Split T-Type NPC Power Module

NXH200T120H3Q2F2SG, NXH200T120H3Q2F2STG

The NXH200T120H3Q2F2SG is a power module containing a split T-type neutral point clamped three-level inverter. The integrated field stop trench IGBTs and SiC Diodes provide lower conduction losses and switching losses, enabling designers to achieve high efficiency and superior reliability. NXH200T120H3Q2F2STG is Pre-applied Thermal Interface Material (TIM) module.

Features

- Split T-type Neutral Point Clamped Three-level Inverter Module
- 1200 V Ultra Field Stop IGBTs & 650 V FS4 IGBTs
- 650 V SiC Diodes
- Low Inductive Layout
- Solderable Pins
- Thermistor
- Pre-applied Thermal Interface Material (TIM)

Typical Applications

- Solar Inverters
- Uninterruptible Power Supplies

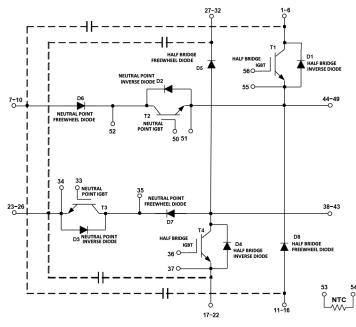
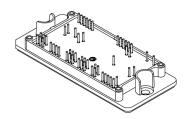
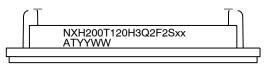



Figure 1. NXH200T120H3Q2F2SG Schematic Diagram


ON Semiconductor®

www.onsemi.com

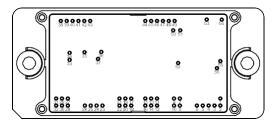
PIM56, 93x47 (SOLDER PIN) CASE 180AK

MARKING DIAGRAM

NXH200T120H3Q2F2SG,

NXH200T120H3Q2F2STG= Device Code

YYWW = Year and Work Week


Code

 A
 = Assembly Site Code

 T
 = Test Side Code

 G
 = Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

Table 1. ABSOLUTE MAXIMUM RATINGS (Note 1) $T_J = 25^{\circ}\text{C}$ unless otherwise noted

Rating	Symbol	Value	Unit
HALF BRIDGE IGBT			
Collector-Emitter Voltage	VCES	1200	V
Gate-Emitter Voltage	VGE	±20	V
Continuous Collector Current @ T _C = 25°C	I _C	330	А
Continuous Collector Current @ T _C = 80°C (T _J = 175°C)		256	
Pulsed Collector Current (T _J = 175°C)	lCpulse	768	А
Maximum Power Dissipation @ T _C = 80°C (T _J = 175°C)	Ptot	679	W
Minimum Operating Junction Temperature	Тумім	-40	°C
Maximum Operating Junction Temperature	ТЈМАХ	175	°C
NEUTRAL POINT IGBT			•
Collector-Emitter Voltage	VCES	650	V
Gate-Emitter Voltage	VGE	±20	V
Continuous Collector Current @ T _C = 80°C (T _J = 175°C)	I _C	128	А
Pulsed Collector Current (T _J = 175°C)	lCpulse	384	А
Maximum Power Dissipation @ T _C = 80°C (T _J = 175°C)	Ptot	264	W
Minimum Operating Junction Temperature	Тумім	-40	°C
Maximum Operating Junction Temperature	ТЈМАХ	175	°C
HALF BRIDGE FREEWHEEL DIODE	•		•
Peak Repetitive Reverse Voltage	VRRM	1200	V
Continuous Forward Current @ T _C = 80°C (T _J = 175°C)	I _F	94	А
Repetitive Peak Forward Current (T _J = 175°C, t _p limited by T _{Jmax})	IFRM	282	А
Maximum Power Dissipation @ T _C = 80°C (T _J = 175°C)	Ptot	232	W
Minimum Operating Junction Temperature	Тумім	-40	°C
Maximum Operating Junction Temperature	Тумах	175	°C
HALF BRIDGE INVERSE DIODE	•		•
Peak Repetitive Reverse Voltage	VRRM	1200	V
Continuous Forward Current @ T _C = 80°C (T _J = 175°C)	I _F	18	А
Repetitive Peak Forward Current (T _J = 175°C, t _p limited by T _{Jmax})	IFRM	54	А
Maximum Power Dissipation @ T _C = 80°C (T _J = 175°C)	Ptot	62	W
Minimum Operating Junction Temperature	Тумім	-40	°C
Maximum Operating Junction Temperature	Тумах	175	°C
NEUTRAL POINT FREEWHEEL DIODE			•
Peak Repetitive Reverse Voltage	VRRM	650	V
Continuous Forward Current @ T _C = 80°C (T _J = 175°C)	I _F	75	А
Repetitive Peak Forward Current (T _J = 175°C, t _p limited by T _{Jmax})	IFRM	225	А
Maximum Power Dissipation @ T _C = 80°C (T _J = 175°C)	Ptot	216	W
Minimum Operating Junction Temperature	TJMIN	-40	°C
Maximum Operating Junction Temperature	TJMAX	175	°C

Table 1. ABSOLUTE MAXIMUM RATINGS (Note 1) T_{.I} = 25°C unless otherwise noted

Rating	Symbol	Value	Unit
NEUTRAL POINT INVERSE DIODE			
Peak Repetitive Reverse Voltage	VRRM	650	V
Continuous Forward Current @ T _C = 80°C (T _J = 175°C)	I _F	36	А
Repetitive Peak Forward Current (T _J = 175°C, t _p limited by T _{Jmax})	IFRM	108	А
Maximum Power Dissipation @ $T_c = 80^{\circ}C$ ($T_J = 175^{\circ}C$)	Ptot	90	W
Minimum Operating Junction Temperature	TJMIN	-40	°C
Maximum Operating Junction Temperature	TJMAX	175	°C
THERMAL PROPERTIES			
Storage Temperature range	Tstg	-40 to 125	°C
INSULATION PROPERTIES			
Isolation test voltage, t = 2 sec, 50 Hz	Vis	4000	VRMS
Creepage distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	TJ	-40	(T _{Jmax} -25)	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 3. ELECTRICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit				
HALF BRIDGE IGBT CHARACTERISTICS										
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1200 V	ICES	-	=	500	μΑ				
Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 200 A, T _J = 25°C	VCE(sat)	1.40	1.86	2.30	V				
	V _{GE} = 15 V, I _C = 200 A, T _J = 175°C		=	2.00	-					
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 6$ mA	VGE(TH)	4.80	5.52	6.50	V				
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	IGES	-	-	500	nA				
Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	B _{VCES}	1200	1400	1450	V				
Turn-on Delay Time	T _J = 25°C	td(on)	_	302	_	ns				
Rise Time	V_{CE} = 350 V, I_{C} = 170 A V_{GE} = -5/+15 V, I_{CG} = 10 I_{CG}	t _r	=	102	=					
Turn-off Delay Time		td(off)	_	923	-					
Fall Time		t _f	=	59	=					
Turn-on Switching Loss per Pulse		Eon	=	5.1	-	mJ				
Turn-off Switching Loss per Pulse		Eoff	=	5.4	=					

^{1.} Refer to ELECTRICAL CHĂRACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

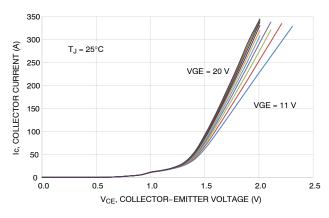
Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
HALF BRIDGE IGBT CHARACTERIST	ics					
Turn-on Delay Time	T _J = 125°C	td(on)	-	276	_	ns
Rise Time	$V_{CE} = 350 \text{ V}, I_{C} = 170 \text{ A } V_{GE} = -5/+15 \text{ V},$ $R_{G} = 10 \Omega$	t _r	=	97	_	1
Turn-off Delay Time	1	td(off)	-	997	_	1
Fall Time		t _f	=	99	_	
Turn-on Switching Loss per Pulse		Eon	=	5.4	=	mJ
Turn-off Switching Loss per Pulse	1	Eoff	-	7.9	-	1
Input Capacitance	V _{CE} = 25 V. V _{GE} = 0 V	Cies	_	35615	-	pF
Output Capacitance	-f = 100 kHz	Coes	-	700	-	1
Reverse Transfer Capacitance	1	Cres	=	530	=	1
Total Gate Charge	V _{CE} = 600 V, I _C = 200 A, V _{GE} = 15 V	Q_g	_	1706.4	_	nC
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness < 100 μm,	RthJH	-	0.24	_	°C/W
Thermal Resistance - chip-to-case	- λ = 2.87 W/mK	RthJC	-	0.13	-	°C/W
NEUTRAL POINT FREEWHEEL DIOD	E CHARACTERISTICS			•	•	•
Diode Reverse Leakage Current	V _R = 650 V	I _R	=	-	100	μΑ
Diode Forward Voltage	I _F = 100 A, T _J = 25°C	V _F	1.2	1.48	2.7	V
	I _F = 100 A, T _J = 175°C		_	1.90	_	1
Reverse Recovery Time	T _J = 25°C	trr	-	26.6	-	ns
Reverse Recovery Charge	$V_{CE} = 350 \text{ V}, I_{C} = 170 \text{ A } V_{GE} = -5/+15 \text{ V},$ $R_{G} = 10 \Omega$	Qrr	=	308	=	nC
Peak Reverse Recovery Current	1	IRRM	-	16.8	-	Α
Peak Rate of Fall of Recovery Current	1	di/dt	-	1659	-	A/μs
Reverse Recovery Energy		Err	-	34.5	-	μJ
Reverse Recovery Time	T _J = 125°C	trr	-	25.8	-	ns
Reverse Recovery Charge	V_{CE} = 350 V, I_{C} = 170 A V_{GE} = -5/+15V, R_{G} = 10 Ω	Qrr	=	294	_	nC
Peak Reverse Recovery Current	VGE = -5/+15V, 11G = 10 32	IRRM	=	18.0	=	Α
Peak Rate of Fall of Recovery Current	=	di/dt	=	1672	=	A/μs
Reverse Recovery Energy	=	Err	=	35.2	=	μJ
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness < 100 μm,	RthJH	=	0.54	=	°C/W
Thermal Resistance - chip-to-case	$\lambda = 2.87 \text{ W/mK}$	RthJC	=	0.43	=	°C/W
NEUTRAL POINT IGBT CHARACTERI	STICS				ı	
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 650 V	ICES	_	_	300	μΑ
Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 150 A, T _J = 25°C	VCE(sat)	0.8	1.36	2.05	V
	V _{GE} = 15 V, I _C = 150 A, T _J = 175°C		=	1.50	=	•
Gate-Emitter Threshold Voltage	V _{GE} = V _{CE} , I _C = 1.2 mA	VGE(TH)	3.5	4.03	6.4	V
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	IGES	_	-	300	nA
Breakdown Voltage	$V_{GE} = 0 \text{ V}, I_C = 1 \text{ mA}$	B _{VCES}	650	_	_	V

${\bf NXH200T120H3Q2F2SG},\,{\bf NXH200T120H3Q2F2STG}$

Table 3. ELECTRICAL CHARACTERISTICS T_{.1} = 25°C unless otherwise noted

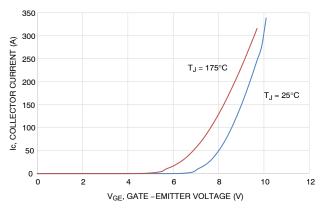
Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
NEUTRAL POINT IGBT CHARACTER	ISTICS			•	•	•
Turn-on Delay Time	T _J = 25°C	td(on)	=	94	-	ns
Rise Time	$V_{CE} = 350 \text{ V}, I_{C} = 170 \text{ A } V_{GE} = -5/+15 \text{ V},$ $R_{G} = 10 \Omega$	t _r	-	45	-	1
Turn-off Delay Time		td(off)	_	224	-	
Fall Time		t _f	=	22	=	
Turn-on Switching Loss per Pulse		Eon	=	3.1	=	mJ
Turn off Switching Loss per Pulse		Eoff	-	2.4	-	
Turn-on Delay Time	T _J = 125°C	td(on)	_	92	-	ns
Rise Time	$V_{CE} = 350 \text{ V}, I_{C} = 170 \text{ A } V_{GE} = -5/+15 \text{ V},$ $R_{G} = 10 \Omega$	t _r	=	51	_	1
Turn-off Delay Time		td(off)	-	244	-	
Fall Time		t _f	=	19	_	
Turn-on Switching Loss per Pulse		Eon	=	4.7	_	mJ
Turn off Switching Loss per Pulse		Eoff	-	3.0	-	
Input Capacitance	V _{CE} = 25 V, V _{GE} = 0 V, f = 100 kHz	Cies	=	9316	-	pF
Output Capacitance		Coes	=	249	-	1
Reverse Transfer Capacitance		Cres	-	34	-	1
Total Gate Charge	V _{CE} = 480 V, I _C = 80 A, V _{GE} = 15 V	Q_g	=	300.9	-	nC
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness < 100 μm,	RthJH	=	0.50	-	°C/W
Thermal Resistance - chip-to-case	$\lambda = 2.87 \text{ W/mK}$	RthJC	=	0.36	-	°C/W
HALF BRIDGE FREEWHEEL DIODE O	CHARACTERISTICS			•	•	•
Diode Reverse Leakage Current	V _R = 1200 V	I _R	-	-	100	μΑ
Diode Forward Voltage	I _F =150 A, T _J = 25°C	V _F	1.6	2.71	3.6	V
	I _F = 150 A, T _J = 175°C		=	2.00	=	1
Reverse Recovery Time	T _J = 25°C	trr	-	62	_	ns
Reverse Recovery Charge	$V_{CE} = 350 \text{ V}, I_{C} = 170 \text{ A } V_{GE} = -5/+15 \text{ V},$ $R_{G} = 10 \Omega$	Qrr	-	4700	-	nC
Peak Reverse Recovery Current		IRRM	-	144	-	Α
Peak Rate of Fall of Recovery Current		di/dt	_	4017	-	A/μs
Reverse Recovery Energy		Err	_	849	-	μJ
Reverse Recovery Time	T _J = 125°C	trr	=	107	=	ns
Reverse Recovery Charge	$V_{CE} = 350 \text{ V}, I_{C} = 170 \text{ A } V_{GE} = -5/+15 \text{ V},$ $R_{G} = 10 \Omega$	Qrr	=	12510	=	nC
Peak Reverse Recovery Current		IRRM	_	216	_	Α
Peak Rate of Fall of Recovery Current		di/dt	_	3815	_	A/μs
Reverse Recovery Energy	-	Err	_	2647	_	μJ
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness < 100 μm,	RthJH		0.54	_	°C/W
Thermal Resistance - chip-to-case	$\lambda = 2.87 \text{ W/mK}$	RthJC	_	0.40	_	°C/W


Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
HALF BRIDGE INVERSE DIODE CHAI	RACTERISTICS			-	•	
Diode Forward Voltage	I _F = 7 A, T _J = 25°C	V_{F}	1.05	1.93	2.80	V
	I _F = 7 A, T _J = 175°C		-	1.29	-	
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness < 100 μm,	R _{thJH}	-	1.71	-	°C/W
Thermal Resistance - chip-to-case	λ = 2.87 W/mK	R _{thJC}	-	1.52	-	°C/W
NEUTRAL POINT INVERSE DIODE CH	HARACTERISTICS					
Diode Forward Voltage	I _F = 30 A, T _J = 25°C	V _F	1.3	2.35	3.2	V
	I _F = 30 A, T _J = 175°C		_	1.50	-	
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness 100 μm,	R _{thJH}	-	1.21	-	°C/W
Thermal Resistance - chip-to-case	$\lambda = 2.87 \text{ W/mK}$	R _{thJC}	_	1.02	_	°C/W
THERMISTOR CHARACTERISTICS	•					
Nominal resistance		R ₂₅	-	22	-	kQ
Nominal resistance	T = 100°C	R ₁₀₀	-	1486	-	Q
Deviation of R25		R/R	-5	-	5	%
Power dissipation		P _D	-	200	-	mW
Power dissipation constant			-	2	-	mW/K
B-value	B(25/50), tolerance ±3%		=	3950	-	K
B-value	B(25/100), tolerance ±3%		-	3998	_	К

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION


Device	Marking	Package	Shipping
NXH200T120H3Q2F2SG	NXH200T120H3Q2F2SG	Q2PACK - Case 180AK (Pb-Free and Halide-Free)	12 Units / Blister Tray
NXH200T120H3Q2F2STG	NXH200T120H3Q2F2STG	Q2PACK - Case 180AK (Pb-Free and Halide-Free)	12 Units / Blister Tray

VGE = 20 V VGE = 20 V VGE = 11 V VGE = 11 V VGE, COLLECTOR - EMITTER VOLTAGE (V)

Figure 2. Typical Output Characteristics

Figure 3. Typical Output Characteristics

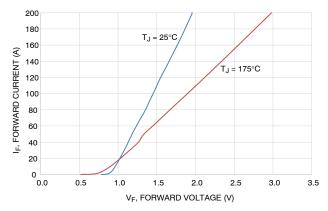
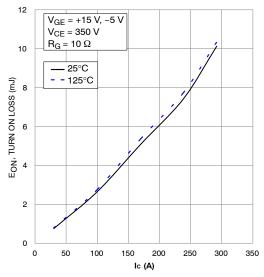



Figure 4. Typical Transfer Characteristics

Figure 5. Typical Diode Forward Characteristics

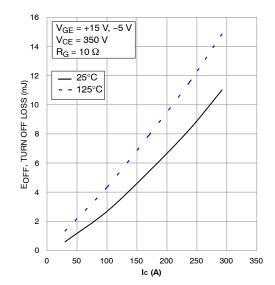
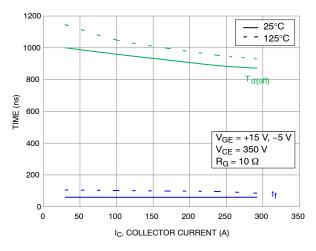



Figure 6. Typical Turn ON Loss vs. I_C

Figure 7. Typical Turn OFF Loss vs. I_C

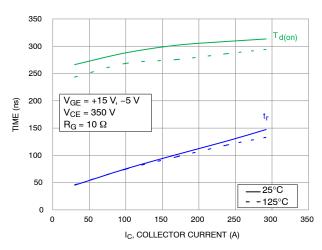
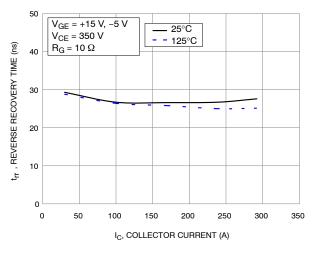



Figure 8. Typical Turn-Off SwitchingTime vs. I_C

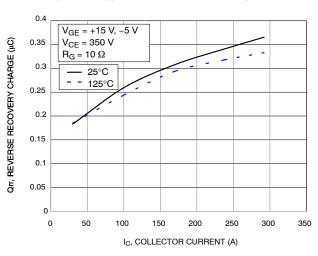
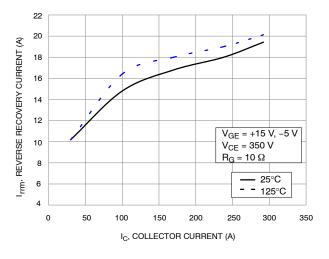



Figure 10. Typical Reverse Recovery Time vs. I_C

Figure 11. Typical Reverse Recovery Charge vs. I_C

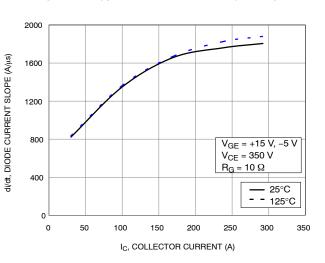
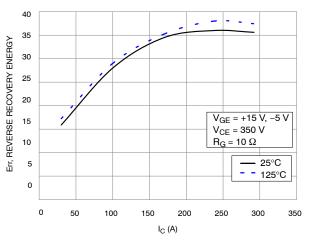



Figure 12. Typical Reverse Recovery Peak Current vs. IC

Figure 13. Typical Diode Current Slope vs. I_C

40 V_{GE} = +15 V, -5 V V_{CE} = 350 V 35 E $_{\mbox{\scriptsize IP}}$ REVERSE RECOVERY ENERGY (μJ) $R_G = 170 \Omega$ 30 - 25°C - - 125°C 25 20 15 10 5 10 15 20 25 30 35 $R_G(\Omega)$

Figure 14. Typical Reverse Recovery Energy vs. I_C

Figure 15. Typical Reverse Recovery Energy Loss vs. R_G

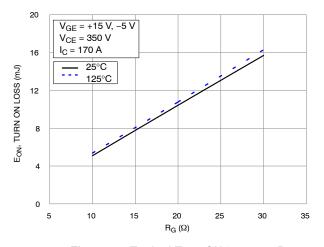


Figure 16. Typical Turn ON Loss vs. $R_{\mbox{\scriptsize G}}$

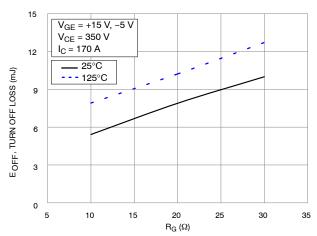


Figure 17. Typical Turn OFF vs. R_G

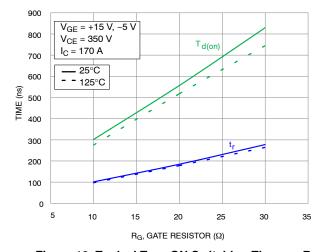


Figure 18. Typical Turn ON Switching Time vs. $\ensuremath{R_{G}}$

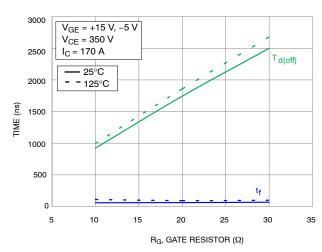
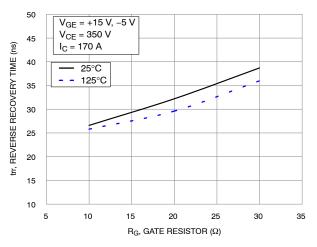
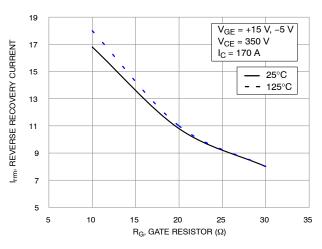



Figure 19. Typical Turn OFF Switching Time vs. $$\rm R_{\rm G}$$

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT AND NEUTRAL POINT DIODE

REVERSE RECOVERY CHARGE (µC)


Ğ,

350 300 250 200 150 V_{GE} = +15 V, -5 V V_{CE} = 350 V 100 I_C = 170 A _ 25°C 50 125°C 5 10 15 20 25 30 35 R_{G} , GATE RESISTOR (Ω)

Figure 20. Typical Reverse Recovery Energy vs. I_C

Figure 21. Typical Reverse Recovery Energy Loss vs. R_G

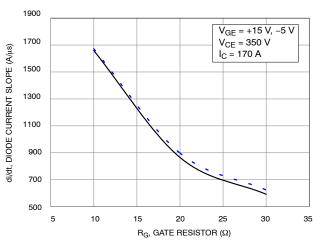


Figure 22. Typical Turn ON Loss vs. R_G

Figure 23. Typical Turn OFF vs. R_G

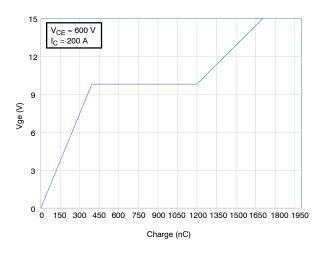


Figure 24. Gate Voltage vs. Gate Charge

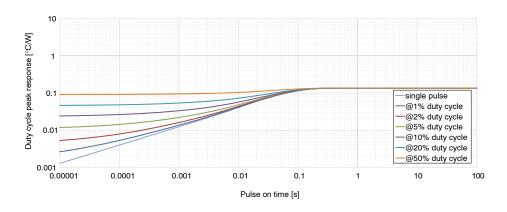


Figure 25. IGBT Transient Thermal Impedance

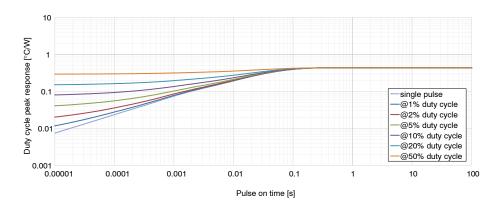


Figure 26. Diode Transient Thermal Impedance

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT AND NEUTRAL POINT DIODE

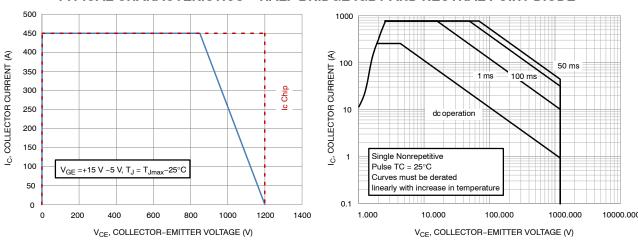


Figure 27. HB IGBT RBSOA

Figure 28. HB IGBT FBSOA

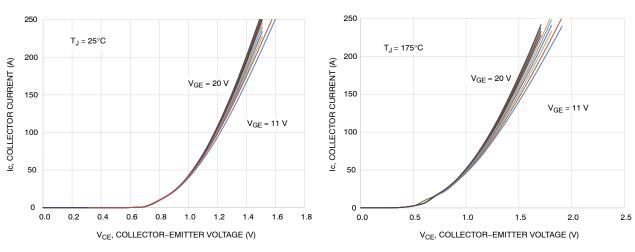


Figure 29. Typical Output Characteristics

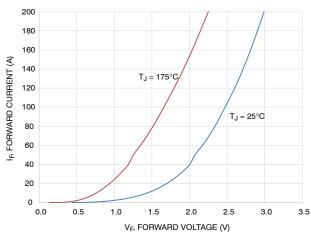


Figure 30. Typical Output Characteristics

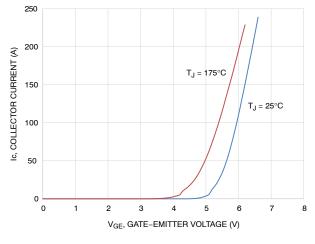
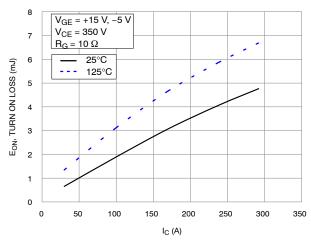
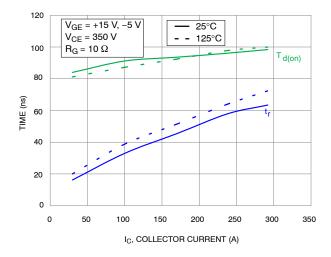



Figure 31. Typical Transfer Characteristics

3.5


Figure 32. Typical Diode Forward Characteristics

V_{GE} = +15 V, -5 V V_{CE} = 350 V 6 $R_G = 10 \Omega$ E_{OFF}, TURN OFF LOSS (mJ) 25°C 125°C 3 2 0 50 100 150 200 250 300 350 I_C (A)

Figure 33. Typical Turn ON Loss vs. I_C

Figure 34. Typical Turn OFF Loss vs. I_C

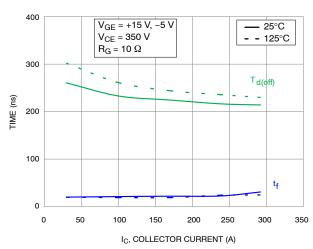
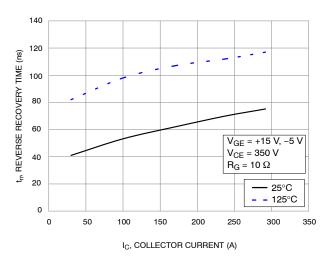



Figure 35. Typical Turn ON Switching Time vs. I_C

Figure 36. Typical Turn OFF Switching Time vs. I_C

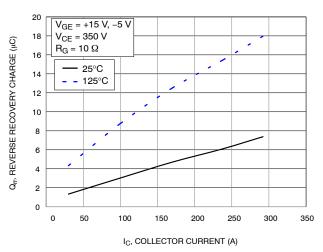
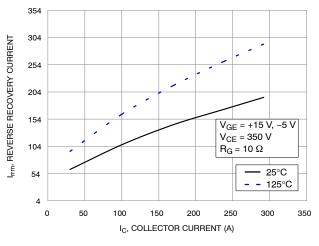



Figure 37. Typical Reverse Recovery Time vs. I_C

Figure 38. Typical Reverse Recovery Charge vs. I_C

5000 V_{GE} = +15 V, −5 V V_{CE} = 350 V 4500 R_G = 10 Ω DIODE CURRENT SLOPE (A/μs) 4000 25°C - 125°C 3500 3000 2500 2000 1500 1000 0 50 150 200 300 350 I_C, COLLECTOR CURRENT (A)

Figure 39. Typical Turn ON Loss vs. I_C

Figure 40. Typical Turn OFF Loss vs. I_C

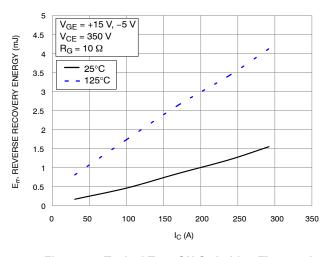
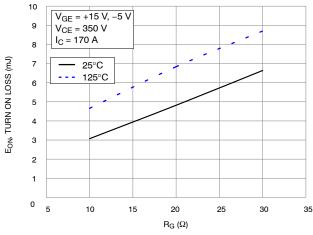
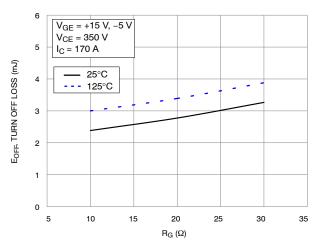
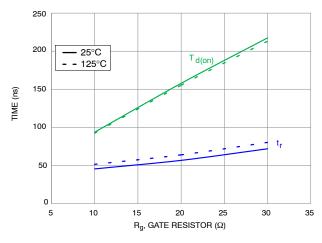
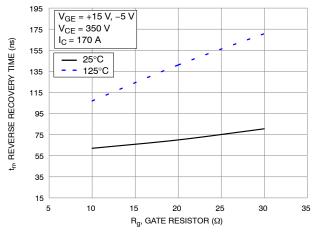



Figure 41. Typical Turn ON Switching Time vs. I_C

Figure 42. Typical Turn OFF Switching Time vs. I_C

 $\label{eq:figure 43} \textbf{Figure 43. Typical Turn ON Loss vs. } \textbf{R}_{\textbf{G}}$


Figure 44. Typical Turn OFF vs. R_G

V_{GF} = +15 V, -5 V V_{CE} = 350 V 500 $I_C = 170 A$ T_{d(off)} 25°C 400 - - 125°C TIME (ns) 300 200 100 10 30 35 R_g , GATE RESISTOR (Ω)

Figure 45. Typical Turn ON Switching Time vs. R_G

Figure 46. Typical Turn OFF Switching Time vs. R_G

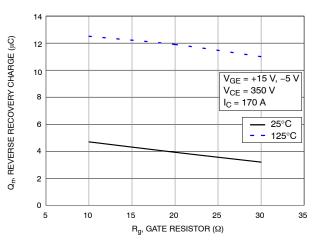
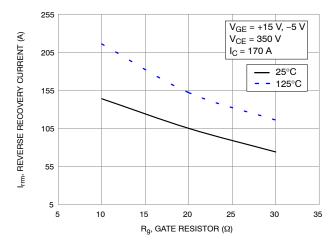



Figure 47. Typical Reverse Recovery Time vs. R_G

Figure 48. Typical Reverse Recovery Charge vs. ${\sf R}_{\sf G}$

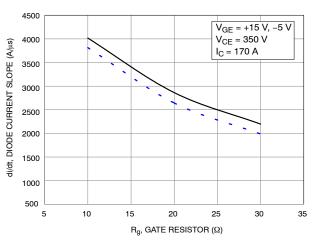


Figure 49. Typical Reverse Recovery Peak Current vs. R_G

Figure 50. Typical Di/Dt vs. R_G

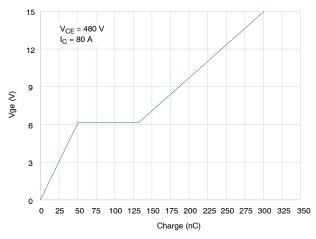


Figure 51. Gate Voltage vs. Gate Charge

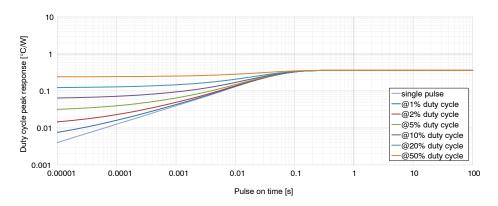


Figure 52. IGBT Transient Thermal Impedance

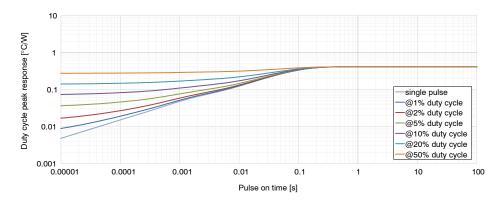


Figure 53. Diode Transient Thermal Impedance

TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT AND HALF BRIDGE DIODE

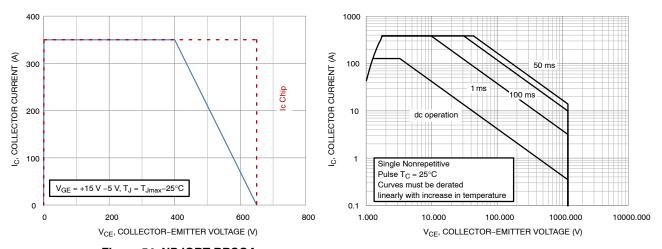


Figure 54. NP IGBT RBSOA

Figure 55. NP IGBT FBSOA

TYPICAL CHARACTERISTICS - HALF BRIDGE INVERSE DIODE

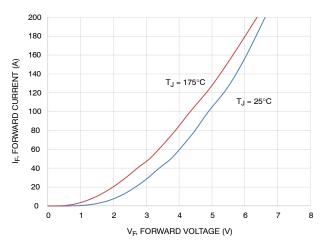


Figure 56. Diode Forward Characteristic

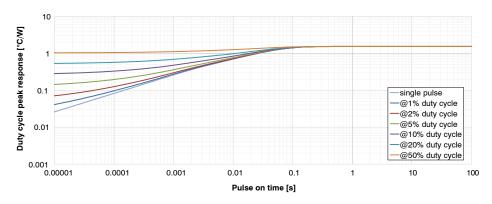


Figure 57. Diode Transient Thermal Impedance

TYPICAL CHARACTERISTICS - NEUTRAL POINT INVERSE DIODE

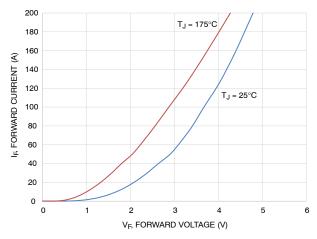


Figure 58. Diode Forward Characteristic

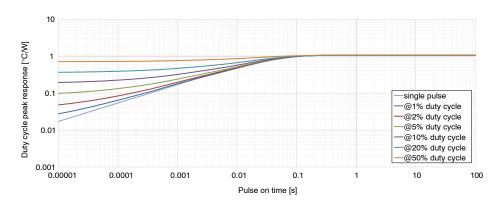


Figure 59. Diode Transient Thermal Impedance

TYPICAL CHARACTERISTICS - THERMISTOR

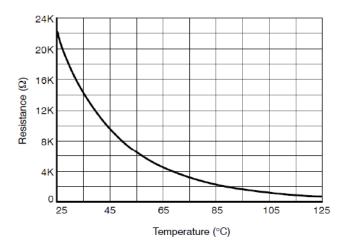
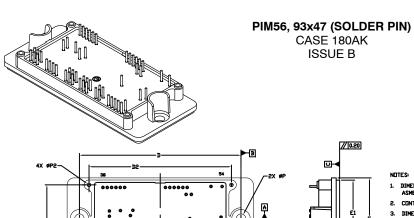
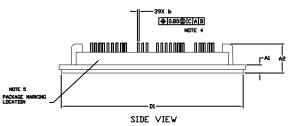
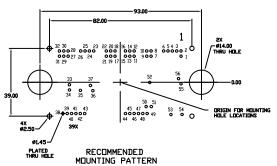



Figure 60. Thermistor Characteristics

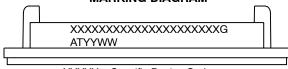
00


DATE 08 NOV 2017


END VIEW

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSIONS 6 APPLIES TO THE PLATED TERMINALS AND IS MEASURED BETWEEN 1.00 AND 3.00 FROM THE TERMINAL TIP.
- POSITION OF THE CENTER OF THE TERMINALS IS DETERMINED FROM DATUM B THE CENTER UF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION, POSITIONAL TOLERANCE, AS NOTED IN DRAVING, APPLIES TO EACH TERMINAL IN BOTH DIRECTIONS.
- PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE WITH THE PACKAGE ORIENTATION FEATURE.

MILLIMETERS					
MIN.	MAX.				
11.80	12.20				
4.50	4.90				
16.50	16.90				
16.70	17.70				
12.80	13.20				
0.95	1.05				
92.80	93.20				
104.60	104.90				
81.80	82.20				
106.90	107.50				
46.75	47.25				
44.30	44.50				
38.80	39.20				
5.40	5.60				
10.60	10.80				
2.20	2.40				
	MIN. 11.80 4.50 16.50 16.70 12.80 0.95 92.80 104.60 81.80 106.90 46.75 44.30 38.80 5.40 10.60				



TOP VIEW

OTE 4							MOUNTIN	3 HOLE P	OSITION				
	PIN PI	OSITION	П		PIN P	OSITION	PIN POSITION			Π		PIN PI	ISITIC
PIN	X	Y	I	PIN	x	Y	PIN	X	Y	IL	PIN	×	Υ
1	35.00	-15.00	II	29	-32.50	-15.00	1	35.00	15.00	I	29	-32.50	15.0
2	35.00	-18.00	II	30	-32.50	-18.00	2	35.00	18.00	I	30	-32.50	18.
3	32.50	-18.00	II	31	-35.00	-15.00	3	32.50	18.00	I	31	-35.00	15.
4	30.00	-18.00	II	32	-35.00	-18.00	4	30.00	18.00	Iſ	32	-35.00	18.
5	27.50	-18.00	II	33	-29.25	1.45	5	27.50	18.00	I	33	-29.25	-1.4
6	25.00	-18.00	II	34	-29.25	4.45	6	25.00	18.00	I	34	-29.25	-4.
7	17.75	-15.00	II	35	-22.90	4.70	7	17.75	15.00	Iſ	35	-22.90	-4.
8	17.75	-18.00	II	36	-15.75	4.85	8	17.75	18.00	Iſ	36	-15.75	-43
9	15.25	-15.00	11	37	-17.15	1.85	9	15.25	15.00	Iſ	37	-17.15	-1.
10	15.25	-18.00	11	38	-33.00	18.00	10	15.25	18.00	lſ	38	-33.00	-18
11	8.00	-15.00	II	39	-30.50	18.00	11	8.00	15.00	Iſ	39	-30.50	-18
12	8.00	-18.00	11	40	-28.00	18.00	12	8.00	18.00	Iſ	40	-28.00	-18
13	5.50	-15.00	11	41	-25.50	18.00	13	5.50	15.00	Iſ	41	-25.50	-18
14	5.50	-18.00	11	42	-23.00	18.00	14	5.50	18.00	lſ	42	-23.00	-18
15	3.00	-15.00	11	43	-20.50	18.00	15	3.00	15.00	Iſ	43	-20.50	-18
16	3.00	-18.00	11	44	3.00	18.00	16	3.00	18.00	I	44	3.00	-18
17	-3.00	-15.00	II	45	5.50	18.00	17	-3.00	15.00	Iſ	45	5.50	-18
18	-3.00	-18.00	II	46	8.00	18.00	18	-3.00	18.00	Iſ	46	8.00	-18
19	-5.50	-15.00	11	47	10.50	18.00	19	-5.50	15.00	Iſ	47	10.50	-18
20	-5.50	-18.00	11	48	13.00	18.00	20	-5.50	18.00	lſ	48	13.00	-18
21	-8.00	-15.00	II	49	15.50	18.00	21	-8.00	15.00	Iſ	49	15.50	-18
22	-8.00	-18.00	I	50	14.90	14.00	22	-8.00	18.00	I	50	14.90	-14
23	-15.25	-18.00	I	51	17.90	14.00	23	-15.25	18.00	IĪ	51	17.90	-14
24	-17.75	-18.00	II	52	17.00	0.10	24	-17.75	18.00	IĪ	52	17.00	-0
25	-20.25	-18.00	I	53	29.20	18.60	25	-20.25	18.00	I	53	29.20	-18.
26	-22.75	-18.00	ı	54	35.60	18.55	26	-22.75	18.00	I	54	35.60	-18.
27	-30.00	-15.00	II	55	35.00	0.90	27	-30.00	15.00	IĪ	55	35.00	-0.
28	-30.00	-18.00	I	56	33.55	-2.10	28	-30.00	18.00	IÌ	56	33.55	2

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

= Pb-Free Package

= Assembly & Test Site Code AT

YYWW= Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " • ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON63482G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	PIM56 93X47 (SOLDER PIN	N)	PAGE 1 OF 1					

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

onsemi Website: www.onsemi.com