NB3W1900L

3.3 V 100/133 MHz Differential 1:19 HCSL-Compatible Push-Pull Clock ZDB/Fanout Buffer for PCle ${ }^{\circledR}$

Description

The NB3W1900L differential clock buffers are designed to work in conjunction with a PCIe compliant source clock synthesizer to provide point-to-point clocks to multiple agents. The device is capable of distributing the reference clocks for Intel ${ }^{\circledR}$ QuickPath Interconnect (Intel QPI \& UPI), PCIe Gen1/Gen2/Gen3/Gen4.The NB3W1900L internal PLL is optimized to support 100 MHz and 133 MHz frequency operation. The NB3W1900L is developed with the low-power NMOS Push-Pull buffer type.

Features

- 19 Low Power Differential Clock Output Pairs @ 0.7 V
- Output-to-Output Skew Performance: < 85 ps
- Cycle-to-Cycle Jitter (PLL Mode): < 50ps
- 100 MHz and 133 MHz PLL Mode to Meet the Next Generation PCIe Gen2/Gen3/Gen4 and Intel QPI \& UPI Phase Jitter
- Input-to-Output Delay Variation: < 50 ps
- Fixed-Feedback for Lowest Input-to-Output Delay Variation
- Spread Spectrum Compatible; Tracks Input Clock Spreading for Low EMI
- Individual OE Control via SMBus
- Low-Power NMOS Push-Pull HCSL-Compatible Outputs
- PLL Configurable for PLL Mode or Bypass Mode (Fanout Operation)
- SMBus Address Configurable to Allow Multiple Buffers in a Single Control Network
- Programmable PLL Bandwidth
- Two Tri-level Addresses Selection (Nine SMBus Addresses)
- QFN 72-pin Package, $10 \mathrm{~mm} \times 10 \mathrm{~mm}$
- These are Pb-Free Devices

ON Semiconductor ${ }^{\text {® }}$ www.onsemi.com
172
QFN72
MN SUFFIX
CASE 485DK

MARKING DIAGRAM

A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 19 of this data sheet.

NB3W1900L

Figure 1. Simplified Block Diagram

Figure 2. Pin Configuration
(Top View)

Table 1. POWER DOWN PIN TABLE

Inputs		Control Bits	Outputs		
PWRGD/PWRDN\#	CLK_IN/	SMBus		FBOUT_NC /	
	CLK_IN\#	EN Bit	DIFx / DIFx\#	FBOUT_NC\#	PLL Stage
	X	X	Low/Low	Low/Low	OFF
1	Running	0	Low/Low	Running	ON
		1	Running	Running	ON

Table 2. POWER CONNECTIONS

Pin Number				Description
VDD	VDDIO	VDDR	GND	
		7	6	Analog Input
1			2	Analog PLL
28, 45, 64	21, 33, 40, 52, 57, 69		$16,22,27,34,39,46,51,58,63,70$	DIF clocks

Table 3. TRI-LEVEL INPUT THRESHOLDS

Level	Voltage
Low	$<0.8 \mathrm{~V}$
Mid	$1.2<$ Vin $<1.8 \mathrm{~V}$
High	Vin $>2.2 \mathrm{~V}$

Table 4. FUNCTIONALITY AT POWER-UP (PLL Mode)

100M_133M\#	CLK_IN	DIFx
	$\mathbf{M H z}$	MHz
1	100.00	CLK_IN
0	133.33	CLK_IN

Table 5. PLL OPERATING MODE

HBW_BYP_LBW\#	MODE
Low	PLL Lo BW
Mid	Bypass
High	PLL Hi BW

NOTE: PLL is OFF in Bypass

Table 6. MODE TRI-LEVEL INPUT THRESHOLD

Level	Voltage
Low	$<0.8 \mathrm{~V}$
Mid	$1.2<\operatorname{Vin}<1.8 \mathrm{~V}$
High	$\operatorname{Vin}>2.2 \mathrm{~V}$

Table 7. NB3W1900L PIN DESCRIPTIONS

Pin Number	Pin Name	Type	Description
1	VDDA	PWR	3.3 V Power Supply for PLL core.
2	GNDA	GND	Ground for PLL core.
3	100M_133M\#	IN	Input to select operating frequency. See functionality table for definition.
4	HBW_BYP_LBW\#	IN	Tri-level input to select High BW, Bypass or low BW mode. See PLL operating mode table for definition.
5	PWRGD/PWRDN\#	IN	Notifies device to sample latched inputs and start up on first high assertion, or exit power down mode on subsequent assertions. Low enters power down mode.
6	GND	GND	Ground pin
7	VDDR	PWR	3.3 V power for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately.
8	CLK_IN	IN	0.7 V differential true input
9	CLK_IN\#	IN	0.7 V differential complementary input
10	SA_0	IN	SMBus address bit. This is a tri-level input that works in conjunction with the SA_1 to decode 1 of 9 SMBus addresses.
11	SDA	I/O	Data pin of SMBus circuitry, 5 V tolerant
12	SCL	IN	Clock pin of SMBus circuitry, 5 V tolerant
13	SA_1	IN	SMBus address bit. This is a tri-level input that works in conjunction with the SA_0 to decode 1 of 9 SMBus addresses.
14	FBOUT_NC\#	OUT	Complementary half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to provide delay path matching to get 0 ps propagation delay.
15	FBOUT_NC	OUT	True half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to provide delay path matching to get 0 propagation delay.
16	GND	GND	Ground pin
17	DIF0	OUT	0.7 V differential true clock output
18	DIF0\#	OUT	0.7 V differential complementary clock output
19	DIF1	OUT	0.7 V differential true clock output
20	DIF1\#	OUT	0.7 V differential complementary clock output
21	VDDIO	PWR	Power supply for differential outputs
22	GND	GND	Ground pin
23	DIF2	OUT	0.7 V differential true clock output
24	DIF2\#	OUT	0.7 V differential complementary clock output
25	DIF3	OUT	0.7 V differential true clock output
26	DIF3\#	OUT	0.7 V differential complementary clock output
27	GND	GND	Ground pin
28	VDD	PWR	Power supply nominal 3.3 V
29	DIF4	OUT	0.7 V differential true clock output
30	DIF4\#	OUT	0.7 V differential complementary clock output
31	DIF5	OUT	0.7 V differential true clock output
32	DIF5\#	OUT	0.7 V differential complementary clock output
33	VDDIO	PWR	Power supply for differential outputs
34	GND	GND	Ground pin
35	DIF6	OUT	0.7 V differential true clock output

1. All VDD, VDDR, VDDIO,VDDA and GND pins must be externally connected to a power supply for proper operation.

NB3W1900L

Table 7. NB3W1900L PIN DESCRIPTIONS (continued)

Pin Number	Pin Name	Type	Description
36	DIF6\#	OUT	0.7 V differential complementary clock output
37	DIF7	OUT	0.7 V differential true clock output
38	DIF7\#	OUT	0.7 V differential complementary clock output
39	GND	GND	Ground pin
40	VDDIO	PWR	Power supply for differential outputs
41	DIF8	OUT	0.7 V differential true clock output
42	DIF8\#	OUT	0.7 V differential complementary clock output
43	DIF9	OUT	0.7 V differential true clock output
44	DIF9\#	OUT	0.7 V differential complementary clock output
45	VDD	PWR	Power supply nominal 3.3 V
46	GND	GND	Ground pin
47	DIF10	OUT	0.7 V differential true clock output
48	DIF10\#	OUT	0.7 V differential complementary clock output
49	DIF11	OUT	0.7 V differential true clock output
50	DIF11\#	OUT	0.7 V differential complementary clock output
51	GND	GND	Ground pin
52	VDDIO	PWR	Power supply for differential outputs
53	DIF12	OUT	0.7 V differential true clock output
54	DIF12\#	OUT	0.7 V differential complementary clock output
55	DIF13	OUT	0.7 V differential true clock output
56	DIF13\#	OUT	0.7 V differential complementary clock output
57	VDDIO	PWR	Power supply for differential outputs
58	GND	GND	Ground pin
59	DIF14	OUT	0.7 V differential true clock output
60	DIF14\#	OUT	0.7 V differential complementary clock output
61	DIF15	OUT	0.7 V differential true clock output
62	DIF15\#	OUT	0.7 V differential complementary clock output
63	GND	GND	Ground pin
64	VDD	PWR	Power supply nominal 3.3 V
65	DIF16	OUT	0.7 V differential true clock output
66	DIF16\#	OUT	0.7 V differential complementary clock output
67	DIF17	OUT	0.7 V differential true clock output
68	DIF17\#	OUT	0.7 V differential complementary clock output
69	VDDIO	PWR	Power supply for differential outputs
70	GND	GND	Ground pin
71	DIF18	OUT	0.7 V differential true clock output
72	DIF18\#	OUT	0.7 V differential complementary clock output
EP	Exposed Pad	Thermal	The Exposed Pad (EP) on the QFN-72 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to the die, and must be electrically and thermally connected to GND on the PC board.

1. All VDD, VDDR, VDDIO,VDDA and GND pins must be externally connected to a power supply for proper operation.

Table 8. ABSOLUTE MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\begin{gathered} \hline \mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}} / \\ \mathrm{V}_{\mathrm{DDR}} \end{gathered}$	3.3 V Core Supply Voltage (Note 3)				4.6	V
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDIO}}$	3.3 V Logic and Output Supply Voltage (Note 3)				4.6	V
V_{IH}	Input High Voltage	Except for SMBus Interface			$\begin{gathered} \mathrm{V}_{\mathrm{DD}}+ \\ 0.5 \end{gathered}$	V
V_{IH}	VIHSMB	SMBus Clock and Data Pins			5.5	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		$\begin{gathered} \hline \text { GND - } \\ 0.5 \end{gathered}$		-	V
Ts	Storage Temperature		-65		150	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature				125	${ }^{\circ} \mathrm{C}$
ESD prot.	ESD Protection (Human Body)	Human Body Model	2000			V
$\theta \mathrm{JA}$	Thermal Resistance Junction-to-Ambient	Still air		18.1		${ }^{\circ} \mathrm{C} / \mathrm{W}$
өJC	Thermal Resistance Junction-to-Case			5.0		${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
2. Guaranteed by design and characterization, not tested in production.
3. Operation under these conditions is neither implied nor guaranteed.

Table 9. ELECTRICAL CHARACTERISTICS - CLOCK INPUT PARAMETERS
$\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\right.$; Supply Voltage $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDIO}}=1.05$ to $3.3 \mathrm{~V} \pm 5 \%$. See Test Loads for Loading Conditions) (Note 4)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$V_{\text {IHDIF }}$	Input High Voltage - CLK_IN	Differential Inputs (single-ended measurement)	600		1150	mV
$\mathrm{V}_{\text {ILDIF }}$	Input Low Voltage - CLK_IN	Differential Inputs (single-ended measurement)	$\mathrm{V}_{\text {SS }}-300$		300	mV
$\mathrm{V}_{\text {COM }}$	Input Common Mode Voltage - CLK_IN (not spec'd)	Common Mode Input Voltage	300		1000	mV
$\mathrm{V}_{\text {SWING }}$	Input Amplitude - CLK_IN not spec'd	Peak to Peak Value	300		1450	mV
dv/dt	Input Slew Rate - CLK_IN (Note 5)	Measured Differentially	0.4		8	$\mathrm{~V} / \mathrm{ns}$
$\mathrm{I}_{\text {IN }}$	Input Leakage Current	VIN $=\mathrm{V}_{\text {DD }}$ VIN $=$ GND	-5		5	$\mu \mathrm{~m}$
$\mathrm{~d}_{\text {tin }}$	Input Duty Cycle	Measurement from Differential Waveform	45		55	$\%$
$J_{\text {DIFIn }}$	Input Jitter - Cycle to Cycle	Differential Measurement	0		125	ps

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Guaranteed by design and characterization, not tested in production.
5. Slew rate measured through $\pm 75 \mathrm{mV}$ window centered around differential zero

Table 10. ELECTRICAL CHARACTERISTICS-INPUT/SUPPLY/COMMON OUTPUT PARAMETERS
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDIO}}=1.05 \mathrm{~V}$ to $3.3 \mathrm{~V} \pm 5 \%$. See Test Loads for Loading Conditions) (Note 6)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{IH}	Input High Voltage	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND -0.3	0.8	V	
I_{IN}	Input Current	Single-ended inputs, $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	-5		5	$\mu \mathrm{~A}$
$\mathrm{~V}_{\text {IH_FS }}$	Input High Voltage	$($ Note 7)	0.7		$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~V}_{\mathrm{IL} _ \text {FS }}$	Input Low Voltage	(Note 7)	GND -0.3		0.35	V

Table 10. ELECTRICAL CHARACTERISTICS-INPUT/SUPPLY/COMMON OUTPUT PARAMETERS (continued)
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDIO}}=1.05 \mathrm{~V}$ to $3.3 \mathrm{~V} \pm 5 \%$. See Test Loads for Loading Conditions) (Note 6)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{F}_{\text {ibyp }}$	Input Frequency	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, Bypass mode (Note 8)	33		150	MHz
$\mathrm{F}_{\text {ipll }}$		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 100.00 \mathrm{MHz} \mathrm{PLL}$ mode (Note 8)	99	100.00	101	MHz
$\mathrm{F}_{\text {ipll }}$		$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, 133.33 \mathrm{MHz}$ PLL mode (Note 8)	132.33	133.33	134.33	MHz
$L_{\text {pin }}$	Pin Inductance				7	nH
$\mathrm{C}_{\text {IN }}$	Capacitance	Logic Inputs, except CLK_IN	1.5		5	pF
$\mathrm{C}_{\text {INCLK_IN }}$		CLK_IN differential clock inputs (Note 10)	1.5		2.7	pF
Cout		Output pin capacitance			6	pF
$\mathrm{T}_{\text {STAB }}$	Clk Stabilization (Note 8)	From V_{DD} Power-Up and after input clock stabilization or de-assertion of PD\# to 1st clock			1	ms
$\mathrm{f}_{\text {MODIN }}$	Input SS Modulation Frequency	Allowable Frequency (Triangular Modulation)	30		33	kHz
t LATOE\#	OE\# Latency	DIF start after OE\# assertion DIF stop after OE\# de-assertion	4		12	clocks
$t_{\text {DRVPD }}$	Tdrive_PD\# (Note 9)	DIF output enable after PD\# de-assertion			300	$\mu \mathrm{S}$
t_{F}	Tfall (Note 8)	Fall time of control inputs			5	ns
t_{R}	Trise (Note 8)	Rise time of control inputs			5	ns
$\mathrm{V}_{\text {ILSMB }}$	SMBus Input Low Voltage				0.8	V
$\mathrm{V}_{\text {IHSMB }}$	SMBus Input High Voltage		2.1		$\mathrm{V}_{\text {DDSMB }}$	V
$\mathrm{V}_{\text {OLSMB }}$	SMBus Output Low Voltage	@ IPULLUP			0.4	V
IPULLUP	SMBus Sink Current	@ V_{OL}	4			mA
$\mathrm{V}_{\text {DDSMB }}$	Nominal Bus Voltage	3 V to $5 \mathrm{~V} \pm 10 \%$	2.7		5.5	V
$\mathrm{t}_{\text {RSMB }}$	SCL/SDA Rise Time	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns
$\mathrm{t}_{\text {FSMB }}$	SCL/SDA Fall Time	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns
$\mathrm{f}_{\text {MAXSMB }}$	SMBus Operating Frequency (Note 11)	Maximum SMBus operating frequency			100	kHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
6. Guaranteed by design and characterization, not tested in production.
7. 100M_133M\# Frequency Select (FS).
8. Control input must be monotonic from 20% to 80% of input swing.
9. Time from de-assertion until outputs are $>200 \mathrm{mV}$
10. CLK_IN input
11. The differential input clock must be running for the SMBus to be active

Table 11. ELECTRICAL CHARACTERISTICS - DIF 0.7 V LOW POWER DIFFERENTIAL OUTPUTS
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDIO}}=1.05 \mathrm{~V}$ to $3.3 \mathrm{~V} \pm 5 \%$. See Test Loads for Loading Conditions) (Note 12)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
dV/dt	Slew Rate (Notes 13, 14)	Scope averaging on	1		4	V/ns
$\Delta \mathrm{dV} / \mathrm{dt}$	Slew Rate Matching (Notes 13, 15)	Slew rate matching, Scope averaging on			20	\%
$\mathrm{V}_{\text {High }}$	Voltage High	Statistical measurement on single-ended signal using oscilloscope math function. (Scope averaging on)	660		850	mV
$\mathrm{V}_{\text {Low }}$	Voltage Low		-150		150	
$\mathrm{V}_{\text {max }}$	Max Voltage	Measurement on single ended signal using Absolute value. (Scope averaging off)			1150	mV
$\mathrm{V}_{\text {min }}$	Min Voltage		-300			
$\mathrm{V}_{\text {swing }}$	Vswing (Note 13)	Scope averaging off	300			mV
$\mathrm{V}_{\text {cross_abs }}$	Crossing Voltage (abs) (Note 16)	Scope averaging off	250		550	mV
$\Delta \mathrm{V}_{\text {cross }}$	Crossing Voltage (var) (Note 17)	Scope averaging off			140	mV

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
12. Guaranteed by design and characterization, not tested in production. $\mathrm{C}_{\mathrm{L}}=2 \mathrm{pF}$ with $\mathrm{R}_{\mathrm{S}}=33 \Omega$ for $\mathrm{Zo}=50 \Omega$ (100 Ω differential trace impedance).
13. Measured from differential waveform
14. Slew rate is measured through the $\mathrm{V}_{\text {swing }}$ voltage range centered around differential 0 V . This results in $\mathrm{a} \pm 150 \mathrm{mV}$ window around differential 0 V .
15. Matching applies to rising edge rate for Clock and falling edge rate for Clock\#. It is measured using a $\pm 75 \mathrm{mV}$ window centered on the average cross point where Clock rising meets Clock\# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.
16. $\mathrm{V}_{\text {cross }}$ is defined as voltage where Clock = Clock\# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock\# falling).
17. The total variation of all $\mathrm{V}_{\text {cross }}$ measurements in any particular system. Note that this is a subset of $\mathrm{V}_{\text {cross_min/max }}\left(\mathrm{V}_{\text {cross }}\right.$ absolute) allowed. The intent is to limit $\mathrm{V}_{\text {cross }}$ induced modulation by setting $\Delta \mathrm{V}_{\text {cross }}$ to be smaller than $\mathrm{V}_{\text {cross }}$ absolute.

Table 12. ELECTRICAL CHARACTERISTICS - CURRENT CONSUMPTION
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDIO}}=1.05 \mathrm{~V}$ to $3.3 \mathrm{~V} \pm 5 \%$. See Test Loads for Loading Conditions) (Note 18)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
ImDVDD	Operating Supply Current	All outputs @ $100.00 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF} ; \mathrm{Zo}=85 \Omega$			50	mA
ImDVDDA/R		All outputs @ $100.00 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF} ; \mathrm{Zo}=85 \Omega$			30	mA
I ${ }_{\text {dovddio }}$		All outputs @ $100.00 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=2 \mathrm{pF} ; \mathrm{Zo}=85 \Omega$			200	mA
IDDVDDPD	Powerdown Current (Note 19)	All differential pairs low/low			4	mA
IdDVDDA/RPD		All differential pairs low/low			5	mA
IDDVDDIopd		All differential pairs low/low			0.2	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
18. Guaranteed by design and characterization, not tested in production.
19. With input clock running. Stopping the input clock will result in lower numbers.

Table 13. ELECTRICAL CHARACTERISTICS - SKEW AND DIFFERENTIAL JITTER PARAMETERS
$\left(T_{A}=0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}\right.$; Supply Voltage $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDIO}}=1.05$ to $3.3 \mathrm{~V} \pm 5 \%$. See Test Loads for Loading Conditions)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit	
tspo_PLL	CLK_IN, DIF[x:0] (Notes 20, 21, 23, 24 and 27)	Input-to-Output Skew in PLL mode nominal value @ $25^{\circ} \mathrm{C}, 3.3 \mathrm{~V}$	-100		100	ps	
tpd_BYP	CLK_IN, DIF[x:0] (Notes 20, 21, 22, 24 and 27)	Input-to-Output Skew in Bypass mode nominal value @ $25^{\circ} \mathrm{C}, 3.3 \mathrm{~V}$	2.5		4.5	ns	
tDSPO_PLL	CLK_IN, DIF[x:0] (Notes 20, 21, 22, 24 and 27)	Input-to-Output Skew Variation in PLL mode across voltage and temperature			\|100		ps
$\mathrm{t}_{\text {DSPO_BYP }}$	$\begin{aligned} & \text { CLK_IN, DIF[x:0] } \\ & \text { (Notes 20, 21, 22, } 24 \text { and 27) } \end{aligned}$	Input-to-Output Skew Variation in Bypass mode across voltage and temperature	-250		250	ps	
tote	CLK_IN, DIF[x:0] (Notes 20, 21, 22, 24 and 27)	Random Differential Tracking error between two NB3W1900L devices in Hi BW Mode			5	$\begin{gathered} \mathrm{ps} \\ (\mathrm{rms}) \end{gathered}$	
$t_{\text {dSSSTE }}$	$\begin{aligned} & \text { CLK_IN, DIF[x:0] } \\ & \text { (Notes 20, 21, 22, } 24 \text { and 27) } \end{aligned}$	Random Differential Spread Spectrum Tracking error between two NB3W1900L devices in Hi BW Mode.			75	ps	
tskew_ALL	$\begin{array}{\|l} \hline \text { DIF[x:0] } \\ \text { (Notes 20, 21, } 22 \text { and 27) } \end{array}$	Output-to-Output Skew across all outputs (Common to Bypass and PLL mode)			85	ps	
j jeak-hibw	PLL Jitter Peaking (Notes 26 and 27)	HBW_BYP_LBW\# = 1	0		2.5	dB	
jpeak-lobw	PLL Jitter Peaking (Notes 26 and 27)	HBW_BYP_LBW\# = 0	0		2	dB	
pll HIBW	PLL Bandwidth (Notes 27 and 28)	HBW_BYP_LBW\# = 1	2		4	MHz	
pllıobw	PLL Bandwidth (Notes 27 and 28)	HBW_BYP_LBW\# = 0	0.7		1.4	MHz	
$t_{\text {bc }}$	Duty Cycle (Note 20)	Measured differentially, PLL Mode	45	50	55	\%	
$t_{\text {DCD }}$	Duty Cycle Distortion (Notes 20 and 29)	Measured differentially, Bypass Mode @ 100.00 MHz	-2	0	2	\%	
$\mathrm{t}_{\text {jcyc-cyc }}$	Jitter, Cycle-to-Cycle (Notes 20 and 30)	PLL mode			50	ps	
		Additive Jitter in Bypass Mode			50	ps	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
20. Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input.
21. Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.
22. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.
23. This parameter is deterministic for a given device
24. Measured with scope averaging on to find mean value.
25.t is the period of the input clock
26. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
27. Guaranteed by design and characterization, not tested in production.
28. Measured at 3 db down or half power point.
29. Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.
30. Measured from differential waveform

Table 14. ELECTRICAL CHARACTERISTICS - PHASE JITTER PARAMETERS
($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DDIO}}=1.05 \mathrm{~V}$ to $3.3 \mathrm{~V} \pm 5 \%$. See Test Loads for Loading Conditions) (Note 31)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{t}_{\text {jphPCleG1 }}$	Phase Jitter, PLL Mode	PCle Gen 1 (Notes 32 and 33)		11	86	ps (p-p)
$\mathrm{t}_{\text {jphPCleG2 }}$		PCle Gen 2 Lo Band $10 \mathrm{kHz}<\mathrm{f}<1.5 \mathrm{MHz}$ (Note 32)		0.2	3	ps (rms)
		PCle Gen 2 High Band 1.5 MHz < f < Nyquist (50 MHz) (Note 32)		1.0	3.1	ps (rms)
$\mathrm{t}_{\text {jphPCleG3 }}$		$\begin{gathered} \text { PCle Gen 3 } \\ \text { (PLL BW of 2-4 MHz, CDR }=10 \mathrm{MHz} \text {) } \\ \text { (Notes 32, } 33 \text { and 34) } \end{gathered}$		0.28	1	ps (rms)
$\mathrm{t}_{\text {jphPCleG4 }}$		PCle Gen 4 (PLL BW of $2-4 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}$)		0.28	0.5	ps (rms)
${ }_{\text {jphuPI }}$		UPI $(9.6 \mathrm{~Gb} / \mathrm{s}, 10.4 \mathrm{~Gb} / \mathrm{s}$ or $11.2 \mathrm{~Gb} / \mathrm{s}, 100 \mathrm{MHz}, 12 \mathrm{UI})$		0.73	1.0	ps (rms)
$\mathrm{t}_{\text {jphQPI_SMI }}$		QPI \& SMI (100.00 MHz or $133.33 \mathrm{MHz}, 4.8 \mathrm{~Gb} / \mathrm{s}, 6.4 \mathrm{~Gb} / \mathrm{s} 12 \mathrm{UI}$) (Note 35)		0.3	0.5	ps (rms)
		QPI \& SMI ($100.00 \mathrm{MHz}, 8.0 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI})($ Note 35)		0.1	0.3	ps (rms)
		QPI \& SMI (100.00 MHz, 9.6 Gb/s, 12UI) (Note 35)		0.08	0.2	ps (rms)
$\mathrm{t}_{\text {jphPCleG1 }}$	Additive Phase Jitter, Bypass Mode	PCle Gen 1 (Notes 32 and 33)			10	ps (p-p)
$\mathrm{t}_{\text {jphPCleG2 }}$		PCle Gen 2 Lo Band 10 kHz < $\mathrm{f}<1.5 \mathrm{MHz}$ (Notes 32 and 36)			0.3	ps (rms)
		PCle Gen 2 High Band 1.5 MHz < f < Nyquist (50 MHz) (Notes 32 and 36)			0.7	ps (rms)
$\mathrm{t}_{\text {jphPCleG3 }}$		PCle Gen 3 (PLL BW of $2-4 \mathrm{MHz}, \mathrm{CDR}=10 \mathrm{MHz}$) (Notes 32,34 and 36)			0.3	ps (rms)
$\mathrm{t}_{\text {jphQPI_SMI }}$		QPI \& SMI (100.00 MHz or $133.33 \mathrm{MHz}, 4.8 \mathrm{~Gb} / \mathrm{s}, 6.4 \mathrm{~Gb} / \mathrm{s} 12 \mathrm{UI}$) (Notes 35 and 36)			0.3	ps (rms)
		QPI \& SMI ($100.00 \mathrm{MHz}, 8.0 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI}$) (Notes 35 and 36)			0.1	ps (rms)
		QPI \& SMI ($100.00 \mathrm{MHz}, 9.6 \mathrm{~Gb} / \mathrm{s}, 12 \mathrm{UI}$) (Notes 35 and 36)			0.1	ps (rms)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
31. Applies to all outputs.
32. See http://www.pcisig.com for complete specs
33. Sample size of at least 100 k cycles. This figures extrapolates to 108 ps pk -pk @ 1M cycles for a BER of 1-12.
34. Subject to final ratification by PCI SIG.
35. Calculated from Intel-supplied Clock Jitter Tool v 1.6.3
36. For RMS figures, additive jitter is calculated by solving the following equation: $\left(\right.$ Additive jitter) ${ }^{2}=(\text { total jittter) })^{2}-(\text { input jitter })^{2}$

Table 15. CLOCK PERIODS-DIFFERENTIAL OUTPUTS WITH SPREAD SPECTRUM DISABLED

SSC OFF	Center Freq. MHz	Measurement Window							Unit	Notes
		1 Clock	$1 \mu \mathrm{~s}$	0.1 s	0.1s	0.1s	$1 \mu \mathrm{~s}$	1 Clock		
		$\begin{array}{\|c} \hline-\mathrm{c} 2 \mathrm{c} \text { jitter } \\ \text { AbsPer } \\ \text { Min } \end{array}$	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm LongTerm Average Max	+SSC Short-Term Average Max	+c2c jitter Abs Per Max		
DIF	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns	$\begin{gathered} 37, \\ 38,39 \end{gathered}$
	133.33	7.44925		7.49925	7.50000	7.50075		7.55075	ns	$\begin{gathered} 37, \\ 38,40 \end{gathered}$

37. Guaranteed by design and characterization, not tested in production.
38. All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy requirements ($\pm 100 \mathrm{ppm}$). The NB3W1900L it self does not contribute to ppm error.
39. Driven by SRC out put of main clock, 100.00 MHz PLL Mode or Bypass mode.
40. Driven by CPU out put of main clock, 133.33 MHz PLL Mode or Bypass mode.

Table 16. CLOCK PERIODS-DIFFERENTIAL OUTPUTS WITH SPREAD SPECTRUM ENABLED

SSC ON	Center Freq. MHz	Measurement Window							Unit	Notes
		1 Clock	$1 \mu \mathrm{~s}$	0.1s	0.15	0.1s	$1 \mu \mathrm{~s}$	1 Clock		
		-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nomina	+ ppm LongTerm Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max		
DIF	99.75	9.94906	9. 99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	$\begin{gathered} 41, \\ 42,43 \end{gathered}$
	133.00	7.44930	7. 49930	7.51805	7.51880	7.51955	7.53830	7.58830	ns	$\begin{gathered} 41, \\ 42,44 \end{gathered}$

41. Guaranteed by design and characterization, not tested in production.
42. All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/ CK410B+ accuracy requirements ($\pm 100 \mathrm{ppm}$). The NB3W1900L it self does not contribute to ppm error.
43. Driven by SRC out put of main clock, 100.00 MHz PLL Mode or Bypass mode.
44. Driven by CPU out put of main clock, 133.33 MHz PLL Mode or Bypass mode.

TEST LOADS

Figure 3. NB3W1900L Differential Test Loads

Table 17. DIFFERENTIAL OUTPUT TERMINATIONS

DIF Zo ($\boldsymbol{\Omega})$	Rs $(\boldsymbol{\Omega})$
100	33
85	27

PWRGD/PWRDN\#

PWRGD/PWRDN\# is a dual function pin. PWRGD is asserted high and de-asserted low. De-assertion of PWRGD (pulling the signal low) is equivalent to indicating a powerdown condition. PWRGD (assertion) is used by the NB3W1900L to sample initial configurations such as frequency select condition and SA selections.

After PWRGD has been asserted high for the first time, the pin becomes a PWRDN\# (Power Down) pin that can be used to shut off all clocks cleanly and instruct the device to invoke power savings mode. PWRDN\# is a completely asynchronous active low input. When entering power savings mode, PWRDN\# should be asserted low prior to shutting off the input clock or power to ensure all clocks shut down in a glitch free manner. When PWRDN\# is
asserted low by two consecutive rising edges of DIF\#, all differential outputs are held tri-stated on the next DIF\# high to low transition. The assertion and de-assertion of PWRDN\# is absolutely asynchronous.
WARNING: Disabling of the CLK_IN input clock prior to assertion of PWRDN\# is an undefined mode and not recommended. Operation in this mode may result in glitches, excessive frequency shifting, etc.

Table 18. PWRGD/PWRDN\# FUNCTIONALITY

PWRGD/PWRDN\#	DIF	DIF\#
0	Tri-state	Tri-state
1	Running	Running

Buffer Power-Up State Machine

Table 19. BUFFER POWER-UP STATE MACHINE

State	Description
0	3.3 V Buffer power off
1	After 3.3 V supply is detected to rise above 3.135 V, the buffer enters State 1 and initiates a $0.1 \mathrm{~ms}-0.3$ ms delay.
2	Buffer waits for a valid clock on the CLK input and PWRDN\# de-assertion (or PWRGD assertion low to high)
3	Once the PLL is locked to the CLK_IN input clock, the buffer enters state 3 and enables outputs for normal operation. (Notes 45, 46)

45. The total power up latency from power on to all outputs active must be less than 1.8 ms (assuming a valid clock is present on CLK_IN input). 46. If power is valid and powerdown is de-asserted (PWRGD asserted) but no input clocks are present on the CLK_IN input, DIF clocks must remain disabled. Only after valid input clocks are detected, valid power, PWRDN\# de-asserted (PWRGD asserted) with the PLL locked/stable and the DIF outputs enabled.

Figure 4. Buffer Power-Up State Diagram

Device Power-Up Sequence

Follow the power-up sequence below for proper device functionality:

1. PWRGD/PWRDN\# pin must be Low.
2. Assign remaining control pins to their required state (100M_133M\#, HBW_BYPASS_LBW\#, SDA, SCL)
3. Apply power to the device.
4. Once the VDD pin has reached a valid VDDmin level (3.3V-5\%), the PWRGD/PWRDN\# pin must be asserted High. See Figure 5.
Note: If no clock is present on the CLK_IN/CLK_IN\# pins when device is powered up, there will be no clock on DIF/DIF\# outputs.

Figure 5. PWRGD and VDD Relationship Diagram

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- Clock (device) will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- Clock (device) will acknowledge
- Controller (host) sends the byte count = X
- Clock (device) will acknowledge
- Controller (host) starts sending Byte \mathbf{N} through Byte $\mathbf{N}+\mathbf{X}-1$
- Clock (device) will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Table 20. INDEX BLOCK WRITE OPERATION

Controller (Host)			Clock (Device)
T	starT bit	X Byte	
Slave Address			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
Data Byte Count = X			
			ACK
Beginning Byte N			
			ACK
O			
0			0
0			0
			0
Byte N+X-1			
			ACK
P	stoP bit		

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- Clock (device) will acknowledge
- Controller (host) sends the beginning byte location $=\mathrm{N}$
- Clock (device) will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- Clock (device) will acknowledge
- Clock (device) will send the data byte count = X
- Clock (device) sends Byte $\mathbf{N}+\mathbf{X}-\mathbf{1}$
- Clock (device) sends Byte 0 through Byte \mathbf{X} (if $\mathbf{X}_{(H)}$ was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Table 21. INDEX BLOCK READ OPERATION

NB3W1900L

Table 22. SMBus ADDRESSING

SA_1 and SA_0	SMBus 8-bit Address (Rd/Wrt bit = 0)
00	D8
0 M	DA
01	DE
M 0	C 2
MM	C 4
M 1	C 6
10	CA
1 M	CC
11	CE

Table 23. SMBus Table: PLL MODE, AND FREQUENCY SELECT REGISTER

Byte 0	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	4	PLL Mode 1	PLL Operating Mode Rd back 1	R	See PLL Operating Mode Readback Table		Latch
Bit 6	4	PLL Mode 0	PLL Operating Mode Rd back 0	R			Latch
Bit 5	72/71	DIF_18_En	Output Control overrides OE\# pin	RW	Low/Low	Enable	1
Bit 4	68/67	DIF_17_En	Output Control overrides OE\# pin	RW	Low/Low	Enable	1
Bit 3	66/65	DIF_16_En	Output Control overrides OE\# pin	RW	Low/Low	Enable	1
Bit 2		Reserved					0
Bit 1		Reserved					0
Bit 0	3	100M_133M\#	Frequency Select Readback	R	133 MHz	100 MHz	Latch

Table 24. SMBus TABLE: OUTPUT CONTROL REGISTER

Byte 1	Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$	Default
Bit 7	$38 / 37$	DIF_7_En	Output Control overrides OE\# pin	RW			1
Bit 6	$35 / 36$	DIF_6_En	Output Control overrides OE\# pin	RW			1
Bit 5	$31 / 32$	DIF_5_En	Output Control overrides OE\# pin	RW			
Bit 4	$29 / 30$	DIF_4_En	Output Control overrides OE\# pin	RW	Low/Low	Enable	1
Bit 3	$25 / 26$	DIF_3_En	Output Control overrides OE\# pin	RW		1	
Bit 2	$23 / 24$	DIF_2_En	Output Control overrides OE\# pin	RW			1
Bit 1	$19 / 20$	DIF_1_En	Output Control overrides OE\# pin	RW			
Bit 0	$17 / 18$	DIF_0_En	Output Control overrides OE\# pin	RW			1

Table 25. SMBus TABLE: OUTPUT CONTROL REGISTER

Byte 2	Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$	Default
Bit 7	$62 / 61$	DIF_15_En	Output Control overrides OE\# pin	RW			1
Bit 6	$60 / 59$	DIF_14_En	Output Control overrides OE\# pin	RW			1
Bit 5	$56 / 55$	DIF_13_En	Output Control overrides OE\# pin	RW			1
Bit 4	$54 / 53$	DIF_12_En	Output Control overrides OE\# pin	RW	Low/Low	Enable	1
Bit 3	$50 / 49$	DIF_11_En	Output Control overrides OE\# pin	RW		1	
Bit 2	$48 / 47$	DIF_10_En	Output Control overrides OE\# pin	RW			1
Bit 1	$44 / 43$	DIF_9_En	Output Control overrides OE\# pin	RW			1
Bit 0	$42 / 41$	DIF_8_En	Output Control overrides OE\# pin	RW			1

NB3W1900L

Table 26. SMBus TABLE: RESERVED REGISTER

Byte 3	Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$
Bit 7		Reserved	Default			
Bit 6		Reserved	0			
Bit 5		Reserved	0			
Bit 4		Reserved	0			
Bit 3	Reserved	0				
Bit 2	Reserved	0				
Bit 1	Reserved	0				
Bit 0	Reserved	0				

Table 27. SMBus TABLE: RESERVED REGISTER

Byte 4	Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$
Bit 7		Reserved	Default			
Bit 6		Reserved	0			
Bit 5		Reserved	0			
Bit 4		Reserved	0			
Bit 3		Reserved	0			
Bit 2	Reserved	0				
Bit 1	Reserved	0				
Bit 0	Reserved	0				

Table 28. SMBus TABLE: VENDOR \& REVISION ID REGISTER

Byte 5	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	-	RID3	REVISION ID	R	-	-	X
Bit 6	-	RID2		R	-	-	X
Bit 5	-	RID1		R	-	-	X
Bit 4	-	RID0		R	-	-	X
Bit 3	-	VID3	VENDOR ID	R	-	-	1
Bit 2	-	VID2		R	-	-	1
Bit 1	-	VID1		R	-	-	1
Bit 0	-	VID0		R	-	-	1

Table 29. SMBus TABLE: DEVICE ID

Byte 6	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7	-	Device ID 7 (MSB)		R	Device ID is 130 decimal or 82 hex.		1
Bit 6	-		Device ID 6	R			1
Bit 5	-		Device ID 5	R			0
Bit 4	-		Device ID 4	R			1
Bit 3	-		Device ID 3	R			1
Bit 2	-		Device ID 2	R			0
Bit 1	-		Device ID 1	R			1
Bit 0	-		Device ID 0	R			1

Table 30. SMBus TABLE: BYTE COUNT REGISTER

Byte 7	Pin \#	Name	Control Function	Type	0	1	Default
Bit 7		Reserved					0
Bit 6		Reserved					0
Bit 5		Reserved					0
Bit 4	-	BC4	Writing to this register configures how many bytes will be read back.	RW	Default value is 8 hex, so 9 bytes (0 to 8) will be read back by default.		0
Bit 3	-	BC3		RW			1
Bit 2	-	BC2		RW			0
Bit 1	-	BC1		RW			0
Bit 0	-	BC0		RW			0

Table 31. SMBus TABLE: RESERVED REGISTER

Byte 8	Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$
Bit 7		Reserved	Default			
Bit 6		Reserved	0			
Bit 5		Reserved	0			
Bit 4		Reserved	0			
Bit 3		Reserved	0			
Bit 2	Reserved	0				
Bit 1	Reserved	0				
Bit 0	Reserved	0				

Table 32. DIF REFERENCE CLOCK

Common R Recommendations for Differential Routing	Dimension or Value	Unit
L1 length, route as non-coupled 50Ω trace (see Figure 6)	0.5 max	inch
L2 length, route as non-coupled 50Ω trace (see Figure 6)	0.2 max	
L3 length, route as non-coupled 50Ω trace (see Figure 6)	0.2 max	inch
Rs (100 Ω differential traces) (see Figure 6)	33	Ω
Rs (85 Ω differential traces) (see Figure 6)	27	Ω

Down Device Differential Routing		
L4 length, route as coupled micro strip 100Ω differential trace (see Figure 6)	2 min to 16 max	inch
L4 length, route as coupled strip line 100Ω differential trace (see Figure 6)	1.8 min to 14.4 max	inch

Differential Routing to PCI Express Connector		
L4 length, route as coupled microstrip 100Ω differential trace (see Figure 7)	0.25 to 14 max	inch
L4 length, route as coupled stripline 100Ω differential trace (see Figure 7)	0.225 min to 12.6 max	inch

Figure 6. Down Device Routing

Figure 7. PCI Express Connector Routing

Table 33. CABLE CONNECTED AC COUPLED APPLICATION (Figure 8)

Component	Value	Note
R5a, R5b	$8.2 \mathrm{k} 5 \%$	
R6a, R6b	$1 \mathrm{k} 5 \%$	
Cc	$0.1 \mu \mathrm{~F}$	
Vcm	0.350 V	

Figure 8.

NB3W1900L

POWER FILTERING EXAMPLE

Ferrite Bead Power Filtering

Recommended ferrite bead filtering equivalent to the following:
600 Q impedance at $100.00 \mathrm{MHz}, \leq 0.1$ Q DCR max., $\geq 400 \mathrm{~mA}$ current rating.

Figure 9. Schematic Example of the NB3W1900L Power Filtering

Table 34. ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NB3W1900LMNG	QFN-72 (Pb-Free)	168 Units / Tray
NB3W1900LMNTXG	QFN-72 (Pb-Free)	$1,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

QFN72 10x10, 0.5P
CASE 485DK
ISSUE O
DATE 12 NOV 2013

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSIONS: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.25 mm FROM THE TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS			
DIM	MIN	MAX		
A	0.80	1.00		
A1	0.00	0.05		
A3	0.20			
bEF				
b	0.18	0.30		
D	10.00			BSC
D2	5.85			
E	6.15			
E2	5.00			
e	0.50			

GENERIC
MARKING DIAGRAM*
10
$X X X X X X X X X$
XXXXXXXXX
AWLYYWWG

BOTTOM VIEW

$$
\begin{array}{|c|c|c|c|c|}
\hline \phi & 0.10 ®(1) & C & A & B \\
\hline & 0.05 ®(1) & C & \text { NOTE 3 } \\
\hline
\end{array}
$$

A XXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
*This information is generic. Please refer to device data sheet for actual part marking.
$\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\stackrel{ }{ }$ ", may or may not be present.

RECOMMENDED SOLDERING FOOTPRINT

DOCUMENT NUMBER:	98AON79920F	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	QFN72 10x10, 0.5P		PAGE 1 OF 1

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

