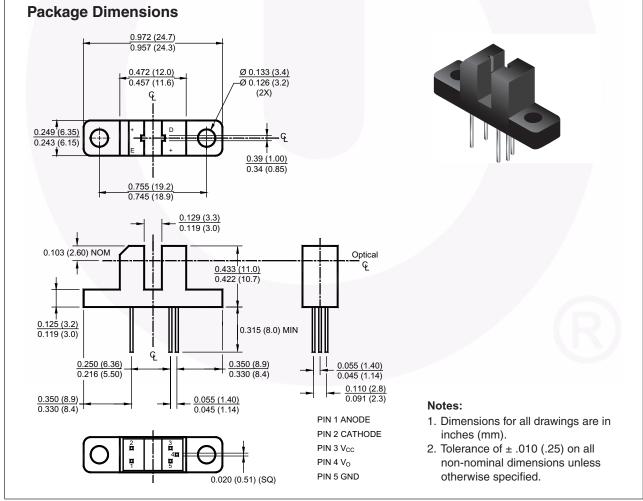
FAIRCHILD

January 2008

H21L Series OPTOLOGIC[®] Optical Interrupter Switch

Features


- Low cost
- 0.035" apertures
- Black plastic opaque housing
- Mounting tabs on housing
- Choice of inverter or buffer output functions
- Choice of open-collector or totem-pole output configuration
- TTL/CMOS compatible output functions

Description

The H21L series are slotted optical switches designed for multipurpose non contact sensing. They consist of a GaAs LED and a silicon OPTOLOGIC[®] sensor packaged in an injection molded housing and facing each other across a .124" (3.15 mm) gap. The output is either inverting or non-inverting, with a choice of totem-pole or open-collector configuration for TTL/CMOS compatibility.

Part Number Definitions

H21LTB, Totem-pole, buffer output H21LTI, Totem-pole, inverter output H21LOB, Open-collector, buffer output H21LOI, Open-collector, inverter output

©2004 Fairchild Semiconductor Corporation H21L Series Rev. 1.1.0

www.fairchildsemi.com

Absolute Maximum Ratings (T_A = 25°C Unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

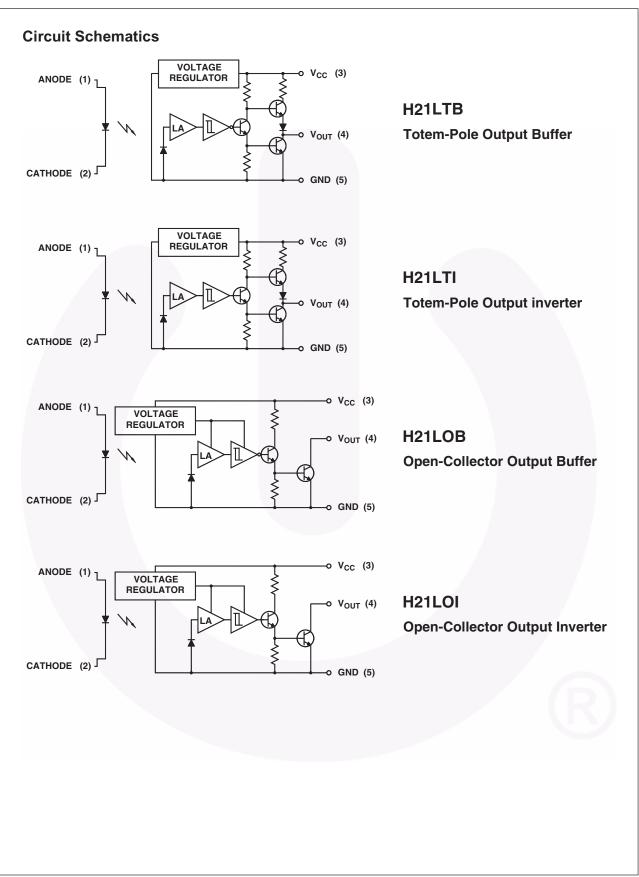
Symbol	Parameter	Rating	Units
T _{OPR}	Operating Temperature	-40 to +85	°C
T _{STG}	Storage Temperature	-40 to +85	°C
T _{SOL-I}	Soldering Temperature (Iron) ⁽⁵⁾⁽⁶⁾⁽⁷⁾⁽⁸⁾	240 for 5 sec	°C
T _{SOL-F}	Soldering Temperature (Flow) ⁽⁵⁾⁽⁶⁾⁽⁸⁾	260 for 10 sec	°C
INPUT (Emitte)		
١ _F	Continuous Forward Current	50	mA
V _R	Reverse Voltage	6	V
PD	Power Dissipation ⁽³⁾	100	mW
OUTPUT (Sens	sor)		
Ι _Ο	Output Current	50	mA
V _{CC}	Supply Voltage	4.0 to 16	V
V _O	Output Voltage	30	V
PD	Power Dissipation ⁽⁴⁾	150	mW

Notes:

3. Derate power dissipation linearly 1.67mW/°C above 25°C.

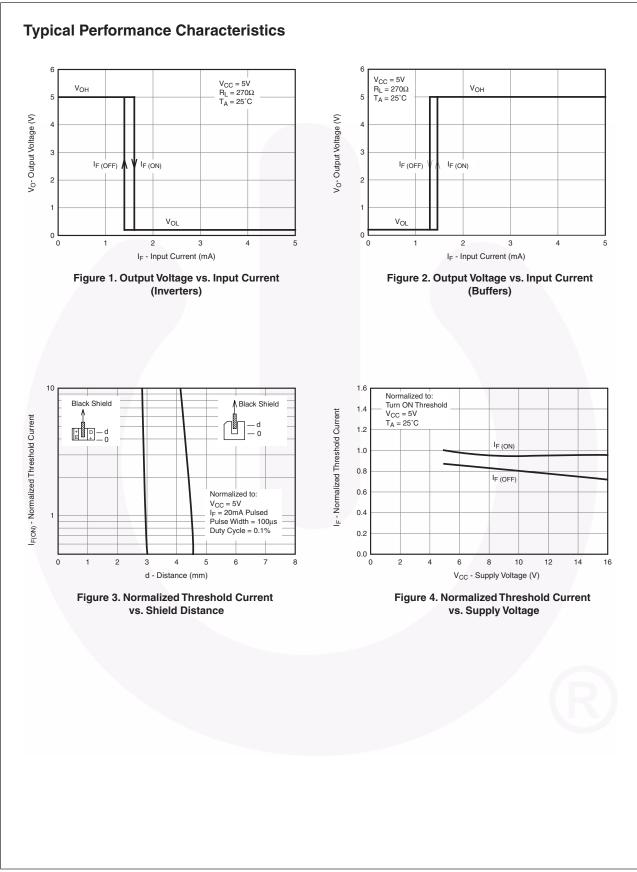
- 4. Derate power dissipation linearly 2.50mW/°C above 25°C.
- 5. RMA flux is recommended.
- 6. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 7. Soldering iron 1/16" (1.6mm) from housing.
- 8. As long as leads are not under any stress or spring tension.

Symbol	Parameter	Test Conditions	Min.	Тур	Max.	Units	
INPUT (Em	litter)				1	I	
V _F	Forward Voltage	I _F = 20mA			1.5	V	
I _R	Reverse Leakage Current	V _R = 5 V			10	μA	
OUTPUT (S	Sensor)		_		1	1	
I _{CC}	Supply Current	$V_{CC} = 5 V$			5	mA	
COUPLED	-		-		•		
V _{OL}	Low Level Output Voltage H21LTB, H21LOB	$I_{F} = 0mA, V_{CC} = 5V, I_{OL} = 16mA$			0.4	V	
	Low Level Output Voltage H21LTI, H21LOI	$I_F = 15mA, V_{CC} = 5V, I_{OL} = 16mA$			0.4		
V _{OH}	High Level Output Voltage H21LTB	I _F = 15mA, V _{CC} = 5V, I _{OH} = -1mA	2.4			V	
	High Level Output Voltage H21LTI	$I_{F} = 0mA, V_{CC} = 5V, I_{OH} = -1mA$	2.4				
I _{OH}	High Level Output Current H21LOB	$I_{\rm F}$ = 15mA, $V_{\rm CC}$ = 5 V, $V_{\rm OH}$ = 30V			100	μA	
	High Level Output Current H21LOI	$I_{F} = 0 \text{ mA}, V_{CC} = 5 \text{ V}, V_{OH} = 30 \text{ V}$			100	1	
$I_{F}(+)$	Turn on Threshold Current	$V_{CC} = 5V$			15	mA	
I _F (-)	Turn off Threshold Current	$V_{\rm CC} = 5V$	0.50			mA	
I _F (+) / I _F (-)	Hysteresis Ratio			1.2			
t _{PLH} , t _{PHL}	Propagation Delay, H21LOI, H21LOB	$V_{CC} = 5V, R_{L} = 300\Omega$ (Fig. 9)		6		μs	
	Propagation Delay, H21LTI, H21LTB	$V_{CC} = 5V, R_L = 300\Omega$ (Fig. 9)		6			
t _r , t _f	Output Rise and Fall Time, H21LOI, H21LOB	$V_{CC} = 5V, R_{L} = 300\Omega$ (Fig. 9)		100		ns	
	Output Rise and Fall Time, H21LTI, H21LTB	$V_{CC} = 5V, R_L = 300\Omega$ (Fig. 9)		70			

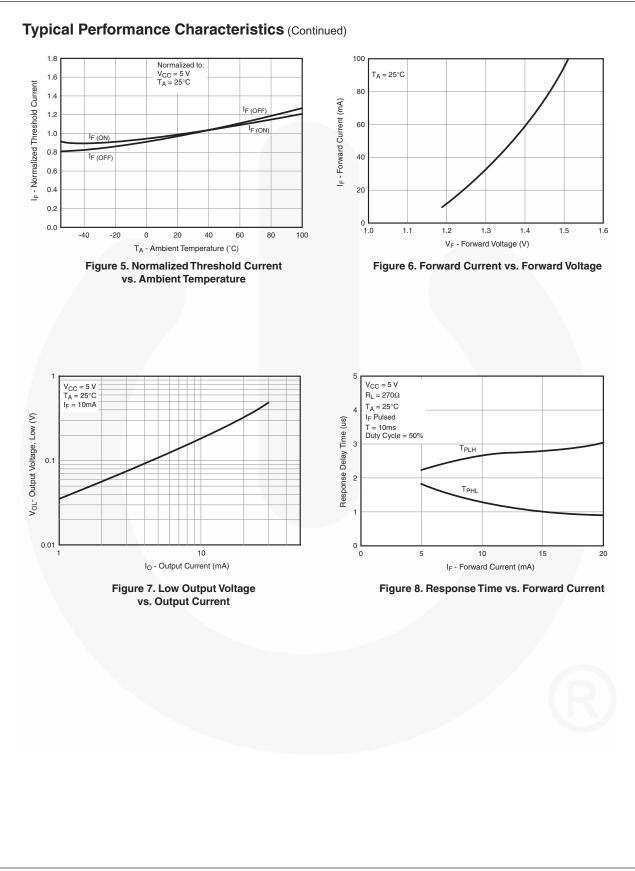

H21L Series — OPTOLOGIC[®] Optical Interrupter Switch

Input/Output Table

Part Number	LED	Output
H21LTB	On	High
H21LTB	Off	Low
H21LTI	On	Low
H21LTI	Off	High
H21LOB	On	High
H21LOB	Off	Low
H21LOI	On	Low
H21LOI	Off	High

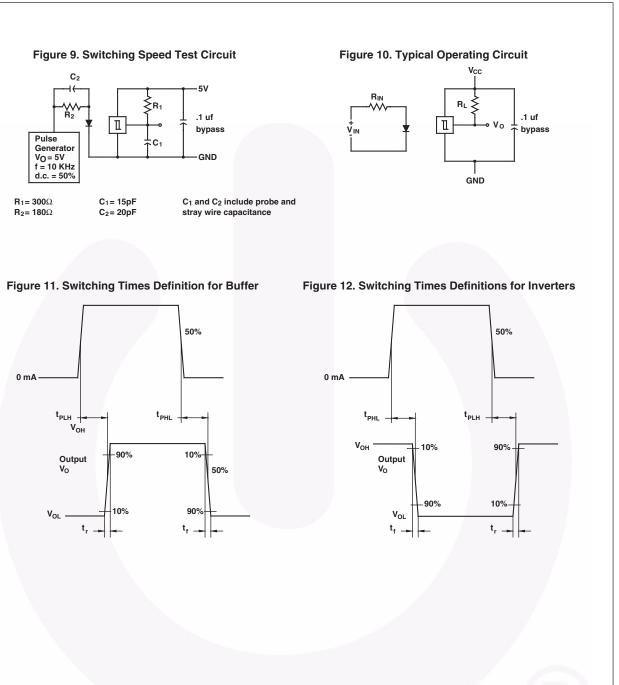

©2004 Fairchild Semiconductor Corporation H21L Series Rev. 1.1.0

Downloaded from Arrow.com.



4

©2004 Fairchild Semiconductor Corporation H21L Series Rev. 1.1.0



©2004 Fairchild Semiconductor Corporation H21L Series Rev. 1.1.0 H21L Series — OPTOLOGIC[®] Optical Interrupter Switch

©2004 Fairchild Semiconductor Corporation H21L Series Rev. 1.1.0

H21L Series — OPTOLOGIC[®] Optical Interrupter Switch

©2004 Fairchild Semiconductor Corporation H21L Series Rev. 1.1.0

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK [®] EZSWITCH™ * ECOSPARK [®] EZSWITCH™ * ECOSPARK [®] EZSWITCH™ * Earchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series™ FACT [®] FAST [®] FastvCore™ FlashWriter [®] .	FPS™ FRFET® Global Power Resource SM Green FPS™ Green FPS™ e-Series™ GTO™ <i>i-Lo</i> ™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®	PDP-SPM [™] Power220 [®] Power247 [®] POWEREDGE [®] Power-SPM [™] PowerTrench [®] Programmable Active Droop [™] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] SMART START [™] SMART START [™] SPM [®] STEALTH [™] SuperFET [™] SuperFCT [™] -6 SuperSOT [™] -6	SyncFET™ General The Power Franchise® Pranchise TinyBoost™ TinyBoost™ TinyDegic® TINYOPTO™ TinyPOwer™ TinyPOwer™ TinyPWM™ TinyWire™ ≪SerDes™ UHC® Ultra FRFET™ UniFET™ VCX™
---	--	--	---

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Downloaded from Arrow.com.