NLAST4051

Analog Multiplexer/ Demultiplexer TTL Compatible, Single-Pole, 8-Position Plus Common Off

The NLAST4051 is an improved version of the MC14051 and MC74HC4051 fabricated in sub-micron Silicon Gate CMOS technology for lower $\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$ resistance and improved linearity with low current. This device may be operated either with a single supply or dual supply up to $\pm 3 \mathrm{~V}$ to pass a $6 \mathrm{~V}_{\mathrm{PP}}$ signal without coupling capacitors.

When operating in single supply mode, it is only necessary to tie V_{EE}, pin 7 to ground. For dual supply operation, V_{EE} is tied to a negative voltage, not to exceed maximum ratings. Translation is provided in the device, the Address and Inhibit are standard TTL level compatible. For CMOS compatibility see NLAS4051. Pin for pin compatible with all industry standard versions of '4051.'

Features

- Improved $\mathrm{R}_{\mathrm{DS}(\text { on })}$ Specifications
- Pin for Pin Replacement for MAX4051 and MAX4051A
- One Half the Resistance Operating at 5.0 V
- Single or Dual Supply Operation
- Single 3.0 - 5.0 V Operation, or Dual $\pm 3 \mathrm{~V}$ Operation
- With V_{CC} of 3.0 to 3.3 V , Device Can Interface with 1.8 V Logic, No Translators Needed
- Address and Inhibit Logic are Over-Voltage Tolerant and May Be Driven Up +6 V Regardless of V_{CC}
- Address and Inhibit Pins Standard TTL Compatible
- Greatly Improved Noise Margin Over MAX4051 and MAX4051A
- True TTL Compatibility $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
- Improved Linearity Over Standard HC4051 Devices
- Space Saving TSSOP Package
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Pin Connection
(Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

NLAST4051

TRUTH TABLE

Inhibit	Address			ON SWITCHES*
	C	B	A	
1	don't care	X don't care	\bar{x} don't care	All switches open
0	0	0	0	$\mathrm{COM}-\mathrm{NO}_{0}$
0	0	0	1	COM- NO_{1}
0	0	1	0	$\mathrm{COM}-\mathrm{NO}_{2}$
0	0	1	1	$\mathrm{COM}-\mathrm{NO}_{3}$
0	1	0	0	$\mathrm{COM}-\mathrm{NO}_{4}$
0	1	0	1	$\mathrm{COM}-\mathrm{NO}_{5}$
0	1	1	0	$\mathrm{COM}-\mathrm{NO}_{6}$
0	1	1	1	$\mathrm{COM}-\mathrm{NO}_{7}$

*NO and COM pins are identical and interchangeable. Either may be considered an input or output; signals pass equally well in either direction.

Figure 2. Logic Diagram

MAXIMUM RATINGS

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The absolute value of $\mathrm{V}_{\mathrm{CC}} \pm\left|\mathrm{V}_{\mathrm{EE}}\right| \leq 7.0$.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{EE}	Negative DC Supply Voltage	(Referenced to GND)	-5.5	GND	V
V_{CC}	Positive DC Supply Voltage	(Referenced to GND) (Referenced to V_{EE})	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & 6.6 \end{aligned}$	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage		V_{EE}	V_{CC}	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage	(Note 6) (Referenced to GND)	0	5.5	V
T_{A}	Operating Temperature Range, All Package Types		-55	125	${ }^{\circ} \mathrm{C}$
t_{r}, t_{f}	Input Rise/Fall Time (Channel Select or Enable Inputs)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 100 \\ 20 \end{gathered}$	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
6. Unused digital inputs may not be left open. All digital inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Address or Inhibit Inputs		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.0 \\ & 2.0 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage, Address or Inhibit Inputs		$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	V
IN	Maximum Input Leakage Current, Address or Inhibit Inputs	$\mathrm{V}_{\text {IN }}=6.0$ or GND	0 V to 6.0 V	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (per Package)	Address or Inhibit and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0	4.0	40	80	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Test Conditions	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	$\underset{\mathrm{VE}}{\mathrm{~V}_{\mathrm{EE}}}$	Guaranteed Limit			Unit	
					-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
RON	Maximum "ON" Resistance	$\begin{aligned} & V_{I N}=V_{I L} \text { or } V_{I H} \\ & V_{I S}=\left(V_{E E} \text { to } V_{C C}\right) \\ & \\| I S \mid=10 \mathrm{~mA} \\ & \text { (Figures } 4 \text { thru 9) } \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 86 \\ & 37 \\ & 26 \end{aligned}$	$\begin{gathered} 108 \\ 46 \\ 33 \end{gathered}$	$\begin{aligned} & 120 \\ & 55 \\ & 37 \end{aligned}$	Ω	
$\Delta \mathrm{R}_{\mathrm{ON}}$	Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package	$\begin{array}{ll} \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}, & \mathrm{~V}_{\text {IS }}=2.0 \mathrm{~V} \\ \mid \mathrm{V} \text { IS }=10 \mathrm{~mA}, & \mathrm{~V}_{\text {IS }}=3.0 \mathrm{~V} \end{array}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & \hline 15 \\ & 13 \\ & 10 \end{aligned}$	$\begin{aligned} & \hline 20 \\ & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 20 \\ & 18 \\ & 15 \end{aligned}$	Ω	
Rflat(ON)	ON Resistance Flatness	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1,2,3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=2,0,2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	3.0	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	Ω	
$\mathrm{I}_{\text {NC(OFF) }}$ $I_{\text {NO(OFF) }}$	Maximum Off-Channel Leakage Current	Switch Off $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{EE}}+1.0 \mathrm{~V} \\ & \text { (Figure 17) } \end{aligned}$	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	nA	
$\mathrm{I}_{\text {COM }}(\mathrm{ON})$	Maximum On-Channel Leakage Current, Channel-to-Channel	Switch On $\mathrm{V}_{\mathrm{IO}}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{EE}}+1.0 \mathrm{~V}$ (Figure 17)	$\begin{aligned} & \hline 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	nA	

NLAST4051

AC CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{v}_{\mathrm{Cc}} \\ \mathrm{~V} \end{gathered}$	v_{EE}	Guaranteed Limit				Unit
					-55 to $25^{\circ} \mathrm{C}$		$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
					Min	Typ*			
$t_{\text {BBM }}$	Minimum Break-Before-Make Time	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$	3.0	0.0	1.0	6.5	-	-	ns
		$V_{\text {IS }}=V_{\text {VC }}$	4.5	0.0	1.0	5.0	-	-	
		$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figure 19)	3.0	-3.0	1.0	3.5	-	-	

${ }^{*}$ Typical Characteristics are at $25^{\circ} \mathrm{C}$.
AC CHARACTERISTICS $\left(C_{L}=35 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}\right)$

Symbol	Parameter	$\underset{\mathrm{VC}}{\mathrm{v}_{\mathrm{cc}}}$	$\stackrel{\mathrm{v}_{\mathrm{EE}}}{\mathrm{~V}}$	Guaranteed Limit							Unit
				-55 to $25^{\circ} \mathrm{C}$			$\leq 85^{\circ} \mathrm{C}$		$\leq 125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
${ }^{\text {trRANS }}$	Transition Time (Address Selection Time) (Figure 18)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ -3.0 \end{gathered}$			$\begin{aligned} & 40 \\ & 28 \\ & 23 \\ & 23 \end{aligned}$		45 30 25 25		$\begin{aligned} & 50 \\ & 35 \\ & 30 \\ & 28 \end{aligned}$	ns
ton	Turn-on Time (Figures 14, 15, 20, and 21) Enable to N_{O} or N_{C}	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ -3.0 \end{gathered}$			40 28 23 23		45 30 25 25		50 35 30 28	ns
toff	Turn-off Time (Figures 14, 15, 20, and 21) Enable to N_{O} or N_{C}	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ -3.0 \end{gathered}$			40 28 23 23		45 30 25 25		50 35 30 28	ns

		Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance,Select Inputs	8	pF
C_{NO} or C_{NC}	Analog I/O	10	
$\mathrm{C}_{\text {COM }}$	Common I/O	10	
$\mathrm{C}_{(\mathrm{ON})}$	Feedthrough	1.0	

ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)

Symbol	Parameter	Condition	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	$\mathrm{v}_{\mathrm{EEE}}$	Typ	Unit
					$25^{\circ} \mathrm{C}$	
BW	Maximum On-Channel Bandwidth or Minimum Frequency Response	$V_{I S}=1 / 2\left(V_{C C}-V_{E E}\right)$ Source Amplitude $=0 \mathrm{dBm}$ (Figures 10 and 22)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 80 \\ & 90 \\ & 95 \\ & 95 \end{aligned}$	MHz
VISO	Off-Channel Feedthrough Isolation	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ & \text { Source }=0 \mathrm{dBm} \\ & \text { (Figures } 12 \text { and 22) } \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & -93 \\ & -93 \\ & -93 \\ & -93 \\ & -93 \end{aligned}$	dB
$\mathrm{V}_{\text {ONL }}$	Maximum Feedthrough On Loss	$\begin{aligned} & \mathrm{V}_{\text {IS }}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right) \\ & \text { Source }=0 \mathrm{dBm} \end{aligned}$ (Figures 10 and 22)	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 0.0 \\ 0.0 \\ 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & -2 \\ & -2 \\ & -2 \\ & -2 \end{aligned}$	dB
Q	Charge Injection	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}} \mathrm{f}_{\text {IS }}=1 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$ $\mathrm{R}_{\mathrm{IS}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{Q}=\mathrm{C}_{\mathrm{L}}{ }^{*} \Delta \mathrm{~V}_{\text {OUT }}$ (Figures 16 and 23)	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 9.0 \\ & 12 \end{aligned}$	pC
THD	Total Harmonic Distortion THD + Noise	$\begin{aligned} & \mathrm{f}_{\mathrm{IS}}=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{~V}_{I S}=5.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \\ & \mathrm{V}_{1 \mathrm{~S}}=6.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \\ & \text { (Figure 13) } \end{aligned}$	$\begin{aligned} & 6.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 0.0 \\ -3.0 \end{gathered}$	$\begin{aligned} & 0.10 \\ & 0.05 \end{aligned}$	\%

NLAST4051

TYPICAL CHARACTERISTICS

Figure 3. I_{Cc} versus Temp, $\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V}$ and 5 V

Figure 5. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

Figure 7. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

Figure 4. R_{ON} versus V_{Cc}, Temp $=\mathbf{2 5}^{\circ} \mathrm{C}$

Figure 6. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

Figure 8. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$

NLAST4051

TYPICAL CHARACTERISTICS

Figure 9. Typical On Resistance
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.3 \mathrm{~V}$

Figure 10. Bandwidth

Figure 12. Off Isolation

Figure 11. Phase Shift

Figure 13. Total Harmonic Distortion

NLAST4051

TYPICAL CHARACTERISTICS

Figure 14. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ versus V_{CC}

Figure 16. Charge Injection versus COM Voltage

Figure 15. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ versus Temp

Figure 17. Switch Leakage versus Temperature

NLAST4051

Figure 18. Channel Selection Propagation Delay

Figure 19. t_{BB} (Time Break-Before-Make)

Figure 20. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NLAST4051

Figure 21. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch Address and Inhibit/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20$ Log $\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for V_{IN} at 100 kHz to 50 MHz
Bandwidth $(B W)=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
Figure 22. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

NLAST4051

Figure 23. Charge Injection: (Q)

TYPICAL OPERATION

Figure 24. 5.0 Volts Single Supply $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0$

Figure 25. Dual Supply $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$

ORDERING INFORMATION

Device	Package	Shipping †
NLAST4051DTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLVAST4051DTR2G *	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

