

June 1998 Revised January 2001

NC7SZ373

TinyLogic™ UHS D-Type Latch with 3-STATE Output

General Description

The NC7SZ373 is a single positive edge-triggered D-type CMOS Latch with 3-STATE output from Fairchild's Ultra High Speed Series of TinyLogic $^{\rm TM}$ in the space saving SC70 6-lead package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad $\rm V_{CC}$ operating range. The device is specified to operate over the 1.65V to 5.5V range. The inputs and output are high impedance when $\rm V_{CC}$ is 0V. Inputs tolerate voltages up to 7V independent of $\rm V_{CC}$ operating voltage. The latch appears transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup time is latched. The output tolerates voltages above $\rm V_{CC}$ in the 3-STATE condition.

Features

- Space saving SC70 6-lead package
- Ultra High Speed; t_{PD} 2.6 ns Typ into 50 pF at 5V V_{CC}
- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- \blacksquare Matches the performance of LCX when operated at 3.3V $\rm V_{CC}$
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

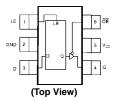
Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As	
NC7SZ373P6	MAA06A	Z73	6-Lead SC70, EIAJ SC88, 1.25mm Wide	250 Units on Tape and Reel	
NC7SZ373P6X	MAA06A	Z73	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel	

Pin Descriptions

Pin Names	Description			
D	Data Input			
LE	Latch Enable Input			
ŌĒ	Output Enable Input			
Q	Latch Output			

Function Table

	Output		
LE	D	OE	Q
Н	L	L	L
Н	Н	L	Н
L	X	L	Q_{n-1}
Х	Х	Н	Z


H = HIGH Logic Level X = Immaterial

 $L = LOW \ Logic \ Level \qquad Z = HIGH \ Impedance$ $Q_{n-1} = Previous \ state \ prior \ to \ HIGH-to-LOW \ transition \ of \ latch \ enable$

Logic Symbol

Connection Diagrams

Pin One Orientation Diagram

AAA = Product Code Top Mark - see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin.(see diagram).

TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

© 2001 Fairchild Semiconductor Corporation

DS500157

Absolute Maximum Ratings(Note 1)

DC Output Diode Current (I_{OK})

 $\begin{array}{c} V_{OUT} < 0V & -50 \text{ mA} \\ DC \text{ Output (I}_{OUT}) \text{ Source/Sink Current} & \pm 50 \text{ mA} \\ DC \text{ V}_{CC}/\text{GND} \text{ Current (I}_{CC}/\text{I}_{GND}) & \pm 50 \text{ mA} \\ Storage \text{ Temperature Range (T}_{STG}) & -65^{\circ}\text{C to +150}^{\circ}\text{C} \\ Junction \text{ Temperature under Bias (T}_{J}) & 150^{\circ}\text{C} \\ Junction \text{ Lead Temperature (T}_{L}) & \end{array}$

 $\label{eq:conds} \mbox{(Soldering, 10 seconds)} \mbox{ 260 °C} \\ \mbox{Power Dissipation ($P_{\rm D}$) @+85 °C} \mbox{ 180 mW}$

Recommended Operating Conditions (Note 2)

Power Supply

 $\begin{array}{lll} & & & & \\ & & & \\ &$

Output Voltage (V_{OUT})

Input Rise and Fall Time (t_r, t_f)

 $\begin{array}{lll} \text{V}_{\text{CC}} = 1.8 \text{V}, 2.5 \text{V} \pm 0.2 \text{V} & 0 \text{ to } 20 \text{ ns/V} \\ \text{V}_{\text{CC}} = 3.3 \text{V} \pm 0.3 \text{V} & 0 \text{ to } 10 \text{ ns/V} \\ \text{V}_{\text{CC}} = 5.5 \text{V} \pm 0.5 \text{V} & 0 \text{ to } 5 \text{ ns/V} \\ \text{Operating Temperature (T}_{\text{A}}) & -40 ^{\circ} \text{C to } +85 ^{\circ} \text{C} \\ \text{Thermal Resistance (}\theta_{\text{JA}}\text{)} & 350 ^{\circ} \text{ C/W} \end{array}$

Note 1: The "Absolute Maximum Ratings": are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings.

The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

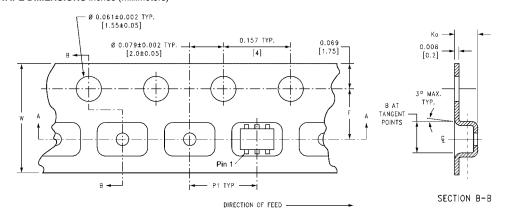
0	B	V _{cc}	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Unit	Conditions		
Symbol	Parameter	(V)	Min	Min Typ Max		Min Max		Unit	Conditions	
V _{IH}	HIGH Level Control	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V		
	Input Voltage	2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
V _{IL}	LOW Level Control	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	V		
	Input Voltage	2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	V		
V _{OH}	HIGH Level Control	1.65	1.55	1.65		1.55				
	Output Voltage	1.8	1.7	1.8		1.7				
		2.3	2.2	2.3		2.2				$I_{OH} = -100 \mu A$
		3.0	2.9	3.0		2.9				
		4.5	4.4	4.5		4.4		V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		1.65	1.24	1.52		1.29		V	V $V_{IN} = V_{IH}$	$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.8		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.2		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Control	1.65		0.0	0.08		0.0			
	Output Voltage	1.8		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1			$I_{OL} = 100 \mu A$
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1	V	V - V	
		1.65		0.08	0.24		0.24	V	v _{IN} = v _{IL}	I _{OL} = 4 mA
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μΑ	$0 \leq V_{IN} \leq$	5.5V
l _{OZ}	3-STATE	1.65 to 5.5			±0.5		±5.0	μΑ	$V_{IN} = V_{IL}$	
	Output Leakage							·	$0 \le V_{OUT}$	
l _{OFF}	Power-Off Leakage Current	0.0			1.0		10	μΑ	V _{IN} or V _{OUT} = 5.5V	
Icc	Quiescent Supply Current	1.65 to 5.5			1.0		10	μΑ	$V_{IN} = 5.5$	/, GND

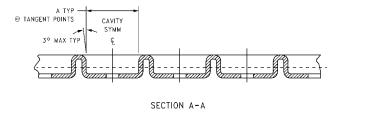
AC Electrical Characteristics

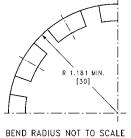
Symbol	Parameter	V _{cc}	T _A = +25°C			T _A = -40°	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Conditions	Figure
Syllibol	T drameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH}	Propagation Delay	1.65	2.0	9.0	15.0	2.0	16.0			
t _{PHL}	D to Q	1.8	2.0	6.1	10.0	2.0	10.5			_
		2.5 ± 0.2	1.5	3.6	6.5	1.6	6.8	Ī	C _L = 15 pF	Figures 1, 3
		3.3 ± 0.3	1.0	2.7	4.6	1.2	5.0	ns	$R_D = 1 M\Omega$., -
		5.0 ± 0.5	1.0	2.0	3.4	1.0	3.7		S ₁ = Open	
		3.3 ± 0.3	1.5	3.3	5.5	1.5	6.2	Ī	C _L = 50 pF	Figures
		5.0 ± 0.5	1.0	2.6	4.3	1.3	4.8		$R_D = 500\Omega$, $S_1 = Open$	1, 3
t _{PLH}	Propagation Delay	1.65	2.0	9.0	1.45	2.0	15.0			
t _{PHL}	LE to Q	1.8	2.0	6.0	9.6	2.0	10.0			
		2.5 ± 0.2	1.8	3.5	6.1	1.5	6.6	1	C _L = 15 pF	Figures 1, 3
		3.3 ± 0.3	1.3	2.6	4.4	1.0	4.8	ns	$R_D = 1 M\Omega$	1,0
		5.0 ± 0.5	1.0	2.0	3.2	0.8	3.5		S ₁ = Open	
		3.3 ± 0.3	1.5	3.3	5.3	1.5	6.2		C _L = 50 pF	Figures
		5.0 ± 0.5	1.3	2.6	4.2	1.2	4.6		$R_D = 500\Omega$, $S_1 = Open$	1, 4
t _{PZL}	Output Enable Time	1.65	2.0	9.0	13.5	2.0	14.6			
t _{PZH}		1.8	2.0	6.0	9.0	2.0	9.5		$C_L = 50 \text{ pF}, V_I = 2x V_{CC}$	
		2.5 ± 0.2	2.0	3.7	6.0	1.8	6.6	ns	R_U , $R_D = 500\Omega$	Figures 1, 4
		3.3 ± 0.3	1.5	2.8	5.0	1.4	5.3		S1 = GND for t _{PZH}	.,, .
		5.0 ± 0.5	1.0	2.2	3.7	1.0	3.9	1	S1 = V _I for t _{PZL}	
t _{PLZ}	Output Disable Time	1.65	2.0	7.7	12.0	2.0	13.0			
t _{PHZ}		1.8	2.0	5.1	8.0	2.0	8.5		$C_L = 50 \text{ pF}, V_I = 2x V_{CC}$	
		2.5 ± 0.2	2.0	3.5	6.0	1.8	6.3	ns	R_U , $R_D = 500\Omega$	Figures 1, 4
		3.3 ± 0.3	1.5	2.8	4.5	1.4	4.7	1	$S_1 = GND$ for t_{PHZ}	.,, .
		5.0 ± 0.5	1.0	2.3	3.7	1.0	3.9		$S_1 = V_I \text{ for } t_{PLZ}$	
t _S	Setup Time,	2.5 ± 0.2				2.0			C _L = 50 pF	
	D to LE	3.3 ± 0.3				1.5		ns	$R_D = 500 \Omega$, $S_1 = Open$	Figures 1, 5
		5.0 ± 0.5				1.5				., 0
t _H	Hold Time,	2.5 ± 0.2				1.5			C _L = 50 pF	
	D to LE	3.3 ± 0.3				1.5		ns	$R_D = 500 \Omega$, $S_1 = Open$	Figures 1, 5
		5.0 ± 0.5				1.5		1		., •
t _W	Pulse Width, LE	2.5 ± 0.2				3.0				
		3.3 ± 0.3				3.0		ns	C _L = 50 pF	Figures 1, 5
		5.0 ± 0.5				3.0		1	$R_D = 500 \Omega$, $S_1 = Open$., •

Capacitance (Note 3)

Symbol	Parameter	Тур	Max	Units	Conditions	
C _{IN}	Input Capacitance	3		pF	V _{CC} = Open, V _{IN} = 0V or V _{CC}	
C _{OUT}	Output Capacitance	4		pF	$V_{CC} = 3.3V$, $V_{IN} = 0V$ or V_{CC}	
C _{PD}	Power Dissipation Capacitance	14		pF	V _{CC} = 3.3V	
	(Note 4)	17		рі	V _{CC} = 5.0V	

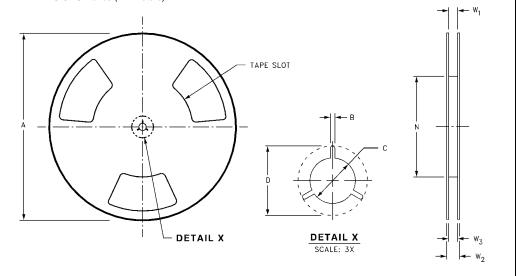

Note 3: $T_A = +25C$, f = 1 MHz.

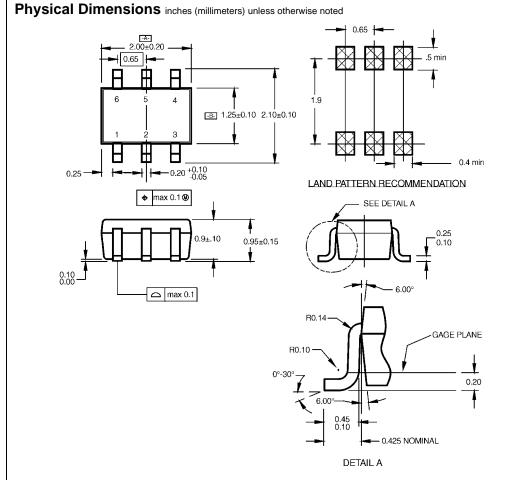

Note 4: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CD})(f_{IN}) + (I_{CC}static)$.


AC Loading and Waveforms D Input = AC Waveform; $t_r = t_f = 1.8 \text{ ns}$; C_L includes load and stray capacitance Input PRR = 1.0 MHz, $t_w = 500 \text{ ns}$ D Input PRR = 10 MHz; Duty Cycle = 50% FIGURE 2. $I_{\rm CCD}$ Test Circuit FIGURE 1. AC Test Circuit LE Input V_{CC} D Input GND Q Output FIGURE 3. AC Waveforms v_{CC} -90% 90% LE Input GND t_{PZL} OUTPUT V_{CC} 90% D Input 10% GND OUTPUT FIGURE 4. AC Waveforms FIGURE 5. AC Waveforms

Tape and Reel Specification TAPE FORMAT Package Tape Number Cavity Cover Tape Designator Section Cavities Status Status Leader (Start End) 125 (typ) Empty Sealed P6 Filled Carrier 250 Sealed Sealed Trailer (Hub End) 75 (typ) **Empty** Leader (Start End) 125 (typ) Empty Sealed P6X Carrier 3000 Filled Sealed Trailer (Hub End) 75 (typ) Empty Sealed

TAPE DIMENSIONS inches (millimeters)




Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-6	9 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
3070-6	6 8 mm	(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)

Tape and Reel Specification (Continued)

REEL DIMENSIONS inches (millimeters)

Tape Size	Α	В	С	D	N	W1	W2	W3
0	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
8 mm	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)

NOTES:

- A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88.
- $\ensuremath{\mathsf{B}}.$ DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH.
- C. DIMENSIONS ARE IN MILLIMETERS.

6-Lead SC70, EIAJ SC88, 1.25mm Wide Package Number MAA06A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

MAA06ARevC

www.fairchildsemi.com