MC14536B

Programmable Timer

The MC14536B programmable timer is a 24 －stage binary ripple counter with 16 stages selectable by a binary code．Provisions for an on－chip RC oscillator or an external clock are provided．An on－chip monostable circuit incorporating a pulse－type output has been included．By selecting the appropriate counter stage in conjunction with the appropriate input clock frequency，a variety of timing can be achieved．

Features

－ 24 Flip－Flop Stages－Will Count From 2^{0} to 2^{24}
－Last 16 Stages Selectable By Four－Bit Select Code
－8－Bypass Input Allows Bypassing of First Eight Stages
－Set and Reset Inputs
－Clock Inhibit and Oscillator Inhibit Inputs
－On－Chip RC Oscillator Provisions
－On－Chip Monostable Output Provisions
－Clock Conditioning Circuit Permits Operation with Very Long Rise and Fall Times
－Test Mode Allows Fast Test Sequence
－Supply Voltage Range＝3．0 Vdc to 18 Vdc
－Capable of Driving Two Low－Power TTL Loads or One Low－Power Schottky TTL Load over the Rated Temperature Range
－These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant
MAXIMUM RATINGS（Voltages Referenced to V_{SS} ）

Rating	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input or Output Voltage Range （DC or Transient）	$\mathrm{V}_{\text {in }}$, $\mathrm{V}_{\text {out }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
Input or Output Current （DC or Transient）per Pin	$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	± 10	mA
Power Dissipation per Package（Note 1）	P_{D}	500	mW
Ambient Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature，（8－Second Soldering）	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device．Maximum Ratings are stress ratings only．Functional operation above the Recommended Operating Conditions is not implied．Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability．
1．Temperature Derating：
Plastic＂P and D／DW＂Packages：$-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields．However，precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high－impedance circuit．For proper operation， $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$ ．

Unused inputs must always be tied to an appropriate logic voltage level （e．g．，either V_{SS} or V_{DD} ）．Unused outputs must be left open．

ON Semiconductor ${ }^{\circledR}$

http：／／onsemi．com
MARKING DIAGRAMS

PDIP－16

MC14536BCP AWLYYWWG P SUFFIX
CASE 648
日月月1日月月

14536B

DW SUFFIX CASE 751G

SOEIAJ－16 F SUFFIX CASE 966

$$
\begin{array}{ll}
\text { A } & =\text { Assembly Location } \\
\text { WL, L } & =\text { Wafer Lot } \\
\text { YY, Y } & =\text { Year } \\
\text { WW, W } & =\text { Work Week } \\
\text { G } & =\text { Pb-Free Package }
\end{array}
$$

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet．

Figure 1. Pin Assignment

Figure 2. Block Diagram

FUNCTION TABLE

In_{1}	Set	Reset	Clock Inh	$\begin{aligned} & \hline \text { OSC } \\ & \text { Inh } \end{aligned}$	Out 1	Out 2	Decode Out
\checkmark	0	0	0	0	\checkmark	乙	No Change
2	0	0	0	0	2	\checkmark	Advance to next state
X	1	0	0	0	0	1	1
X	0	1	0	0	0	1	0
X	0	0	1	0	-	-	$\begin{gathered} \text { No } \\ \text { Change } \end{gathered}$
X	0	0	0	1	0	1	No Change
0	0	0	0	X	0	1	No Change
1	0	0	0	-	2	ת	Advance to next state

X = Don't Care

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55{ }^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Min	Max	
Output Voltage "0" Level $V_{\text {in }}=V_{D D} \text { or } 0$	V OL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
$V_{\text {in }}=0 \text { or } V_{D D} \quad \text { "1" Level }$	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
 Input Voltage "0" Level ($\mathrm{V}_{\mathrm{O}}=4.5$ or 0.5 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=9.0\right.$ or 1.0 Vdc$)$ $\left(\mathrm{V}_{\mathrm{O}}=13.5\right.$ or 1.5 Vdc$)$ 	V_{IL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	3.5 7.0 11	-	Vdc
Output Drive Current $\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{VOH}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ Pins $4 \& 5$ $\left(\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{VdC}\right)$ $\left(\mathrm{VOH}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$ 	${ }^{\text {IOH }}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -1.2 \\ -0.25 \\ -0.62 \\ -1.8 \end{gathered}$	-	$\begin{gathered} -1.0 \\ -0.25 \\ -0.5 \\ -1.5 \end{gathered}$	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -3.5 \end{gathered}$	-	$\begin{gathered} -0.7 \\ -0.14 \\ -0.35 \\ -1.1 \end{gathered}$	-	mAdc
$\left(\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{Vdc}\right)$ Source $\left(\mathrm{V}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ Pin 13 $\left(\mathrm{~V}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$ 		$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \end{gathered}$	-	$\begin{gathered} -2.4 \\ -0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} -4.2 \\ -0.88 \\ -2.25 \\ -8.8 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mAdc
$\begin{gathered} \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \\ (\mathrm{VOL}=0.5 \mathrm{Vdc}) \\ \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \end{gathered}$	I_{OL}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	1 in	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance $\left(V_{\text {in }}=0\right)$	$\mathrm{Cin}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	IDD	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	5.0 10 20	-	$\begin{aligned} & 0.010 \\ & 0.020 \\ & 0.030 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \end{aligned}$	-	$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (Note 3, 4) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	I_{T}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(1.50 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(2.30 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(3.55 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{\mathrm{T}}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\mathrm{T}}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right) \mathrm{Vfk}
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.003$.

SWITCHING CHARACTERISTICS (Note 5) $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	$V_{\text {DD }}$	Min	Typ (Note 6)	Max	Unit
$\begin{aligned} & \text { Output Rise and Fall Time (Pin 13) } \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \mathrm{t}_{\mathrm{t} L \mathrm{H}}, \\ & \mathrm{t}_{\mathrm{THLL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{gathered} 100 \\ 50 \\ 40 \end{gathered}$	$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	ns
	$\begin{aligned} & \text { tpLH, } \\ & t_{\text {PHL }} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 1800 \\ & 650 \\ & 450 \end{aligned}$	$\begin{aligned} & 3600 \\ & 1300 \\ & 1000 \end{aligned}$	ns
	$\begin{aligned} & \text { tpLH, } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 3.8 \\ & 1.5 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 3.0 \\ & 2.3 \end{aligned}$	us
```Clock to Q16 tPHL tPHL, tPLH = (0.66 ns/pF) C C + 2967 ns tPHL```	$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 3.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 14 \\ & 6.0 \\ & 4.5 \end{aligned}$	us
$\begin{aligned} & \text { Reset to } Q_{\mathrm{n}} \\ & t_{\text {PHL }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+1415 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+567 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+425 \mathrm{~ns} \end{aligned}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1500 \\ & 600 \\ & 450 \end{aligned}$	$\begin{gathered} 3000 \\ 1200 \\ 900 \end{gathered}$	ns
Clock Pulse Width	$t_{\text {WH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 600 \\ & 200 \\ & 170 \end{aligned}$	$\begin{gathered} 300 \\ 100 \\ 85 \end{gathered}$	-	ns
Clock Pulse Frequency (50\% Duty Cycle)	$\mathrm{f}_{\mathrm{cl}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.2 \\ & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 1.5 \\ & 2.0 \end{aligned}$	MHz
Clock Rise and Fall Time	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	No Limit			-
Reset Pulse Width	${ }^{\text {twh }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 1000 \\ 400 \\ 300 \end{gathered}$	$\begin{aligned} & 500 \\ & 200 \\ & 150 \end{aligned}$	-	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

## INPUTS

SET (Pin 1) - A high on Set asynchronously forces Decode Out to a high level. This is accomplished by setting an output conditioning latch to a high level while at the same time resetting the 24 flip-flop stages. After Set goes low (inactive), the occurrence of the first negative clock transition on $\mathrm{IN}_{1}$ causes Decode Out to go low. The counter's flip-flop stages begin counting on the second negative clock transition of $\mathrm{IN}_{1}$. When Set is high, the on-chip RC oscillator is disabled. This allows for very low-power standby operation.

RESET (Pin 2) - A high on Reset asynchronously forces Decode Out to a low level; all 24 flip-flop stages are also reset to a low level. Like the Set input, Reset disables the on-chip RC oscillator for standby operation.
$\mathbf{I N}_{\mathbf{1}}(\mathbf{P i n} 3)$ - The device's internal counters advance on the negative-going edge of this input. $\mathrm{IN}_{1}$ may be used as an external clock input or used in conjunction with $\mathrm{OUT}_{1}$ and $\mathrm{OUT}_{2}$ to form an RC oscillator. When an external clock is used, both $\mathrm{OUT}_{1}$ and $\mathrm{OUT}_{2}$ may be left unconnected or used to drive 1 LSTTL or several CMOS loads.

8-BYPASS (Pin 6) - A high on this input causes the first 8 flip-flop stages to be bypassed. This device essentially becomes a 16 -stage counter with all 16 stages selectable. Selection is accomplished by the $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D inputs. (See the truth tables.)

CLOCK INHIBIT (Pin 7) - A high on this input disconnects the first counter stage from the clocking source. This holds the present count and inhibits further counting. However, the clocking source may continue to run. Therefore, when Clock Inhibit is brought low, no oscillator startup time is required. When Clock Inhibit is low, the counter will start counting on the occurrence of the first negative edge of the clocking source at $\mathrm{IN}_{1}$.

OSC INHIBIT (Pin 14) - A high level on this pin stops the RC oscillator which allows for very low-power standby operation. May also be used, in conjunction with an external clock, with essentially the same results as the Clock Inhibit input.
MONO-IN (Pin 15) - Used as the timing pin for the on-chip monostable multivibrator. If the Mono-In input is connected to $\mathrm{V}_{\mathrm{SS}}$, the monostable circuit is disabled, and Decode Out is directly connected to the selected Q output. The monostable circuit is enabled if a resistor is connected between Mono-In and $\mathrm{V}_{\mathrm{DD}}$. This resistor and the device's internal capacitance will determine the minimum output pulse widths. With the addition of an external capacitor to $\mathrm{V}_{\mathrm{SS}}$, the pulse width range may be extended. For reliable operation the resistor value should be limited to the range of $5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ and the capacitor value should be limited to a maximum of 1000 pf . (See figures 5, 6, 7, and 12).

A, B, C, D (Pins 9, 10, 11, 12) - These inputs select the flip-flop stage to be connected to Decode Out. (See the truth tables.)

## OUTPUTS

OUT $_{1}$, OUT $_{2}(\operatorname{Pin} 4,5)$-Outputs used in conjunction with $\mathrm{IN}_{1}$ to form an RC oscillator. These outputs are buffered and may be used for $2^{0}$ frequency division of an external clock.
DECODE OUT (Pin 13) - Output function depends on configuration. When the monostable circuit is disabled, this output is a $50 \%$ duty cycle square wave during free run.

## TEST MODE

The test mode configuration divides the 24 flip-flop stages into three 8 -stage sections to facilitate a fast test sequence. The test mode is enabled when 8-Bypass, Set and Reset are at a high level. (See Figure 10.)

TRUTH TABLES

Input					Stage Selected   for Decode Out
8-Bypass	$\mathbf{D}$	$\mathbf{C}$	$\mathbf{B}$	$\mathbf{A}$	
0	0	0	0	0	10
0	0	0	0	1	11
0	0	0	1	0	12
0	0	0	1	1	13
0	0	1	0	0	14
0	0	1	0	1	15
0	0	1	1	0	16
0	0	1	1	1	17
0	1	0	0	0	19
0	1	0	0	1	20
0	1	0	1	0	21
0	1	0	1	1	22
0	1	1	0	0	23
0	1	1	0	1	17
0	1	1	1	0	1
0	1	1	1	1	10


Input					Stage Selected   for Decode Out
8-Bypass	D	C	$\mathbf{B}$	$\mathbf{A}$	
1	0	0	0	0	2
1	0	0	0	1	3
1	0	0	1	0	4
1	0	0	1	1	5
1	0	1	0	0	6
1	0	1	0	1	7
1	0	1	1	0	8
1	0	1	1	1	9
1	1	0	0	0	10
1	1	0	0	1	11
1	1	0	1	0	12
1	1	0	1	1	13
1	1	1	0	0	14
1	1	1	0	1	15
1	1	1	1	0	16
1	1	1	1	1	

LOGIC DIAGRAM


TYPICAL RC OSCILLATOR CHARACTERISTICS
(For Circuit Diagram See Figure 13 In Application)


Figure 3. RC Oscillator Stability


Figure 4. RC Oscillator Frequency as a Function of $R_{T C}$ and $C$

MONOSTABLE CHARACTERISTICS
(For Circuit Diagram See Figure 12 In Application)


Figure 5. Typical $C_{X}$ versus Pulse Width @ $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$


Figure 6. Typical $C_{X}$ versus Pulse Width @ $V_{D D}=10$ V


Figure 7. Typical $\mathrm{C}_{\mathrm{X}}$ versus Pulse Width @ $V_{D D}=15$ V


Figure 8. Power Dissipation Test Circuit and Waveform

## FUNCTIONAL TEST SEQUENCE

Test function (Figure 10) has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8 -stage sections and 255 counts are loaded in each of the 8 -stage sections in parallel. All flip-flops are now at a " 1 ". The counter is now returned to the normal 24 -stages in series configuration. One more pulse is entered into $\mathrm{In}_{1}$ which will cause the counter to ripple from an all " 1 " state to an all " 0 " state.


Figure 9. Switching Time Test Circuit and Waveforms

Figure 10. Functional Test Circuit


FUNCTIONAL TEST SEQUENCE

Inputs				Outputs	Comments
$\mathrm{In}_{1}$	Set	Reset	8-Bypass	Decade Out Q1 thru Q24	All 24 stages are in Reset mode.
1	0	1	1	0	
1	1	1	1	0	Counter is in three 8 stage sections in parallel mode.
0	1	1	1	0	First "1" to "0" transition of clock.
$\begin{aligned} & 1 \\ & 0 \\ & - \\ & - \\ & - \end{aligned}$	1	1	1		255 " 1 " to "0" transitions are clocked in the counter.
0	1	1	1	1	The 255 " 1 " to "0" transition.
0	0	0	0	1	Counter converted back to 24 stages in series mode. Set and Reset must be connected together and simultaneously go from " 1 " to "0".
1	0	0	0	1	$\mathrm{In}_{1}$ Switches to a "1".
0	0	0	0	0	Counter Ripples from an all " 1 " state to an all "0" state.



NOTE: When power is first applied to the device, DECODE OUT can be either at a high or low state. On the rising edge of a SET pulse the output goes high if initially at a low state. The output remains high if initially at a high state. Because CLOCK INH is held high, the clock source on the input pin has no effect on the output. Once CLOCK INH is taken low, the output goes low on the first negative clock transition. The output returns high depending on the 8-BYPASS, A, B, C, and D inputs, and the clock input period. A $2^{n}$ frequency division (where $n=$ the number of stages selected from the truth table) is obtainable at DECODE OUT. A $2^{0}$-divided output of $\mathrm{IN}_{1}$ can be obtained at $\mathrm{OUT}_{1}$ and $\mathrm{OUT}_{2}$.

Figure 11. Time Interval Configuration Using an External Clock, Set, and Clock Inhibit Functions (Divide-by-2 Configured)


NOTE: When Power is first applied to the device with the RESET input going high, DECODE OUT initializes low. Bringing the RESET input low enables the chip's internal counters. After RESET goes low, the $2^{n} / 2$ negative transition of the clock input causes DECODE OUT to go high. Since the MONO-IN input is being used, the output becomes monostable. The pulse width of the output is dependent on the external timing components. The second and all subsequent pulses occur at $2^{\mathrm{n}} \mathrm{x}$ (the clock period) intervals where $\mathrm{n}=$ the number of stages selected from the truth table.

Figure 12. Time Interval Configuration Using an External Clock, Reset, and Output Monostable to Achieve a Pulse Output (Divide-by-4 Configured)


NOTE: This circuit is designed to use the on-chip oscillation function. The oscillator frequency is determined by the external R and C components. When power is first applied to the device, DECODE OUT initializes to a high state. Because this output is tied directly to the OSC INH input, the oscillator is disabled. This puts the device in a low-current standby condition. The rising edge of the RESET pulse will cause the output to go low. This in turn causes OSC INH to go low. However, while RESET is high, the oscillator is still disabled (i.e.: standby condition). After RESET goes low, the output remains low for $2^{n} / 2$ of the oscillator's period. After the part times out, the output again goes high.

Figure 13. Time Interval Configuration Using On-Chip RC Oscillator and Reset Input to Initiate Time Interval (Divide-by-2 Configured)

## MC14536B

## ORDERING INFORMATION

Device	Package	Shipping †
MC14536BCPG	PDIP-16   (Pb-Free)	500 Units / Rail
MC14536BDWG	SOIC-16   (Pb-Free)	47 Units / Rail
MC14536BDWR2G	SOIC-16   (Pb-Free)	$1000 /$ Tape \& Reel
MC14536BFELG	SOEIAJ-16   (Pb-Free)	$2000 /$ Tape \& Reel

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## PACKAGE DIMENSIONS

PDIP-16
CASE 648-08
ISSUE T


NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH
5. ROUNDED CORNERS OPTIONAL

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.740	0.770	18.80	19.55
B	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100 BSC		2.54 BSC	
H	0.050 BSC		1.27 BSC	
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	$00^{\circ}$	$10^{\circ}$	$0{ }^{\circ}$	$10^{\circ}$
S	0.020	0.040	0.51	1.01

SOIC-16WB
CASE 751G-03
ISSUE C


NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION

	MILLIMETERS	
DIM	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
B	0.35	0.49
C	0.23	0.32
D	10.15	10.45
E	7.40	7.60
e	1.27	BSC
H	10.05	10.55
$\mathbf{h}$	0.25	0.75
$\mathbf{L}$	0.50	0.90
$\mathbf{q}$	0	

## MC14536B

## PACKAGE DIMENSIONS

SOEIAJ-16
CASE 966-01
ISSUE A


NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS D AND E DO NOT INCLUDE

MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR 4. REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE $0.08(0.003)$ DAMBAR PROTRUSION SHALL BE 0.08 (0.
TOTAL IN EXCESS OF THE LEAD WIDTH TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITIO DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER DAMBAR CANNOT BE LOCATED ON THE LO
RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018 ).

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	---	2.05	---	0.081
$\mathrm{A}_{1}$	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
c	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
e	1.27 BSC		0.050 BSC	
$\mathrm{H}_{\mathrm{E}}$	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
$L_{\text {L }}$	1.10	1.50	0.043	0.059
M	$0^{\circ}$	$10^{\circ}$	$0^{\circ}$	$10^{\circ}$
$Q_{1}$	0.70	0.90	0.028	0.035
Z	---	0.78	---	0.031

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and 011 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
"Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

