Protected Triac

Silicon Bidirectional Thyristor

Designed for use in solid state relays, MPU interface, TTL logic and other light industrial or consumer applications. Supplied in surface mount package for use in automated manufacturing.

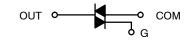
Features

- Sensitive Gate Trigger Current in Two Quadrants
- Blocking Voltage to 600 V
- Surface Mount Package
- Compliant with IEC6100-4-5
- These are Pb-Free Devices

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

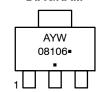
Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (Sine Wave, 50 to 60 Hz, Gate Open, $T_J = 25$ to $125^{\circ}C$)	V _{DRM,} V _{RRM}	600	V
On–State Current RMS (T _C = 80°C) (Full Sine Wave 50 to 60 Hz)	I _{T(RMS)}	0.8	Α
Peak Non-repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, $T_C = 25^{\circ}C$)	I _{TSM}	8.0	Α
Circuit Fusing Considerations (Pulse Width = 8.3 ms)	I ² t	0.4	A ² s
Peak Gate Power $(T_C = 80^{\circ}C, \text{ Pulse Width } \leq 1.0 \mu\text{s})$	P _{GM}	5.0	W
Average Gate Power (T _C = 80°C, t = 8.3 ms)	P _{G(AV)}	0.1	W
Non-Repetitive Line Peak Voltage (IEC6100-4-5)	V _{PP}	2.0	kV
Critical Rate of Rise of All–State Current ($I_G = 2 \times I_{GT}$, $t_r < 100 \mu s$, $T_J = 1255C$)	di/dt	100	A/μs
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

ON Semiconductor®

http://onsemi.com


PROTECTED TRIAC 0.8 AMPERE RMS 600 VOLTS

MARKING DIAGRAM

SOT-223 CASE 318E

A = Assembly Location

Y = Year

W = Work Week 08106 = Device Code

(Note: Microdot may be in either location)

= Pb-Free Package

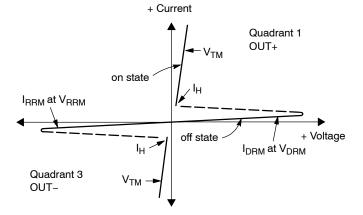
PIN ASSIGNMENT			
1	OUT		
2	СОМ		
3	Gate		
4	СОМ		

ORDERING INFORMATION

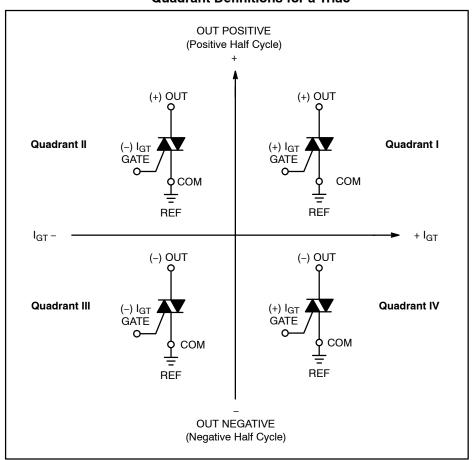
Device	Package	Shipping [†]
NYE08-10B6ST1G	SOT-223 (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

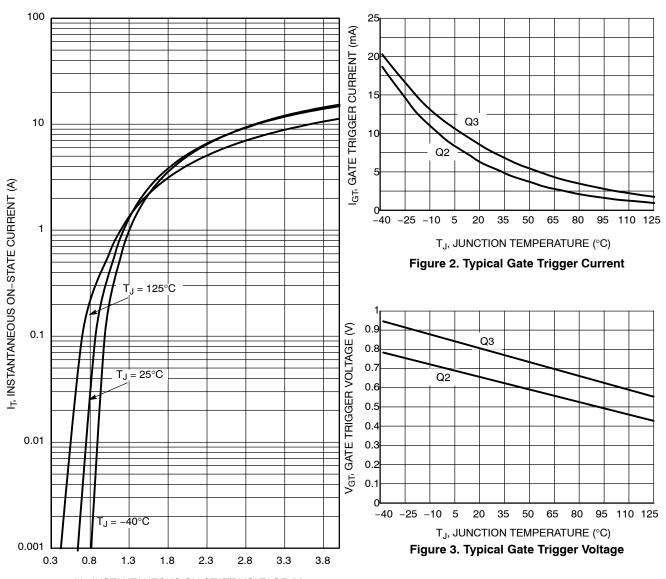
THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	50	°C/W
Thermal Resistance, Junction-to-Ambient		160	°C/W
Maximum Lead Temperature for Soldering Purposes for 10 Seconds	TL	260	°C

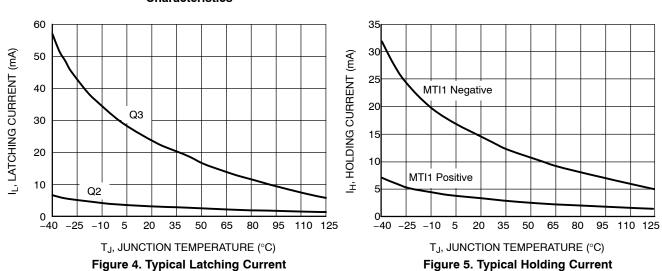
ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted; Electricals apply in both directions)

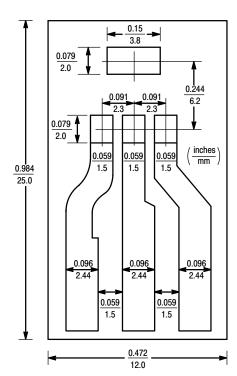

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
$\label{eq:peak_repetitive_Blocking_Current} Peak Repetitive Blocking Current & T_J = 25^{\circ}C \\ (V_D = V_{DRM}/V_{RRM}; Gate Open) & T_J = +125^{\circ}C \\ \end{array}$	I _{DRM} , I _{RRM}	- -	- -	2.0 200	μ Α μ Α
ON CHARACTERISTICS					
Peak On–State Voltage ($I_{TM} = \pm 1.1$ A Peak; Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2.0 %)	V _{TM}	=	_	1.3	V
Gate Trigger Current (dc) $ (V_D = 12 \text{ Vdc}, \ R_L = 30 \ \Omega) $ $ OUT(+), \ G(-) $ $ OUT(-), \ G(-) $	I _{GT}	0.15 0.15	- -	10 10	mA
Latching Current (V_D = 12 V, I_G = 1.2 x I_{GT}) OUT(+), G(-) All Types OUT(-), G(-) All Types	ΙL	- -	- -	30 30	mA
Gate Trigger Voltage (dc) (V_D = 12 Vdc, R_L = 30 Ω)	V _{GT}	_	-	1.0	V
Gate Non–Trigger Voltage (V_D = 12 V, R_L = 30 Ω , T_J = 125°C) Quadrants 2, 3	V _{GD}	0.15	-	=	V
Dynamic Resistance	R_D	=	-	300	mΩ
Holding Current (V _D = 12 Vdc, Initiating Current = 50 mA, Gate Open)	I _H	=	-	25	mA
DYNAMIC CHARACTERISTICS					
Rate of Change of Commutating Current (Commutating dv/dt = 15 V/ μ s, Gate Open, T $_J$ = 125°C, f = 250 Hz, without Snubber)	di/dt(c)	0.3	_	-	A/ms
Critical Rate of Rise of Off–State Voltage (V_D = 67% V_{DRM} , Exponential Waveform, Gate Open, T_J = 125°C)	dv/dt	500	-	-	V/μs
Clamping Voltage ($I_{CL} = 1.0 \text{ mA}, t_p = 1 \text{ ms}, T_J = 125^{\circ}\text{C}$)	V_{CL}	650	-	-	V

Voltage Current Characteristic of Triacs (Bidirectional Device)


Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

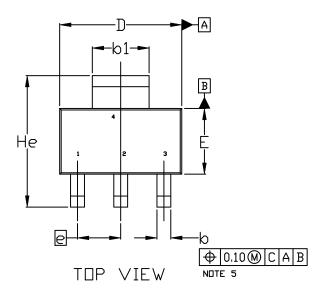
Quadrant Definitions for a Triac

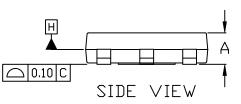



All polarities are referenced to COM.

V_T, INSTANTANEOUS ON-STATE VOLTAGE (V)

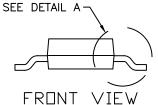
Figure 1. Maximum On-State Voltage Characteristics


BOARD MOUNTED VERTICALLY IN CINCH 8840 EDGE CONNECTOR. BOARD THICKNESS = 65 MIL., FOIL THICKNESS = 2.5 MIL. MATERIAL: G10 FIBERGLASS BASE EPOXY


Figure 1. PCB for Thermal Impedance and Power Testing of SOT-223

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018



DETAIL A

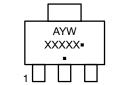
A1-

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- DATUMS A AND B ARE DETERMINED AT DATUM H.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- POSITIONAL TOLERANCE APPLIES TO DIMENSIONS b AND b1.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
Ø	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
U	0.24	0.29	0.35	
D	6.30	6.50	6.70	
E	3.30	3.50	3.70	
е	2.30 BSC			
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7.30	
θ	0°		10°	

RECOMMENDED MOUNTING **FOOTPRINT**

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 1 OF 2


ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-223 (TO-261) CASE 318E-04 ISSUE R

DATE 02 OCT 2018

STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR	STYLE 2: PIN 1. ANODE 2. CATHODE 3. NC 4. CATHODE	STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 4: PIN 1. SOURCE 2. DRAIN 3. GATE 4. DRAIN	STYLE 5: PIN 1. DRAIN 2. GATE 3. SOURCE 4. GATE
STYLE 6: PIN 1. RETURN 2. INPUT 3. OUTPUT 4. INPUT	STYLE 7: PIN 1. ANODE 1 2. CATHODE 3. ANODE 2 4. CATHODE	STYLE 8: CANCELLED	STYLE 9: PIN 1. INPUT 2. GROUND 3. LOGIC 4. GROUND	STYLE 10: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE
STYLE 11: PIN 1. MT 1 2. MT 2 3. GATE 4. MT 2	STYLE 12: PIN 1. INPUT 2. OUTPUT 3. NC 4. OUTPUT	STYLE 13: PIN 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR		

GENERIC MARKING DIAGRAM*

A = Assembly Location

Y = Year W = Work Week

not follow the Generic Marking.

XXXXX = Specific Device Code

= Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot "•", may
or may not be present. Some products may

DOCUMENT NUMBER:	98ASB42680B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223 (TO-261)		PAGE 2 OF 2

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and seven any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

0