

Is Now Part of



# **ON Semiconductor**®

# To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (\_), the underscore (\_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (\_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <a href="https://www.onsemi.com">www.onsemi.com</a>. Please email any questions regarding the system integration to <a href="https://www.onsemi.com">Fairchild\_questions@onsemi.com</a>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and

#### FAIRCHILD

SEMICONDUCTOR

### CD4538BC Dual Precision Monostable

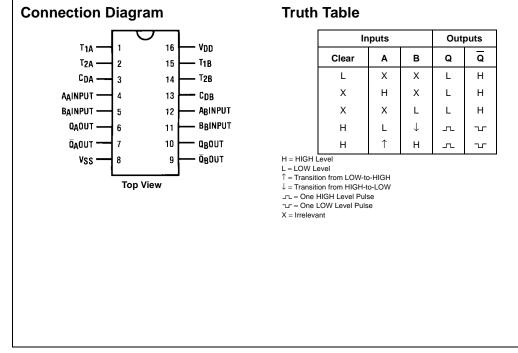
#### **General Description**

The CD4538BC is a dual, precision monostable multivibrator with independent trigger and reset controls. The device is retriggerable and resettable, and the control inputs are internally latched. Two trigger inputs are provided to allow either rising or falling edge triggering. The reset inputs are active LOW and prevent triggering while active. Precise control of output pulse-width has been achieved using linear CMOS techniques. The pulse duration and accuracy are determined by external components  $R_{\rm X}$  and  $C_{\rm X}$ . The device does not allow the timing capacitor to discharge through the timing pin on power-down condition. For this reason, no external protection resistor is required in series with the timing pin. Input protection from static discharge is provided on all pins.

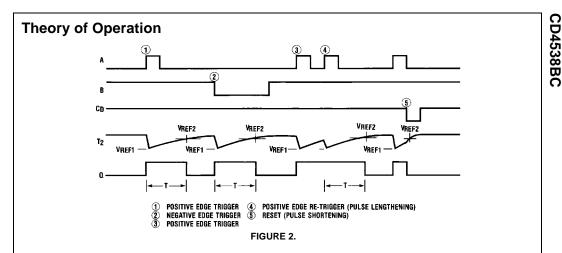
#### Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V<sub>CC</sub> (typ.)
- Low power TTL compatibility:
- Fan out of 2 driving 74L or 1 driving 74LS ■ New formula:
- PW<sub>OUT</sub> = RC (PW in seconds, R in Ohms, C in Farads)

October 1987


Revised April 2002


- ±1.0% pulse-width variation from part to part (typ.)
- $\blacksquare \ \mbox{Wide pulse-width range:} \ \ 1\ \mu s \ to \ \infty$
- Separate latched reset inputs
- Symmetrical output sink and source capability
- Low standby current: 5 nA (typ.) @ 5 V<sub>DC</sub>
- Pin compatible to CD4528BC


#### **Ordering Code:**

| Order Number | Package Number | Package Description                                                          |
|--------------|----------------|------------------------------------------------------------------------------|
| CD4538BCM    | M16A           | 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow |
| CD4538BCWM   | M16B           | 16-Lead Small Outline Intergrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide  |
| CD4538BCN    | N16E           | 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide       |

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.







#### **Trigger Operation**

The block diagram of the CD4538BC is shown in Figure 1, with circuit operation following.

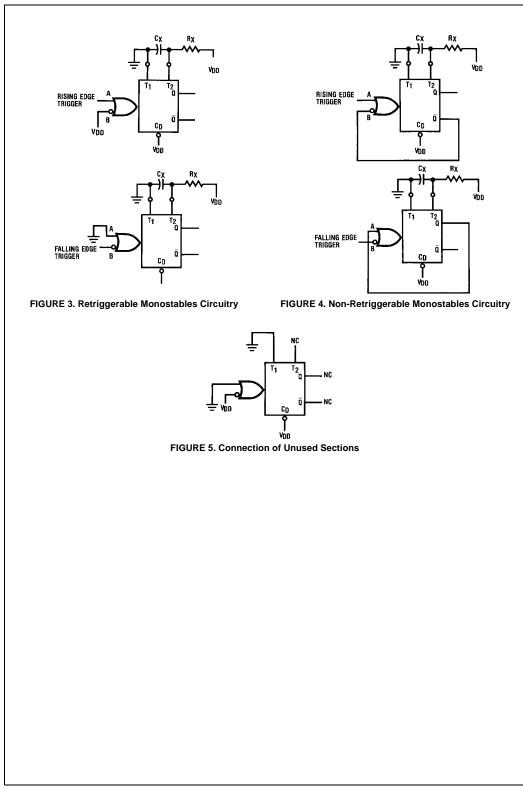
As shown in Figure 1 and Figure 2, before an input trigger occurs, the monostable is in the quiescent state with the Q output low, and the timing capacitor  $C_{\boldsymbol{X}}$  completely charged to  $V_{DD}$ . When the trigger input A goes from  $V_{SS}$  to  $V_{DD}$ (while inputs B and C<sub>D</sub> are held to V<sub>DD</sub>) a valid trigger is recognized, which turns on comparator C1 and N-Channel transistor N1<sup>(1)</sup>. At the same time the output latch is set. With transistor N1 on, the capacitor  $C_{\boldsymbol{X}}$  rapidly discharges toward  $V_{\text{SS}}$  until  $V_{\text{REF1}}$  is reached. At this point the output of comparator C1 changes state and transistor N1 turns off. Comparator C1 then turns off while at the same time comparator C2 turns on. With transistor N1 off, the capacitor  $C_X$ begins to charge through the timing resistor, R<sub>X</sub>, toward  $V_{DD}$ . When the voltage across  $C_X$  equals  $V_{REF2}$ , comparator C2 changes state causing the output latch to reset (Q goes low) while at the same time disabling comparator C2. This ends the timing cycle with the monostable in the quiescent state, waiting for the next trigger.

A valid trigger is also recognized when trigger input B goes from  $V_{DD}$  to  $V_{SS}$  (while input A is at  $V_{SS}$  and input  $C_D$  is at  $V_{DD}$ )<sup>(2)</sup>.

It should be noted that in the quiescent state  $C_X$  is fully charged to  $V_{DD}$ , causing the current through resistor  $R_X$  to be zero. Both comparators are "off" with the total device current due only to reverse junction leakages. An added feature of the CD4538BC is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of  $C_X,\,R_X$ , or the duty cycle of the input waveform.

#### **Retrigger Operation**

The CD4538BC is retriggered if a valid trigger occurs<sup>(3)</sup> followed by another valid trigger<sup>(4)</sup> before the Q output has returned to the quiescent (zero) state. Any retrigger, after the timing node voltage at pin 2 or 14 has begun to rise from V<sub>REF1</sub>, but has not yet reached V<sub>REF2</sub>, will cause an increase in output pulse width T. When a valid retrigger is initiated<sup>(4)</sup>, the voltage at T2 will again drop to V<sub>REF1</sub> before progressing along the RC charging curve toward V<sub>DD</sub>. The Q output will remain high until time T, after the last valid retrigger.


#### **Reset Operation**

The CD4538BC may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse on C<sub>D</sub> sets the reset latch and causes the capacitor to be fast charged to V<sub>DD</sub> by turning on transistor Q1<sup>(5)</sup>. When the voltage on the capacitor reaches V<sub>REF2</sub>, the reset latch will clear and then be ready to accept another pulse. If the C<sub>D</sub> input is held low, any trigger inputs that occur will be inhibited and the Q and  $\overline{Q}$  outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the C<sub>D</sub> input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

www.fairchildsemi.com

3

# **CD4538BC**



#### Absolute Maximum Ratings(Note 1)

| (Note 2)                             |                                   |
|--------------------------------------|-----------------------------------|
| DC Supply Voltage (V <sub>DD</sub> ) | -0.5 to $+18$ V <sub>DC</sub>     |
| Input Voltage (V <sub>IN</sub> )     | –0.5V to $V_{DD}$ + 0.5 $V_{DC}$  |
| Storage Temperature Range $(T_S)$    | $-65^{\circ}C$ to $+150^{\circ}C$ |
| Power Dissipation (P <sub>D</sub> )  |                                   |
| Dual-In-Line                         | 700 mW                            |
| Small Outline                        | 500 mW                            |
| Lead Temperature (T <sub>L</sub> )   |                                   |
| (Soldering, 10 seconds)              | 260°C                             |

## Recommended Operating Conditions (Note 2)

DC Supply Voltage (V<sub>DD</sub>)

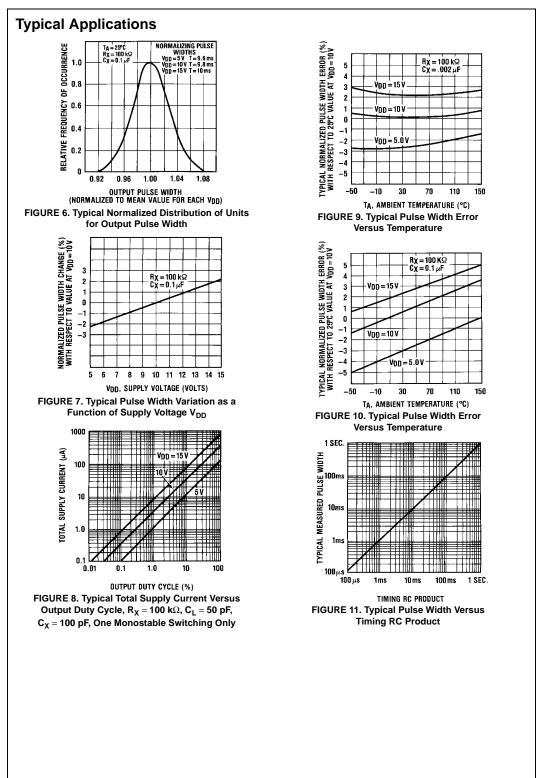
Input Voltage (V<sub>IN</sub>)

3 to 15  $V_{DC}$ 0 to  $V_{DD}$   $V_{DC}$  CD4538BC

safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide con-

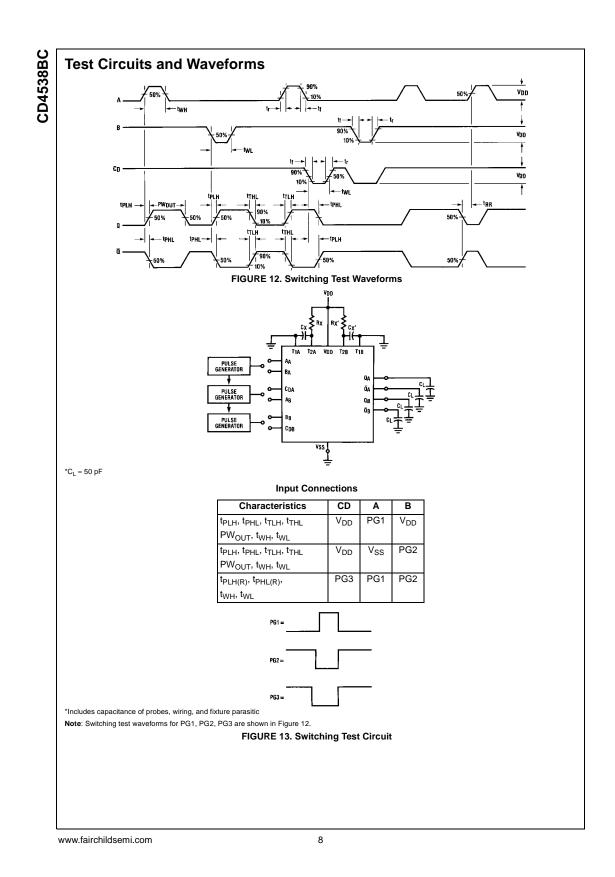
ditions for actual device operation. Note 2:  $V_{SS} = 0V$  unless otherwise specified.

| Cumb al         | Parameter      | Conditions                                               | –55°C |       | +25°C |                   |       | +125°C |      | Units |
|-----------------|----------------|----------------------------------------------------------|-------|-------|-------|-------------------|-------|--------|------|-------|
| Symbol          |                | Conditions                                               | Min   | Max   | Min   | Тур               | Max   | Min    | Max  | Units |
| I <sub>DD</sub> | Quiescent      | $V_{DD} = 5V$ $V_{IH} = V_{DD}$                          |       | 20    |       | 0.005             | 5     |        | 150  |       |
|                 | Device Current | $V_{DD} = 10V$ $V_{IL} = V_{SS}$                         |       | 40    |       | 0.010             | 10    |        | 300  | μA    |
|                 |                | V <sub>DD</sub> = 15V All Outputs Open                   |       | 80    |       | 0.015             | 20    |        | 600  |       |
| V <sub>OL</sub> | LOW Level      | $V_{DD} = 5V$ $ I_0  < 1 \ \mu A$                        |       | 0.05  |       | 0                 | 0.05  |        | 0.05 |       |
| Outpu           | Output Voltage | $V_{DD} = 10V \qquad V_{IH} = V_{DD}, \ V_{IL} = V_{SS}$ |       | 0.05  |       | 0                 | 0.05  |        | 0.05 | V     |
|                 |                | $V_{DD} = 15V$                                           |       | 0.05  |       | 0                 | 0.05  |        | 0.05 |       |
| V <sub>OH</sub> | HIGH Level     | $V_{DD} = 5V$ $ I_0  < 1 \ \mu A$                        | 4.95  |       | 4.95  | 5                 |       | 4.95   |      |       |
|                 | Output Voltage | $V_{DD} = 10V \qquad V_{IH} = V_{DD}, \ V_{IL} = V_{SS}$ | 9.95  |       | 9.95  | 10                |       | 9.95   |      | V     |
|                 |                | $V_{DD} = 15V$                                           | 14.95 |       | 14.95 | 15                |       | 14.95  |      |       |
| VIL             | LOW Level      | I <sub>O</sub>   < 1 μA                                  |       |       |       |                   |       |        |      |       |
|                 | Input Voltage  | $V_{DD} = 5V$ , $V_O = 0.5V$ or $4.5V$                   |       | 1.5   |       | 2.25              | 1.5   |        | 1.5  |       |
|                 |                | $V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$            |       | 3.0   |       | 4.50              | 3.0   |        | 3.0  | V     |
|                 |                | $V_{DD} = 15V, V_O = 1.5V \text{ or } 13.5V$             |       | 4.0   |       | 6.75              | 4.0   |        | 4.0  |       |
| V <sub>IH</sub> | HIGH Level     | I <sub>O</sub>   < 1 μA                                  |       |       |       |                   |       |        |      |       |
|                 | Input Voltage  | $V_{DD} = 5V$ , $V_O = 0.5V$ or $4.5V$                   | 3.5   |       | 3.5   | 2.75              |       | 3.5    |      |       |
|                 |                | $V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$            | 7.0   |       | 7.0   | 5.50              |       | 7.0    |      | V     |
|                 |                | $V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$           | 11.0  |       | 11.0  | 8.25              |       | 11.0   |      |       |
| I <sub>OL</sub> | LOW Level      | $V_{DD} = 5V, V_O = 0.4V$ $V_{IH} = V_{DD}$              | 0.64  |       | 0.51  | 0.88              |       | 0.36   |      |       |
|                 | Output Current | $V_{DD}=10V,V_{O}=0.5V \qquad V_{IL}=V_{SS}$             | 1.6   |       | 1.3   | 2.25              |       | 0.9    |      | mA    |
|                 | (Note 3)       | $V_{D} = 15V, V_{O} = 1.5V$                              | 4.2   |       | 3.4   | 8.8               |       | 2.4    |      |       |
| I <sub>OH</sub> | HIGH Level     | $V_{DD} = 5V, V_{O} = 4.6V$                              | -0.6  |       | -0.51 | -0.88             |       | -0.36  |      |       |
|                 | Output Current | $V_{DD}=10V,V_{O}=9.5V \qquad V_{IL}=V_{SS}$             | -1.6  |       | -1.3  | -2.25             |       | -0.9   |      | mA    |
|                 | (Note 3)       | $V_D = 15V, V_O = 13.5V$                                 | -4.2  |       | -3.4  | -8.8              |       | -2.4   |      |       |
| I <sub>IN</sub> | Input Current, | $V_{DD} = 15V, V_{IN} = 0V \text{ or } 15V$              |       | ±0.02 |       | ±10 <sup>-5</sup> | ±0.05 |        | ±0.5 | μA    |
|                 | Pin 2 or 14    |                                                          |       |       |       |                   |       |        |      |       |
| I <sub>IN</sub> | Input Current  | $V_{DD} = 15V, V_{IN} = 0V \text{ or } 15V$              |       | ±0.1  |       | ±10 <sup>-5</sup> | ±0.1  |        | ±1.0 | μA    |
|                 | Other Inputs   |                                                          |       |       |       |                   |       |        |      |       |

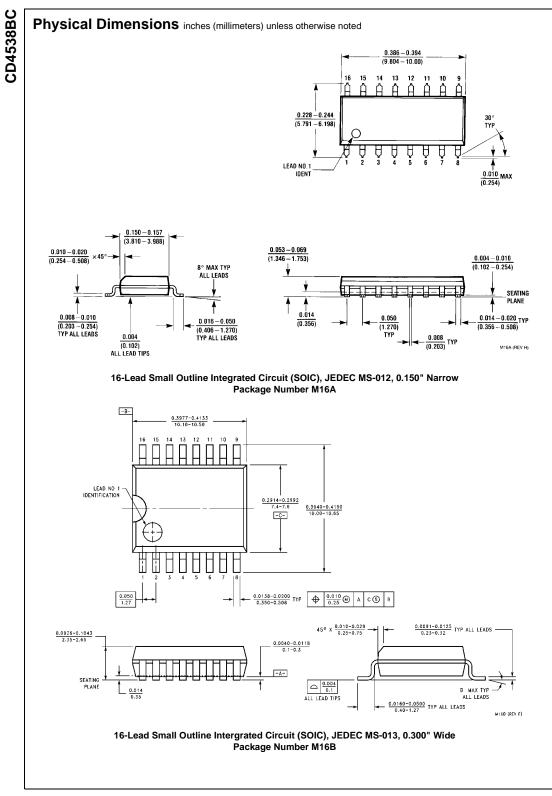

#### DC Electrical Characteristics (Note 2)

Note 3:  $I_{OH}$  and  $I_{OL}$  are tested one output at a time.

www.fairchildsemi.com

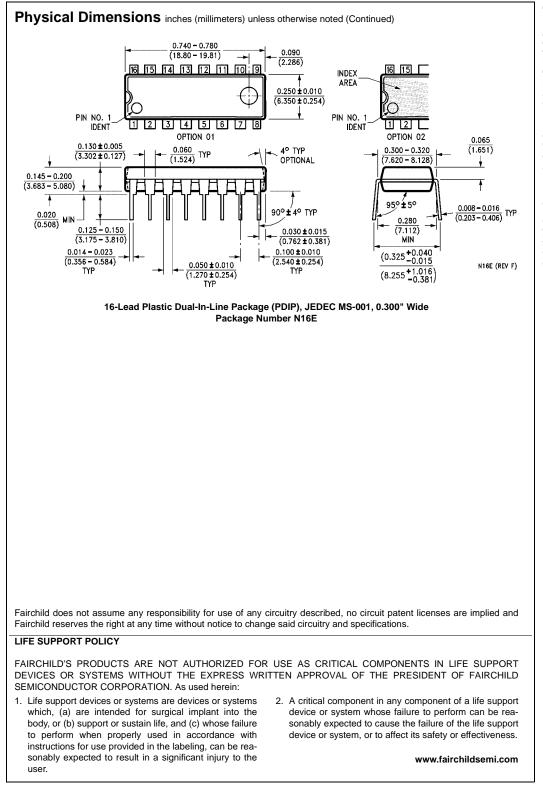

5

|                                     | $C_L = 50 \text{ pF}, \text{ and } t_r = t_f = 20 \text{ ns unles}$<br>Parameter |                                  | nditions       | Min      | Тур   | Max                  | U |
|-------------------------------------|----------------------------------------------------------------------------------|----------------------------------|----------------|----------|-------|----------------------|---|
| Symbol                              | Output Transition Time                                                           | V <sub>DD</sub> = 5V             | lutions        |          | 100   | 200                  | 0 |
| t <sub>TLH</sub> , t <sub>THL</sub> | Output Hansdon hine                                                              | $V_{DD} = 3V$<br>$V_{DD} = 10V$  |                |          | 50    | 100                  |   |
|                                     |                                                                                  | $V_{DD} = 15V$<br>$V_{DD} = 15V$ |                |          | 40    | 80                   |   |
| t <sub>PLH</sub> , t <sub>PHL</sub> | Propagation Delay Time                                                           | Trigger Operation—               |                |          | -10   | 00                   |   |
|                                     | i repagatori Delay inte                                                          | A or B to Q or $\overline{Q}$    |                |          |       |                      |   |
|                                     |                                                                                  | $V_{DD} = 5V$                    |                |          | 300   | 600                  |   |
|                                     |                                                                                  | $V_{DD} = 10V$                   |                |          | 150   | 300                  | 1 |
|                                     |                                                                                  | V <sub>DD</sub> = 15V            |                |          | 100   | 220                  |   |
|                                     |                                                                                  | Reset Operation—                 |                |          |       |                      |   |
|                                     |                                                                                  | $C_D$ to Q or $\overline{Q}$     |                |          |       |                      |   |
|                                     |                                                                                  | $V_{DD} = 5V$                    |                |          | 250   | 500                  |   |
|                                     |                                                                                  | $V_{DD} = 10V$                   |                |          | 125   | 250                  | I |
|                                     |                                                                                  | $V_{DD} = 15V$                   |                |          | 95    | 190                  |   |
| t <sub>WL</sub> , t <sub>WH</sub>   | Minimum Input Pulse Width                                                        | $V_{DD} = 5V$                    |                |          | 35    | 70                   |   |
|                                     | A, B, or C <sub>D</sub>                                                          | $V_{DD} = 10V$                   |                |          | 30    | 60                   | 1 |
|                                     |                                                                                  | $V_{DD} = 15V$                   |                |          | 25    | 50                   |   |
| t <sub>RR</sub>                     | Minimum Retrigger Time                                                           | $V_{DD} = 5V$                    |                |          |       | 0                    |   |
|                                     |                                                                                  | $V_{DD} = 10V$                   |                |          | 0     | 0                    | 1 |
|                                     |                                                                                  | $V_{DD} = 15V$                   |                |          |       | 0                    |   |
| CIN                                 | Input Capacitance                                                                | Pin 2 or 14                      |                |          | 10    |                      | ŗ |
|                                     |                                                                                  | Other Inputs                     |                |          | 5     | 7.5                  | r |
| PW <sub>OUT</sub>                   | Output Pulse Width (Q or $\overline{Q}$ )                                        | $R_X = 100 \ k\Omega$            | $V_{DD} = 5V$  | 208      | 226   | 244                  |   |
|                                     | (Note: For Typical Distribution,                                                 | $C_X=0.002~\mu\text{F}$          | $V_{DD} = 10V$ | 211      | 230   | 248                  | ļ |
|                                     | see Figure 6)                                                                    |                                  | $V_{DD} = 15V$ | 216      | 235   | 254                  |   |
|                                     |                                                                                  | $R_{\chi} = 100 \ k\Omega$       | $V_{DD} = 5V$  | 8.83     | 9.60  | 10.37                |   |
|                                     |                                                                                  | $C_{\chi} = 0.1 \ \mu F$         | $V_{DD} = 10V$ | 9.02     | 9.80  | 10.59                | r |
|                                     |                                                                                  |                                  | $V_{DD} = 15V$ | 9.20     | 10.00 | 10.80                | - |
|                                     |                                                                                  | $R_X = 100 \ k\Omega$            | $V_{DD} = 5V$  | 0.87     | 0.95  | 1.03                 |   |
|                                     |                                                                                  | $C_{\chi} = 10.0 \ \mu F$        | $V_{DD} = 10V$ | 0.89     | 0.97  | 1.05                 |   |
|                                     |                                                                                  |                                  | $V_{DD} = 15V$ | 0.91     | 0.99  | 1.07                 |   |
| Pulse Width Match between           |                                                                                  | $R_X = 100 \text{ k}\Omega$      | $V_{DD} = 5V$  |          | ±1    |                      |   |
| Circuits in the Same Package        |                                                                                  | $C_X = 0.1 \ \mu F$              | $V_{DD} = 10V$ |          | ±1    |                      |   |
| $C_{\chi} = 0.1 \ \mu F, R_{\chi}$  |                                                                                  |                                  | $V_{DD} = 15V$ |          | ±1    |                      |   |
| Operating Cor                       | External Timing Resistance                                                       |                                  |                | 5.0      | T     | (Noto E)             |   |
| R <sub>X</sub>                      | External Timing Capacitance                                                      |                                  |                | 5.0<br>0 |       | (Note 5)<br>No Limit | F |
| C <sub>X</sub>                      | ameters are guaranteed by DC correlated                                          |                                  |                | 0        |       | NO LIITIIL           | ŀ |






7








www.fairchildsemi.com

10



**CD4538BC Dual Precision Monostable** 

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.