Octal D-Type Flip-Flop with 3-State Output The MC74VHCT574A is an advanced high speed CMOS octal flip-flop with 3-state output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. This 8-bit D-type flip-flop is controlled by a clock input and an output enable input. When the output enable input is high, the eight outputs are in a high impedance state. The VHCT inputs are compatible with TTL levels. This device can be used as a level converter for interfacing 3.3 V to 5.0 V, because it has full 5.0 V CMOS level output swings. The VHCT574A input and output (when disabled) structures provide protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. These input and output structures help prevent device destruction caused by supply voltage—input/output voltage mismatch, battery backup, hot insertion, etc. #### **Features** - High Speed: $f_{max} = 140 \text{ MHz}$ (Typ) at $V_{CC} = 5.0 \text{ V}$ - Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25^{\circ}C$ - TTL-Compatible Inputs: $V_{IL} = 0.8 \text{ V}$; $V_{IH} = 2.0 \text{ V}$ - Power Down Protection Provided on Inputs and Outputs - Balanced Propagation Delays - Designed for 4.5 V to 5.5 V Operating Range - Low Noise: $V_{OLP} = 1.6 \text{ V (Max)}$ - Pin and Function Compatible with Other Standard Logic Families - Latchup Performance Exceeds 300 mA - ESD Performance: Human Body Model > 2000 V; Machine Model > 200 V - Chip Complexity: 286 FETs or 71.5 Equivalent Gates - These Devices are Pb-Free and are RoHS Compliant # ON Semiconductor® http://onsemi.com # MARKING DIAGRAMS A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or ■ = Pb-Free Package (Note: Microdot may be in either location) ## **FUNCTION TABLE** | | INPUTS | OUTPUT | | |----|---------|--------|-----------| | ŌĒ | СР | D | Q | | L | | Н | Н | | L | | L | L | | L | L, H, 🔨 | Х | No Change | | H | X | Х | Z | # ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. Figure 2. Pin Assignment #### **MAXIMUM RATINGS** | Symbol | Parameter | | Value | Unit | |------------------|--|-------------------------|--|------| | V _{CC} | DC Supply Voltage | | - 0.5 to + 7.0 | ٧ | | V _{in} | DC Input Voltage | | - 0.5 to + 7.0 | ٧ | | V _{out} | , , | in 3–State
Low State | - 0.5 to + 7.0
- 0.5 to V _{CC} + 0.5 | ٧ | | I _{IK} | Input Diode Current | | - 20 | mA | | lok | Output Diode Current (V _{OUT} < GND; V _{OUT} | > V _{CC}) | ± 20 | mA | | l _{out} | DC Output Current, per Pin | | ± 25 | mA | | Icc | DC Supply Current, V _{CC} and GND Pins | | ± 75 | mA | | P _D | • | Package†
Package† | 500
450 | mW | | T _{stg} | Storage Temperature | | - 65 to + 150 | °C | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. #### RECOMMENDED OPERATING CONDITIONS | Symbol | | Parameter | Min | Max | Unit | |---------------------------------|--------------------------|---|------|------------------------|------| | V _{CC} | DC Supply Voltage | | 4.5 | 5.5 | V | | V _{in} | DC Input Voltage | | 0 | 5.5 | V | | V _{out} | DC Output Voltage | Outputs in 3-State
High or Low State | 0 | 5.5
V _{CC} | V | | T _A | Operating Temperature | | - 40 | + 85 | °C | | t _r , t _f | Input Rise and Fall Time | V _{CC} =5.0V ±0.5V | 0 | 20 | ns/V | [†]Derating - SOIC Packages: - 7 mW/°C from 65° to 125°C TSSOP Package: - 6.1 mW/°C from 65° to 125°C #### DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | T _A = 25°C | | T _A = - 40 |) to 85°C | | | |------------------|--|---|-----------------|-----------------------|-----|-----------------------|-----------|-------|------| | Symbol | Parameter | Test Conditions | V | Min | Тур | Max | Min | Max | Unit | | V _{IH} | Minimum High-Level Input Voltage | | 4.5 to 5.5 | 2.0 | | | 2.0 | | V | | V _{IL} | Maximum Low-Level Input Voltage | | 4.5 to 5.5 | | | 0.8 | | 0.8 | V | | V _{OH} | Minimum High-Level Output | I _{OH} = - 50μA | 4.5 | 4.4 | 4.5 | | 4.4 | | V | | | Voltage $V_{in} = V_{IH}$ or V_{IL} | I _{OH} = - 8mA | 4.5 | 3.94 | | | 3.80 | | | | V _{OL} | Maximum Low-Level Output | I _{OL} = 50μA | 4.5 | | 0.0 | 0.1 | | 0.1 | V | | | Voltage $V_{in} = V_{IH} \text{ or } V_{IL}$ | I _{OL} = 8mA | 4.5 | | | 0.36 | | 0.44 | | | l _{in} | Maximum Input Leakage Current | V _{in} = 5.5 V or GND | 0 to 5.5 | | | ± 0.1 | | ± 1.0 | μΑ | | l _{OZ} | Maximum 3-State Leakage Current | $V_{in} = V_{IL} \text{ or } V_{IH}$
$V_{out} = V_{CC} \text{ or GND}$ | 5.5 | | | ± 0.25 | | ± 2.5 | μА | | I _{CC} | Maximum Quiescent Supply Current | V _{in} = V _{CC} or GND | 5.5 | | | 4.0 | | 40.0 | μΑ | | I _{CCT} | Quiescent Supply Current | Per Input: V _{IN} = 3.4V
Other Input: V _{CC} or GND | 5.5 | | | 1.35 | | 1.50 | mA | | I _{OPD} | Output Leakage Current | V _{OUT} = 5.5V | 0 | | | 0.5 | | 5.0 | μΑ | # AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ns}$) | | | | | T _A = 25°C | | T _A = - 40 to 85°C | | | | |--|--|--|--|-----------------------|------------|-------------------------------|------------|--------------|------| | Symbol | Parameter | Test Condi | tions | Min | Тур | Max | Min | Max | Unit | | f _{max} | Maximum Clock Frequency
(50% Duty Cycle) | $V_{CC} = 5.0 \pm 0.5 V$ | $C_L = 15pF$
$C_L = 50pF$ | 90
85 | 140
130 | | 80
95 | | MHz | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, CP to Q | $V_{CC} = 5.0 \pm 0.5 V$ | C _L = 15pF
C _L = 50pF | | 4.1
5.6 | 9.4
10.4 | 1.0
1.0 | 10.5
11.5 | ns | | t _{PZL} ,
t _{PZH} | Output Enable Time,
OE to Q | $\begin{aligned} V_{CC} &= 5.0 \pm 0.5 V \\ R_L &= 1 k \Omega \end{aligned}$ | $C_L = 15pF$
$C_L = 50pF$ | | 6.5
7.3 | 10.2
11.2 | 1.0
1.0 | 11.5
12.5 | ns | | t _{PLZ} ,
t _{PHZ} | Output Disable Time,
OE to Q | $\begin{aligned} V_{CC} &= 5.0 \pm 0.5 V \\ R_L &= 1 k \Omega \end{aligned}$ | C _L = 50pF | | 7.0 | 11.2 | 1.0 | 12.0 | ns | | t _{OSLH} ,
t _{OSHL} | Output to Output Skew | V _{CC} = 5.0 ± 0.5V
(Note 1) | C _L = 50pF | | | 1.0 | | 1.0 | ns | | C _{in} | Maximum Input Capacitance | | | | 4 | 10 | | 10 | pF | | C _{out} | Maximum Three-State Output Capacitance, Output in High-Impedance State | | | | 9 | | | | pF | | | | Typical @ 25°C, V _{CC} = 5.0V | | |--------|--|--|----| | C_PD | Power Dissipation Capacitance (Note 2) | 25 | pF | # NOISE CHARACTERISTICS (Input t_r = t_f = 3.0ns, C_L = 50pF, V_{CC} = 5.0V) | | | T _A = 25°C | | | |------------------|--|-----------------------|------|------| | Symbol | Parameter | Тур | Max | Unit | | V _{OLP} | Quiet Output Maximum Dynamic V _{OL} | 1.2 | 1.6 | V | | V _{OLV} | Quiet Output Minimum Dynamic V _{OL} | -1.2 | -1.6 | V | | V _{IHD} | Minimum High Level Dynamic Input Voltage | | 2.0 | V | | V _{ILD} | Maximum Low Level Dynamic Input Voltage | | 0.8 | V | Parameter guaranteed by design. t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/8 (per flip-flop). C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. # **TIMING REQUIREMENTS** (Input $t_r = t_f = 3.0 \text{ns}$) | | | | T _A = 25°C | | T _A = - 40 to 85°C | | |-----------------|-----------------------------|----------------------------------|-----------------------|-------|-------------------------------|------| | Symbol | Parameter | Test Conditions | Тур | Limit | Limit | Unit | | t _{su} | Minimum Setup Time, D to CP | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | | 6.5 | 8.5 | ns | | t _h | Minimum Hold Time, CP to D | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | | 2.5 | 2.5 | ns | | t _w | Minimum Pulse Width, CP | $V_{CC} = 5.0 \pm 0.5 \text{ V}$ | | 2.5 | 2.5 | ns | # **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------------|------------------------|-----------------------| | MC74VHCT574ADWG | SOIC-20WB
(Pb-Free) | 38 Units / Rail | | MC74VHCT574ADWRG | SOIC-20WB
(Pb-Free) | 1000 / Tape & Reel | | MC74VHCT574ADTG | TSSOP-20* | 75 Units / Rail | | MC74VHCT574ADTRG | TSSOP-20* | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}This package is inherently Pb-Free. Figure 3. Switching Waveform Figure 4. Switching Waveform Figure 5. Switching Waveform *Includes all probe and jig capacitance *Includes all probe and jig capacitance Figure 6. Test Circuit Figure 7. Test Circuit Figure 8. Expanded Logic Diagram SOIC-20 WB CASE 751D-05 **ISSUE H** **DATE 22 APR 2015** #### NOTES: - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES - PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD - DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | | | | |-----|-------------|-------|--|--|--| | DIM | MIN | MAX | | | | | Α | 2.35 | 2.65 | | | | | A1 | 0.10 | 0.25 | | | | | b | 0.35 | 0.49 | | | | | С | 0.23 | 0.32 | | | | | D | 12.65 | 12.95 | | | | | E | 7.40 | 7.60 | | | | | е | 1.27 | BSC | | | | | Н | 10.05 | 10.55 | | | | | h | 0.25 | 0.75 | | | | | L | 0.50 | 0.90 | | | | | A | 0 ° | 7 ° | | | | ### **RECOMMENDED SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS ## **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repos
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | SOIC-20 WB | | PAGE 1 OF 1 | are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor and ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # TSSOP-20 WB CASE 948E ISSUE D **DETAIL E** **DATE 17 FEB 2016** -V- **SOLDERING FOOTPRINT** - 7.06 #### NOTES: - DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. - MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. - SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W- | | MILLIMETERS | | INCHES | | | |-----|-------------|------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | - | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 BSC | | | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 | BSC | 0.252 BSC | | | | M | 0° | 8° | 0.0 | 8° | | ## **GENERIC MARKING DIAGRAM*** = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | TSSOP-20 WB | | PAGE 1 OF 1 | DIMENSIONS: MILLIMETERS 0.65 **PITCH** ON Semiconductor and illumate and image are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the 16X 1.26 0.36 onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf, **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com **TECHNICAL SUPPORT** onsemi Website: www.onsemi.com North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative