LOFQ_H[3]			R	*	
	2	LOFO_H[2]			R	*	
	1	LOFQ_H[1]			R	*	
	0	LOFQ_H[0]			R	*	
16h	7					0	h'10
	6					0	
	5	COUNTSEL				0	
	4	LOCKDETSEL				1	
	3	LOCKDET_DIG				0	
	2	LOCKDET	LOCK detection	1:LOCK 0:UNLOCK	RN	0	
	1	PHLEVEL[1]	Charge pump voltage level detection	0:less than 0.5 V 1:0.5V to 2.8V $2: \mathrm{Unused} 3$ 3:more than 2.8 V	RW	0	
	0	PHLEVEL[0]			RNW	0	
17h	7					*	h'0*
	6					*	
	5					*	
	4					*	
	3	IMRSSI[3]	Reset detection circuit	0:reset 1:reset cancellation	R	*	
	2	IMRSSI[2]			R	*	
	1	IMRSSI[1]			R	*	
	0	IMRSSI[0]			R	*	

LC01707PLF
Register Map 4

* HEX value is set by default.
: Unused BIT

Continued on next page.

Continued from preceding page.

Register address	BIT	Bit name	Function	Bit operation	Read/ Write	Binary value	Hex value
20h	7					0	h'0A
	6	ERR2	Local oscillator capacitor bank control error flag 2		R/W	0	
	5	ERR1	Local oscillator capacitor bank control error flag 1		R/w	0	
	4	DCOSEL2	Local oscillator capacitor bank value changeover	1:cap bank control value 0:1 ${ }^{2} \mathrm{C}$ input value	R/W	0	
	3	DCOSEL1	Local oscillator capacitor bank control process changeover	1:correcting process after sequential comparison 0:No correcting process after sequential comparison	R/W	1	
	2	DCOSELO	Local oscillator capacitor bank control process changeover (micro alignment)	1:micro adjustment process 0:No micro adjustment process	R/W	0	
	1	DWAITSEL[1]	PLL operation check wait time after local oscillator capacitor bank adjustment	$0: 200 \mu \mathrm{~s} 1: 400 \mu \mathrm{~s} 2: 800 \mu \mathrm{~s} 3: 1600 \mu \mathrm{~s}$	RM	1	
	0	DWAITSEL[0]			R/W	0	
21h	7					0	h'OA
	6					0	
	5	DENINT	Register for TEST		R/W	0	
	4	MASKSEL	Register for TEST		R/W	0	
	3	LOSEL	Register for TEST		R/W	1	
	2	INTPH	Register for TEST		R/W	0	
	1	INTIM	Register for TEST		R/W	1	
	0	INTLO	Register for TEST		R/W	0	
22h	7	TESTSEL[2]	Register for TEST		R/W	0	h'15
	6	TESTSEL[1]	Register for TEST		RMW	0	
	5	TESTSEL[0]	Register for TEST		R/W	0	
	4	DSW	PLL loop filter ON/OFF	1:ON 0:OFF	R/W	1	
	3	TIMESEL2[1]	Local oscillator capacitor bank control correcting circuit operation clock setting	0:200 2 s 1: $400 \mu \mathrm{~s} 2: 800 \mu \mathrm{~s} 3: 1600 \mu \mathrm{~s}$	RM	0	
	2	TIMESEL2[0]			R/W	1	
	1	TIMESEL[1]	Local oscillator capacitor bank control sequential comparison control operation clock setting	$0: 10 \mu \mathrm{~s}$ 1: $20 \mu \mathrm{~s}$ 2:40 $\mu \mathrm{s} 3: 80 \mu \mathrm{~s}$	R/W	0	
	0	TIMESEL[0]			R/W	1	

SD pin specification
SD voltage level VDD: supply voltage

item	min	\max	unit
High level output voltage	$\mathrm{V}_{\mathrm{DD}^{-}-0.8}$	$\mathrm{~V}_{\mathrm{DD}}$	V
Low level output voltage	0	0.4	V

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at uww.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

