1/3, 1/4-Duty General-Purpose LCD Driver

Overview

The LC75897PW is 1/3 duty and 1/4 duty general-purpose LCD display driver that can be used for frequency display in electronic tuners under the control of a microcontroller. The LC75897PW can drive an LCD with up to 512 segments directly. The LC75897PW can also control up to 8 general-purpose output ports. The LC75897PW has a built-in of up to three PWM output port channels, which enables to adjust the brightness of the RGB LED backlight.

Features

- Switching between 1/3 duty and 1/4 duty drive techniques under serial data control.
- Switching between 1/2 bias and 1/3 bias drive techniques under serial data control.
- Up to 387 segments for 1/3 duty drive and 512 segments for 1/4 duty drive can be displayed.
- Switching between the segment, general-purpose, PWM, and clock output ports can be controlled using serial data (up to 8 general-purpose output ports, up to 3-channel PWM output ports, and one clock output port).
- Serial data input supports CCB* format communication with the system controller.
- Serial data control of the power-saving mode based backup function and all the segments forced off function.
- Serial data control of the frame frequency for common and segment output waveforms.
- Serial data control of switching between the RC oscillator operating mode and external clock operating mode.
- High generality, since display data is displayed directly without decoder intervention.
- Built-in display contrast adjustment circuit
- \bullet Independent V_{LCD} for the LCD driver block
- The $\overline{\text{INH}}$ pin can force the display to the off state.
- RC oscillator circuit

ON Semiconductor[®]

www.onsemi.com

SPQFP144 20x20 / SQFP144

* Computer Control Bus (CCB) is an ON Semiconductor's original bus format and the bus addresses are controlled by ON Semiconductor.

ORDERING INFORMATION

See detailed ordering and shipping information on page 33 of this data sheet.

© Semiconductor Components Industries, LLC, 2017 July 2017 - Rev. 1

Specifications

Absolute Maximum Ratings at Ta = 25° C, V_{SS} = 0 V

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{DD} max	V _{DD}	–0.3 to +7.0	V
	V _{LCD} max	V _{LCD}	–0.3 to +7.0	v
Input voltage	V _{IN} 1	CE, CL, DI, ĪNH	–0.3 to +7.0	
	V _{IN} 2	OSC	–0.3 to V _{DD} +0.3	V
	V _{IN} 3	V _{LCD} 1, V _{LCD} 2	–0.3 to V _{LCD} +0.3	
Output voltage	V _{OUT} 1	OSC	–0.3 to V _{DD} +0.3	V
	V _{OUT} 2	V _{LCD} 0, S1 to S129, COM1 to COM4, P1 to P8	–0.3 to V _{LCD} +0.3	v
Output current	IOUT1	S1 to S129	300	μA
	IOUT ²	COM1 to COM4	3	
	I _{OUT} 3	P1 to P8	5	mA
Allowable power dissipation	Pd max	Ta = 85°C	200	mW
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		–55 to +125	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Allowable Operating Ranges at Ta = -40 to $+85^{\circ}$ C, V_{SS} = 0 V

Deventer	Currents of	Conditions				
Parameter	Symbol	Conditions	min	typ	max	unit
Supply voltage	V _{DD}	V _{DD}	2.7		6.0	
	V _{LCD}	V _{LCD} , V _{LCD} 0 = 0.70V _{LCD} to 0.95V _{LCD}	4.0		6.0	V
		$V_{LCD}, V_{LCD}0 = V_{LCD}$	2.7		6.0	
Output voltage	V _{LCD} 0	V _{LCD} 0	2.7		VLCD	V
Input voltage	V _{LCD} 1	V _{LCD} 1		2/3V _{LCD} 0	V _{LCD} 0	V
	V _{LCD} 2	V _{LCD} 2		1/3V _{LCD} 0	V _{LCD} 0	v
Input high-level voltage	V _{IH} 1	CE, CL, DI, INH	0.8V _{DD}		6.0	V
	V _{IH} 2	OSC external clock operating mode	0.7V _{DD}		V _{DD}	v
Input low-level voltage	V _{IL} 1	CE, CL, DI, INH	0		0.2V _{DD}	V
	V _{IL} 2	OSC external clock operating mode	0		0.3V _{DD}	v
Recommended external resistor for RC oscillation	ROSC	OSC RC oscillator operating mode		10		kΩ
Recommended external capacitor for RC oscillation	COSC	OSC RC oscillator operating mode		470		pF
Guaranteed range of RC oscillation	fosc	OSC RC oscillator operating mode	150	300	600	kHz
External clock operating frequency	fCK	OSC external clock operating mode [Figure 4]	150	300	600	kHz
External clock duty cycle	РСК	OSC external clock operating mode [Figure 4]	30	50	70	%
Data setup time	tds	CL,DI [Figure 2], [Figure 3]	160			ns
Data hold time	tdh	CL,DI [Figure 2], [Figure 3]	160			ns
CE wait time	tcp	CE,CL [Figure 2], [Figure 3]	160			ns
CE setup time	tcs	CE,CL [Figure 2], [Figure 3]	160			ns
CE hold time	tch	CE,CL [Figure 2], [Figure 3]	160			ns
High-level clock pulse width	tφH	CL [Figure 2], [Figure 3]	160			ns
Low-level clock pulse width	tφL	CL [Figure 2], [Figure 3]	160			ns
Rise time	tr	CE, CL, DI [Figure 2], [Figure 3]		160		ns
Fall time	tf	CE, CL, DI [Figure 2], [Figure 3]		160		ns
INH switching time	tc	INH, CE [Figure 5], [Figure 6]	10			μS

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics for the Allowable Operating Ranges

Demonster	O make at	Dia	O an diti an a				
Parameter	Symbol	Pin	Conditions	min	typ	max	unit
Hysteresis	V _H	CE, CL, DI, INH			0.1V _{DD}		V
Input high-level	I _{IH} 1	CE, CL, DI, INH	V _I = 6.0 V			5.0	
current	I _{IH} 2	OSC	V _I = V _{DD} External clock operating mode			5.0	μA
Input low-level	l _{IL} 1	CE, CL, DI, INH	V _I = 0 V	-5.0			
current	I _{IL} 2	OSC	V _I = 0 V External clock operating mode	-5.0			μA
Output high-level	V _{OH} 1	S1 to S129	I _O = -20 μA	V _{LCD} 0-0.9			
voltage	V _{OH} 2	COM1 to COM4	I _O = –100 μA	V _{LCD} 0-0.9			V
	V _{OH} 3	P1 to P8	I _O = –1 mA	V _{LCD} -0.9			
Output low-level	V _{OL} 1	S1 to S129	I _O = 20 μA			0.9	
voltage	V _{OL} 2	COM1 to COM4	I _O = 100 μA			0.9	V
	V _{OL} 3	P1 to to P8	I _O = 1 mA			0.9	
Output middle- level voltage *1	V _{MID} 1	COM1 to COM4	1/2 bias, I _O = ±100 μA	1/2V _{LCD} 0 -0.9		1/2V _{LCD} 0 +0.9	
	V _{MID} 2	S1 to S129	1/3 bias, I _O = ±20 μA	2/3V _{LCD} 0 _0.9		2/3V _{LCD} 0 +0.9	
	V _{MID} 3	S1 to S129	1/3 bias, I _O = ±20 μA	1/3V _{LCD} 0 _0.9		1/3V _{LCD} 0 +0.9	V
	V _{MID} 4	COM1 to COM4	1/3 bias, I _O = ±100 μA	2/3V _{LCD} 0 -0.9		2/3V _{LCD} 0 +0.9	
	V _{MID} 5	COM1 to COM4	1/3 bias, I _O = ±100 μA	1/3V _{LCD} 0 _0.9		1/3V _{LCD} 0 +0.9	
Oscillator frequency	fosc	OSC	RC oscillator operating mode ROSC = 10 k Ω COSC = 470 pF	210	300	390	kHz
Current drain	I _{DD} 1	V _{DD}	Power-saving mode			10	
	I _{DD} 2	V _{DD}	V _{DD} = 6.0 V, output open, f _{OSC} = 300 kHz		700	1400	
	I _{LCD} 1	V _{LCD}	Power-saving mode			15	
	I _{LCD} 2	VLCD	V_{LCD} = 6.0 V, output open, 1/2 bias, f _{OSC} = 300 kHz, V_{LCD} 0 = 0.70 V_{LCD} to 0.95 V_{LCD}		600	1200	
	ILCD3	V _{LCD}	V_{LCD} = 6.0 V, output open, 1/2 bias, f _{OSC} = 300 kHz, V_{LCD} 0 = V_{LCD}		500	1000	μA
	ILCD4	VLCD	V_{LCD} = 6.0 V, output open, 1/3 bias, f _{OSC} = 300 kHz, V_{LCD0} = 0.70V _{LCD} to 0.95V _{LCD}		450	900	
	ILCD5	VLCD	V_{LCD} = 6.0 V, output open, 1/3 bias, f _{OSC} = 300kHz, V_{LCD} 0 = V_{LCD}		350	700	

Note: *1 Excluding the bias voltage generation divider resistors built in the V_{LCD}0, V_{LCD}1, V_{LCD}2, and V_{SS}. (See Figure 1.)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. When CL is stopped at the low level

Figure 2

2. When CL is stopped at the high level

Figure 3

3. OSC pin clock timing in external clock operating mode

Package Dimensions

unit : mm

SPQFP144 20x20 / SQFP144

CASE 131AD **ISSUE A**

NOTE: The measurements are not to guarantee but for reference only.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MARKING DIAGRAM*

XXXXX = Specific Device Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■",

Pin Assignment

Pin Functions

					Handling
Symbol	Pin No.	Function	Active	I/O	when unused
S1/P1 to S8/P8	1 to 8	Segment outputs for displaying the display data transferred by serial data	-	0	OPEN
S9 to S128	9 to 128	input. Also, by the control data, S1/P1 to S3/P3 can be used as a general-			
		purpose output port or PWM output port, while S4/P4 can be used as a			
		general-purpose output port or clock output port and S5/P5 to S8/P8 can be			
		used as a general-purpose output port.			
COM1 to COM3	132 to 130	Common driver outputs. The frame frequency is fo [Hz]. The COM4/S129 pin	-	0	OPEN
COM4/S129	129	can be used as a segment output in 1/3 duty.			
OSC	140	Oscillator connection. An oscillator circuit is formed by connecting an	-	I/O	V _{DD}
		external resistor and capacitor to this pin. This pin can also be used as the			
		external clock input pin as controlled by control data.			
CE	142	Serial data transfer inputs. These pins are connected to the control	Н	I	GND
CL	143	microprocessor.		I	
DI	144	CE: Chip enable	-	I	
		CL: Synchronization clock			
		DI: Transfer data			
INH	141	Display off control input	L	I	GND
		• INH = low (V _{SS})Off			
		S1/P1 to S8/P8 = low (V _{SS})			
		(These pins are forcibly set to the segment output port			
		function and fixed at the V _{SS} level.)			
		S9 to S128 = low (V _{SS})			
		COM1 to COM3 = low (V_{SS})			
		COM4/S129 = low (V _{SS})			
		OSC = "Z" (high impedance)			
		RC oscillation stopped			
		External clock input inhibited			
		Display contrast adjustment circuit stopped			
		• INH = high (V _{DD})On			
		RC oscillation enabled (RC oscillator operating mode)			
		Enables external clock input (external clock operating			
		mode).			
		Display contrast adjustment circuit enabled			
		Note that serial data transfers can be performed when the display is forced			
		off by this pin.			
V _{LCD} 0	135	LCD drive 3/3 bias voltage (high level) supply. This level can be modified	-	0	OPEN
		using the display contrast adjustment circuit. However, note that V_{LCD} 0			
		must be greater than or equal to 2.7V. Also, since this IC provides the built-			
		in display contrast adjustment circuit, applications must not attempt to			
		provide this level from external circuits.			
V _{LCD} 1	136	LCD drive 2/3 bias voltage (middle level) supply. It is possible to supply the	-	I	OPEN
		$2/3V_{LCD}0$ voltage to this pin externally. This pin must be shorted to $V_{LCD}2$			
		if 1/2 bias is used.			
V _{LCD} 2	137	LCD drive 1/3 bias voltage (middle level) supply. It is possible to supply the	-	Ι	OPEN
		$1/3V_{LCD}0$ voltage to this pin externally. This pin must be shorted to V _{I CD} 1			
		if 1/2 bias is used.			
V _{DD}	133	Logic block power supply. Provide a voltage in the range 2.7 to 6.0V.	-	-	-
Vico	134	LCD driver block power supply. When Vicn0 is between 0.70Vicn and	-	-	_
LOD		0.95Vi cp. supply a voltage in the range 4.0 to 6.0V. When Vi cp0 and			
		$V_{I CD}$ will be equal, supply a voltage in the range 2.7 to 6.0V.			
Ver	138 120				
⊻SS	130,139		-	- 1	-

Serial Data Transfer Formats

(1) 1/3 duty

- 1. When CL is stopped at the low level
 - When the display data is transferred

CE			
CL			UIII,
DI		11 X X01120113011401150116011701180119012901270122012301290125012601270128012901290	<u>X 0 X 0 X 1 X </u>
	CCB address \longrightarrow <	Display data	l ← DD → 3 bits
	<u> </u>		
			UIII,
		30 X / / 2243/02243/02243/02243/02246/0247/0248/02259/0251/0252/0253/0253/0256/0257/0258/ 0 X 0 X 0 X 0	<u>X 0 X 1 X 0 X </u>
	$\left \begin{array}{c} \leftarrow \text{CCB address} \longrightarrow \right \\ 8 \text{ bits} \end{array} \right $	Display data	·l < DD ≯ 3 bits
	۲ ـــــــ		
	<u>, x o x 1 x 1 x o x o x o x o x 1 x r</u>	259 X yb379b37yb372b373b374b379b379b379b379b379b379b389b38yb389b383b384b389b389b389b389b389b389b389b389b389b389	<u>X 0 X 1 X 1 X</u>
	CCB address> < 8 bits	Display data	> < DD > 3 bits
	• When the control data is	transferred	
C	E		
C			
D	1 <u>X o X 1 X 1 X o X o X o X o X 1 X 1</u>	พ10	PC8
	B0 B1 B2 B3 A0 A1 A2 A3 ← CCB address → 8 bits	Control data	—
		uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	
	(PS10)(PS11)(PS2	XXPS21XPS30XPS31XPS40XPS41XPS5XPS8XPS7XPS8XCT0XCT1XCT2XDRXDTXOCXFC0XFC1XFC2XPF0XPF1XPF2XSCXBUX0X0	<u>χοχοχ</u>
		> <3	DD → 3 bits

Note: DD is the direction data.

2. When CL is stopped at the high leWhen the display data is transfer	vel rred	
CE		
DI <u>Χοχιχιχοχοχοχοχι</u> το	20112/0113/0113/0115/0116/0117/0113/0119/0120/0120/0122/0123/0123/0125/0126	
B0 B1 B2 B3 A0 A1 A2 A3 ← CCB address → ← ← ← − ← − ← ← ← ← ← ← ← ← ← ← ← ← ←	Display data ———— 129 bits	$\frac{1}{4 \text{ bits}} \neq \frac{1}{4 \text{ bits}} = \frac{1}{4 \text{ bits}}$
		ر بربربربربر
<u>, X o X 1 X 1 X o X o X o X o X 1 , 10130</u>	Yo24 Yo24202430244024302430247024802490259025702570253025302540255	
B0 B1 B2 B3 A0 A1 A2 A3	Display data	\rightarrow Fixed data \Rightarrow \in DD \Rightarrow
8 bits	129 bits	4 bits 3 bits
<u>,</u>		
X 0 X 1 X 1 X 0 X 0 X 0 X 0 X 1 /0259X	/p370/p371/p372/p373/p374/p373/p376/p377/p378/p379/p380/p381/p382/p383/p384	6385638667387X O X O X O X O X O X I X I X
CCB address →	Display data	$\longrightarrow \left \langle Fixed data \rangle \right \langle DD \rangle$
o bits	129 Dits	4 Dits 5 Dits
• When the control data is transfer	rred	
CE		
c. J.		
	ุ่มีพา3ไพา4ไพา5ไพ20ไพ21ไพ22ไพ23ไพ24ไพ25ไพ30ไพ31ไพ32ไพ33ไพ34ไพ35ไค	
CCB address →	Control data	
o bits	53 DITS	
(ps10/ps11/ps20/ps21/ps30/ps	31/P540/P541/P55/P56/P57/P58/CT0/CT1/CT2/DR/DT/OC/FC0/FC1/FC2/F	РF0ХРF1ХРF2ХSC ХВUХ 0 Х 0 Х 0 Х 0 Х
		3 bits

Note: DD is the direction data.

- CCB address "86H"
- D1 to D387 Display data
- W10 to W15, W20 to W25, W30 to W35
 - PWM data at PWM output ports
- PC1 to PC8 General-purpose output port state setting control data
- PS10, PS11, PS20, PS21, PS30, PS31, PS40, PS41, PS5 to PS8
- CT0 to CT2 Display contrast setting control data
- DR 1/2 bias drive or 1/3 bias drive switching control data
- DT 1/3 duty drive or 1/4 duty drive switching control data
- OC RC oscillator operating mode/external clock operating mode switching control data
- FC0 to FC2 Common and segment output waveforms frame frequency setting control data
- PF0 to PF2 PWM output waveforms frame frequency setting control data
- SC Segments on/off control data
- BU Normal mode/power-saving mode control data

$\langle \mathbf{a} \rangle$	1 / 4	1.
(2)	1/4	duty

- 1. When CL is stopped at the low level
 - When the display data is transferred

2. When CL is stopped at the high levelWhen the display data is transferred

CE							
CL							
DI		XD1X	0112011301140115011601170	118011901200121012201230124	0125012601270128	(0 1 0 1 1
	CCB address —— 8 bits	→		— Display data —— 128 bits	>	\leftarrow Fixed data \rightarrow 5 bits	< DD > 3 bits
	<u>.</u>						
		XD129	0240024102420243024402450	248024702480249025002510252	0253025402550256	(<u>(0) 1) 0)</u>
	CCB address	> <		— Display data —— 128 bits	>	← Fixed data → 5 bits	< DD ≯ 3 bits
	<u>}</u>						Ļ
	X 0 X 1 X 1 X 0 X 0 X 0 X 0 X 1 B0 B1 B2 B3 A0 A1 A2 A3	XD257 3	0368036903700371037203730	374037503760377037803790380	0381/0382/0383/0384	<u>ͺ៰χοχοχοχο</u> γ	
	CCB address 8 bits	><		 Display data —— 128 bits 	>	← Fixed data → 5 bits	< DD > 3 bits
	<u>}</u>						
	X 0 X 1 X 1 X 0 X 0 X 0 X 0 X 1 B0 B1 B2 B3 A0 A1 A2 A3	XD385X	0496049704980499050005010	50205030504050505050605070508	0509051005110512	(<u>1 X 0 X 0 X</u>
	CCB address	><		— Display data —— 128 bits	>	← Fixed data → 5 bits	< DD > 3 bits
	• When the control data	is transferre	d				
	CE						
	cr						ЛЛ
		<u>X 1 Xw10Xw11Xw</u>	112/w13/w14/w15/w20/w21/w22	Xw23Xw24Xw25Xw30Xw31Xw32Xv	V33XW34XW35XPC1XP	С2ХРС3ХРС4ХРС5ХРС6ХР	с7ХРС8
	B0 B1 B2 B3 A0 A1 A2 ← CCB address – 8 bits	\rightarrow $ $		Control d	ata ———		
							i
	(PS10)	(PS11)(PS20)(PS21)(PS30)(PS31XPS40XPS41XPS5XPS6XPS7XPS	8Xct0Xct1Xct2XdrXdtXoc)	FC0XFC1XFC2XPF0X	рғ1Хрғ2ХSС ХвиХ о Х	οχοχοχ
	_					>	< DD > 3 bits

Note: DD is the direction data.

- CCB address "86H"
- D1 to D512 Display data
- W10 to W15, W20 to W25, W30 to W35
 - PWM data at PWM output ports
- PC1 to PC8 General-purpose output port state setting control data
- PS10, PS11, PS20, PS21, PS30, PS31, PS40, PS41, PS5 to PS8
- CT0 to CT2 Display contrast setting control data
- DR 1/2 bias drive or 1/3 bias drive switching control data
- DT 1/3 duty drive or 1/4 duty drive switching control data
- OC RC oscillator operating mode/external clock operating mode switching control data
- FC0 to FC2 Common and segment output waveforms frame frequency setting control data
- PF0 to PF2 PWM output waveforms frame frequency setting control data
- SC Segments on/off control data
- BU Normal mode/power-saving mode control data

Serial Data Transfer Example

(1) 1/3 duty

• When 259 or more segments are used

All 496 bits of serial data (including CCB addresses) must be sent.

Either 208 or 352 bits (including CCB addresses) of serial data may be sent, depending on the number of segments used. However, the serial data shown below (control data) must be sent.

8 bits	56 bits	
B0 B1 B2 B3 A0 A1 A2 A3		
		à
`PS10PS11PS	20 PS21 PS30 PS31 PS40 PS41 PS5 PS6 PS7 PS8 CT0 CT1 CT2 DR DT OC FC0 FC1 FC2 PF0 PF1 PF2 SC BU O O O O	

(2) 1/4 duty

• When 385 or more segments are used

All 640 bits of serial data (including CCB addresses) must be sent.

• When fewer than 385 segments are used

Either 208, 352 or 496 bits (including CCB addresses) of serial data may be sent, depending on the number of segments used. However, the serial data shown below (control data) must be sent.

8 bits							_										56 k	oits												
Ę	0 1	1	0	0	0	0	1		W10 W1	1W12V	V13 W	/14 W	15 W20) W21	W22 W2	3 W24	W25 V	/30 W	31 W32	W33	W34	W35	PC1 F	PC2 PC	C3 PC	4 PC	5 PC6	PC7	PC8	
E	30 B	1 B2	2 B3	A0	A1	A2	A3																							
						S10PS	511 P:	S20	PS21PS3	0PS31P	S40PS	641 PS	S5 PS6	PS7	PS8 CT	0 CT1	CT2 [DR D	тос	FC0	FC1	FC2	PF0 F	PF1 PF	2 S(C BL	0	0	0	0

Control Data Functions

(1) W10 to W15, W20 to W25, W30 to W35: PWM data at PWM output ports

This control data determines the pulse width of the PWM at PWM output ports P1/S1 to P3/S3.

	lo com				line pui	Pulse width of	ĺ	····· u		Jourpu	ports			Pulse width of
Wn0	Wn1	Wn2	Wn3	Wn4	Wn5	PWM output		Wn0	Wn1	Wn2	Wn3	Wn4	Wn5	PWM output
						port Pn								port Pn
0	0	0	0	0	0	(1/64)×Tp		0	0	0	0	0	1	(33/64)×Tp
1	0	0	0	0	0	(2/64)×Tp		1	0	0	0	0	1	(34/64)×Tp
0	1	0	0	0	0	(3/64)×Tp		0	1	0	0	0	1	(35/64)×Tp
1	1	0	0	0	0	(4/64)×Tp		1	1	0	0	0	1	(36/64)×Tp
0	0	1	0	0	0	(5/64)×Tp		0	0	1	0	0	1	(37/64)×Tp
1	0	1	0	0	0	(6/64)×Tp		1	0	1	0	0	1	(38/64)×Tp
0	1	1	0	0	0	(7/64)×Tp		0	1	1	0	0	1	(39/64)×Tp
1	1	1	0	0	0	(8/64)×Tp		1	1	1	0	0	1	(40/64)×Tp
0	0	0	1	0	0	(9/64)×Tp		0	0	0	1	0	1	(41/64)×Tp
1	0	0	1	0	0	(10/64)×Tp		1	0	0	1	0	1	(42/64)×Tp
0	1	0	1	0	0	(11/64)×Tp		0	1	0	1	0	1	(43/64)×Tp
1	1	0	1	0	0	(12/64)×Tp		1	1	0	1	0	1	(44/64)×Tp
0	0	1	1	0	0	(13/64)×Tp		0	0	1	1	0	1	(45/64)×Tp
1	0	1	1	0	0	(14/64)×Tp		1	0	1	1	0	1	(46/64)×Tp
0	1	1	1	0	0	(15/64)×Tp		0	1	1	1	0	1	(47/64)×Tp
1	1	1	1	0	0	(16/64)×Tp		1	1	1	1	0	1	(48/64)×Tp
0	0	0	0	1	0	(17/64)×Tp		0	0	0	0	1	1	(49/64)×Tp
1	0	0	0	1	0	(18/64)×Tp		1	0	0	0	1	1	(50/64)×Tp
0	1	0	0	1	0	(19/64)×Tp		0	1	0	0	1	1	(51/64)×Tp
1	1	0	0	1	0	(20/64)×Tp		1	1	0	0	1	1	(52/64)×Tp
0	0	1	0	1	0	(21/64)×Tp		0	0	1	0	1	1	(53/64)×Tp
1	0	1	0	1	0	(22/64)×Tp		1	0	1	0	1	1	(54/64)×Tp
0	1	1	0	1	0	(23/64)×Tp		0	1	1	0	1	1	(55/64)×Tp
1	1	1	0	1	0	(24/64)×Tp		1	1	1	0	1	1	(56/64)×Tp
0	0	0	1	1	0	(25/64)×Tp		0	0	0	1	1	1	(57/64)×Tp
1	0	0	1	1	0	(26/64)×Tp		1	0	0	1	1	1	(58/64)×Tp
0	1	0	1	1	0	(27/64)×Tp		0	1	0	1	1	1	(59/64)×Tp
1	1	0	1	1	0	(28/64)×Tp		1	1	0	1	1	1	(60/64)×Tp
0	0	1	1	1	0	(29/64)×Tp		0	0	1	1	1	1	(61/64)×Tp
1	0	1	1	1	0	(30/64)×Tp		1	0	1	1	1	1	(62/64)×Tp
0	1	1	1	1	0	(31/64)×Tp		0	1	1	1	1	1	(63/64)×Tp
1	1	1	1	1	0	(32/64)×Tp		1	1	1	1	1	1	(64/64)×Tp
Note:	Note: Wn0 to Wn5 (n = 1 to 3): PWM data at output pins S1/P1 to S3/P3 1													

$$p = \frac{1}{fp}$$

(2) PC1 to PC8: General-purpose output port state setting control data

This control	data is	used to	set the	high/low	state of	general_	nurnose	output	norts P1	to l	P 8
This conduct	uata 18	useu io	set the	mgn/10w	state of	general-	purpose	output	pons r i	101	ΕΟ.

		0		<u> </u>				
Output pins	P1	P2	P3	P4	P5	P6	P7	P8
Control data	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
(star DCr. 1. The extent rin Dr is set high (Vz GR) (r. 145.9)								

Note: PCn = 1: The output pin Pn is set high (V_{LCD}) (n = 1 to 8).

PCn = 0: The output pin Pn is set low (V_{SS}) (n = 1 to 8).

For example, if output pins S4/P4 and S5/P5 are selected as general-purpose output ports, setting PC4 to 1 and PC5 to 0 causes the output pin P4 to be set high (V_{LCD}) and P5 to be set low (V_{SS}).

(3) PS10, PS11, PS20, PS21, PS30, PS31, PS40, PS41, PS5 to PS8: Segment output port/general-purpose output port/PWM output port/clock output port switching control data This control data is used to set the state of output pins S1/P1 to S8/P8.

PS10 and 1	PS11: Output	pin (S1/P1) state settings

PS10	PS11	Output pin (S1/P1) state
0	0	Segment output port (S1)
1	0	General-purpose output port (P1)
0	1	PWM output port (P1)

PS30 and PS31: Output pin (S3/P3) state settings

PS30	PS31	Output pin (S3/P3) state
0	0	Segment output port (S3)
1	0	General-purpose output port (P3)
0	1	PWM output port (P3)

PS20 and PS21: Output pin (S2/P2) state settings

PS20	PS21	Output pin (S2/P2) state
0	0	Segment output port (S2)
1	0	General-purpose output port (P2)
0	1	PWM output port (P2)

PS40 and PS41: Output pin (S4/P4) state settings

PS40	PS41	Output pin (S4/P4) state
0	0	Segment output port (S4)
1	0	General-purpose output port (P4)
0	1	Clock output port (P4) (clock frequency fosc/2, f _{CK} /2)
1	1	Clock output port (P4) (clock frequency fosc/8, f _{CK} /8)

PS6: Output pin (S6/P6) state settings

	¥
PS6	Output pin (S6/P6) state
0	Segment output port (S6)
1	General-purpose output port (P6)

PS7: Output pin (S7/P7) state settings

PS5: Output pin (S5/P5) state settings

PS5

0

1

i S / Output pin (S // /) state settings				
PS7	Output pin (S7/P7) state			
0	Segment output port (S7)			
1	General-purpose output port (P7)			

Output pin (S5/P5) state

Segment output port (S5)

General-purpose output port (P5)

PS8: Output pin (S8/P8) state settings

PS8	Output pin (S8/P8) state
0	Segment output port (S8)
1	General-purpose output port (P8)

For example, if PS10 and PS11 are set to 0 and 1 respectively, PS20 and PS21 to 0 and 1 respectively, PS30 and PS31 to 0 and 1 respectively, PS40 and PS41 to 1 and 0 respectively, PS5 to 1, PS6 to 1, PS7 to 0, and PS8 to 0, the output pins S1/P1 to S3/P3 are selected as PWM output ports, the output pins S4/P4 to S6/P6 as general-purpose output ports, and the output pins S7/P7 and S8/P8 as segment output ports.

(4) CT0 to CT2: Display contrast setting control data

This control data is used to set the display contrast.

		0	
СТО	CT1	CT2	Level of LCD drive bias 3/3 voltage power supply $V_{\mbox{LCD}}0$
0	0	0	$1.00V_{LCD} = V_{LCD} (0.05V_{LCD} \times 0)$
1	0	0	$0.95V_{LCD} = V_{LCD} - (0.05V_{LCD} \times 1)$
0	1	0	$0.90V_{LCD} = V_{LCD} - (0.05V_{LCD} \times 2)$
1	1	0	$0.85V_{LCD} = V_{LCD} - (0.05V_{LCD} \times 3)$
0	0	1	$0.80V_{LCD} = V_{LCD} (0.05V_{LCD} \times 4)$
1	0	1	$0.75V_{LCD} = V_{LCD} - (0.05V_{LCD} \times 5)$
0	1	1	$0.70V_{LCD} = V_{LCD} - (0.05V_{LCD} \times 6)$

CT0 to CT2: Display contrast settings (7 steps)

Note that although the contrast of the display can be adjusted by running the internal display contrast adjustment circuit, it is also possible to adjust it by changing the voltage level on the LCD driver block power supply V_{LCD} pin. However, V_{LCD} 0 must always be greater than or equal to 2.7V.

(5) DR: 1/2 bias drive or 1/3 bias drive switching control data

This control data bit selects either 1/2 bias drive or 1/3 bias drive.

DR	Bias drive scheme
0	1/3 bias drive
1	1/2 bias drive

(6) DT: 1/3 duty drive or 1/4 duty drive switching control data

This control data bit selects either 1/3 duty drive or 1/4 duty drive.

DT	Duty drive scheme	Output pin state (COM4/S129)	
0	1/4 duty drive	COM4	
1	1/3 duty drive	S129	
Note: COM4: Common output			

Note: COM4: Common output

S129: Segment output

(7) OC: RC oscillator operating mode/external clock operating mode switching control data

This control data bit selects either RC oscillator operating mode or external clock operating mode.

OC	OSC pin function
0	RC oscillator operating mode
1	External clock operating mode

Note: When selecting the RC oscillator operating mode, be sure to connect an external resistor Rosc and an external capacitor Cosc to the OSC pin.

(8) FC0 to FC2: Common and segment output waveforms frame frequency setting control data This control data bits set the frame frequency for the common and segment output waveforms.

	Control data		Common/segment output waveform
FC0	FC1	FC2	frame frequency fo [Hz]
0	0	0	fosc/6144, f _{CK} /6144
1	0	0	fosc/4608, f _{CK} /4608
0	1	0	fosc/3072, f _{CK} /3072
1	1	0	fosc/2304, f _{CK} /2304
0	0	1	fosc/1536, f _{CK} /1536

(9) PF0 to PF2: PWM output waveforms frame frequency setting control data This control data bits set the frame frequency for the PWM output waveforms.

This control data bits set the frame frequency for the F with output v							
	Control data		PWM output waveform				
PF0	PF1	PF2	frame frequency fp [Hz]				
0	0	0	fosc/1536, f _{CK} /1536				
1	0	0	fosc/1408, f _{CK} /1408				
0	1	0	fosc/1280, f _{CK} /1280				
1	1	0	fosc/1152, f _{CK} /1152				
0	0	1	fosc/1024, f _{CK} /1024				
1	0	1	fosc/896, f _{CK} /896				
0	1	1	fosc/768, f _{CK} /768				
1	1	1	fosc/640, f _{CK} /640				

(10) SC: Segments on/off control data

This control data bit controls the on/off state of the segments.

SC	Display state
0	On
1	Off

However, note that the segments are turned off by setting SC to 1, the segments are turned off by outputing segment off waveforms from the segment output pins.

(11) BU: Normal mode/power-saving mode control data

This control data bit selects either normal mode or power-saving mode.

BU	Mode
0	Normal mode
1	Power save mode The LC75897PW stops the oscillation at the OSC pin if it is set up for the RC oscillator operating mode (OC = 0) and stops receiving the external clock if it is set up for the external clock operating mode (OC = 1). The IC also sets the common and segment output pins to the V _{SS} level. The output pins S1/P1 to S8/P8, however, remain available as general-purpose output ports as configured by control data bits PS10, PS11, PS20, PS21, PS30, PS31, PS40, PS41, and PS5 to PS8 (not available as PWM output or clock output ports).

Display Data to Segment Output Pin Correspondence

1. 1/3 duty

Segment Output pins	COM1	COM2	СОМЗ	Segment Output pins	COM1	COM2	СОМЗ	Segment Output pins	COM1	COM2	СОМЗ
S1/P1	D1	D2	D3	S44	D130	D131	D132	S87	D259	D260	D261
S2/P2	D4	D5	D6	S45	D133	D134	D135	S88	D262	D263	D264
S3/P3	D7	D8	D9	S46	D136	D137	D138	S89	D265	D266	D267
S4/P4	D10	D11	D12	S47	D139	D140	D141	S90	D268	D269	D270
S5/P5	D13	D14	D15	S48	D142	D143	D144	S91	D271	D272	D273
S6/P6	D16	D17	D18	S49	D145	D146	D147	S92	D274	D275	D276
S7/P7	D19	D20	D21	S50	D148	D149	D150	S93	D277	D278	D279
S8/P8	D22	D23	D24	S51	D151	D152	D153	S94	D280	D281	D282
S9	D25	D26	D27	S52	D154	D155	D156	S95	D283	D284	D285
S10	D28	D29	D30	S53	D157	D158	D159	S96	D286	D287	D288
S11	D31	D32	D33	S54	D160	D161	D162	S97	D289	D290	D291
S12	D34	D35	D36	S55	D163	D164	D165	S98	D292	D293	D294
S13	D37	D38	D39	S56	D166	D167	D168	S99	D295	D296	D297
S14	D40	D41	D42	S57	D169	D170	D171	S100	D298	D299	D300
S15	D43	D44	D45	S58	D172	D173	D174	S101	D301	D302	D303
S16	D46	D47	D48	S59	D175	D176	D177	S102	D304	D305	D306
S17	D49	D50	D51	S60	D178	D179	D180	S103	D307	D308	D309
S18	D52	D53	D54	S61	D181	D182	D183	S104	D310	D311	D312
S19	D55	D56	D57	S62	D184	D185	D186	S105	D313	D314	D315
S20	D58	D59	D60	S63	D187	D188	D189	S106	D316	D317	D318
S21	D61	D62	D63	S64	D190	D191	D192	S107	D319	D320	D321
S22	D64	D65	D66	S65	D193	D194	D195	S108	D322	D323	D324
S23	D67	D68	D69	S66	D196	D197	D198	S109	D325	D326	D327
S24	D70	D71	D72	S67	D199	D200	D201	S110	D328	D329	D330
S25	D73	D74	D75	S68	D202	D203	D204	S111	D331	D332	D333
S26	D76	D77	D78	S69	D205	D206	D207	S112	D334	D335	D336
S27	D79	D80	D81	S70	D208	D209	D210	S113	D337	D338	D339
S28	D82	D83	D84	S71	D211	D212	D213	S114	D340	D341	D342
S29	D85	D86	D87	S72	D214	D215	D216	S115	D343	D344	D345
S30	D88	D89	D90	S73	D217	D218	D219	S116	D346	D347	D348
S31	D91	D92	D93	S74	D220	D221	D222	S117	D349	D350	D351
S32	D94	D95	D96	S75	D223	D224	D225	S118	D352	D353	D354
S33	D97	D98	D99	S76	D226	D227	D228	S119	D355	D356	D357
S34	D100	D101	D102	S77	D229	D230	D231	S120	D358	D359	D360
S35	D103	D104	D105	S78	D232	D233	D234	S121	D361	D362	D363
S36	D106	D107	D108	S79	D235	D236	D237	S122	D364	D365	D366
S37	D109	D110	D111	S80	D238	D239	D240	S123	D367	D368	D369
S38	D112	D113	D114	S81	D241	D242	D243	S124	D370	D371	D372
S39	D115	D116	D117	S82	D244	D245	D246	S125	D373	D374	D375
S40	D118	D119	D120	S83	D247	D248	D249	S126	D376	D377	D378
S41	D121	D122	D123	S84	D250	D251	D252	S127	D379	D380	D381
S42	D124	D125	D126	S85	D253	D254	D255	S128	D382	D383	D384
S43	D127	D128	D129	S86	D256	D257	D258	COM4/S129	D385	D386	D387

Note: This applies to the case where the S1/P1 to S8/P8, and COM4/S129 output pins are set to be segment output ports.

For example, the table below lists the segment output states for the S11 output pin.

	Display data	9	
D31	D32	D33	Segment output pin (STT) state
0	0	0	The LCD segments corresponding to COM1, COM2, and COM3 are off.
0	0	1	The LCD segment corresponding to COM3 is on.
0	1	0	The LCD segment corresponding to COM2 is on.
0	1	1	The LCD segments corresponding to COM2 and COM3 are on.
1	0	0	The LCD segment corresponding to COM1 is on.
1	0	1	The LCD segments corresponding to COM1 and COM3 are on.
1	1	0	The LCD segments corresponding to COM1 and COM2 are on.
1	1	1	The LCD segments corresponding to COM1, COM2, and COM3 are on.

2. 1/4 duty

Segment Output pins	COM1	COM2	COM3	COM4		Segment Output pins	COM1	COM2	COM3	COM4
S1/P1	D1	D2	D3	D4		S37	D145	D146	D147	D148
S2/P2	D5	D6	D7	D8		S38	D149	D150	D151	D152
S3/P3	D9	D10	D11	D12	1	S39	D153	D154	D155	D156
S4/P4	D13	D14	D15	D16		S40	D157	D158	D159	D160
S5/P5	D17	D18	D19	D20		S41	D161	D162	D163	D164
S6/P6	D21	D22	D23	D24		S42	D165	D166	D167	D168
S7/P7	D25	D26	D27	D28		S43	D169	D170	D171	D172
S8/P8	D29	D30	D31	D32		S44	D173	D174	D175	D176
S9	D33	D34	D35	D36		S45	D177	D178	D179	D180
S10	D37	D38	D39	D40		S46	D181	D182	D183	D184
S11	D41	D42	D43	D44		S47	D185	D186	D187	D188
S12	D45	D46	D47	D48		S48	D189	D190	D191	D192
S13	D49	D50	D51	D52		S49	D193	D194	D195	D196
S14	D53	D54	D55	D56		S50	D197	D198	D199	D200
S15	D57	D58	D59	D60		S51	D201	D202	D203	D204
S16	D61	D62	D63	D64		S52	D205	D206	D207	D208
S17	D65	D66	D67	D68		S53	D209	D210	D211	D212
S18	D69	D70	D71	D72		S54	D213	D214	D215	D216
S19	D73	D74	D75	D76		S55	D217	D218	D219	D220
S20	D77	D78	D79	D80		S56	D221	D222	D223	D224
S21	D81	D82	D83	D84		S57	D225	D226	D227	D228
S22	D85	D86	D87	D88		S58	D229	D230	D231	D232
S23	D89	D90	D91	D92		S59	D233	D234	D235	D236
S24	D93	D94	D95	D96		S60	D237	D238	D239	D240
S25	D97	D98	D99	D100		S61	D241	D242	D243	D244
S26	D101	D102	D103	D104		S62	D245	D246	D247	D248
S27	D105	D106	D107	D108		S63	D249	D250	D251	D252
S28	D109	D110	D111	D112		S64	D253	D254	D255	D256
S29	D113	D114	D115	D116		S65	D257	D258	D259	D260
S30	D117	D118	D119	D120		S66	D261	D262	D263	D264
S31	D121	D122	D123	D124		S67	D265	D266	D267	D268
S32	D125	D126	D127	D128		S68	D269	D270	D271	D272
S33	D129	D130	D131	D132		S69	D273	D274	D275	D276
S34	D133	D134	D135	D136		S70	D277	D278	D279	D280
S35	D137	D138	D139	D140		S71	D281	D282	D283	D284
S36	D141	D142	D143	D144		S72	D285	D286	D287	D288

Continued on next page.

Continued from	preceding p	age.			_					
Segment Output pins	COM1	COM2	COM3	COM4		Segment Output pins	COM1	COM2	COM3	COM4
S73	D289	D290	D291	D292		S101	D401	D402	D403	D404
S74	D293	D294	D295	D296		S102	D405	D406	D407	D408
S75	D297	D298	D299	D300		S103	D409	D410	D411	D412
S76	D301	D302	D303	D304		S104	D413	D414	D415	D416
S77	D305	D306	D307	D308		S105	D417	D418	D419	D420
S78	D309	D310	D311	D312		S106	D421	D422	D423	D424
S79	D313	D314	D315	D316		S107	D425	D426	D427	D428
S80	D317	D318	D319	D320		S108	D429	D430	D431	D432
S81	D321	D322	D323	D324		S109	D433	D434	D435	D436
S82	D325	D326	D327	D328		S110	D437	D438	D439	D440
S83	D329	D330	D331	D332		S111	D441	D442	D443	D444
S84	D333	D334	D335	D336		S112	D445	D446	D447	D448
S85	D337	D338	D339	D340		S113	D449	D450	D451	D452
S86	D341	D342	D343	D344		S114	D453	D454	D455	D456
S87	D345	D346	D347	D348		S115	D457	D458	D459	D460
S88	D349	D350	D351	D352		S116	D461	D462	D463	D464
S89	D353	D354	D355	D356		S117	D465	D466	D467	D468
S90	D357	D358	D359	D360		S118	D469	D470	D471	D472
S91	D361	D362	D363	D364		S119	D473	D474	D475	D476
S92	D365	D366	D367	D368		S120	D477	D478	D479	D480
S93	D369	D370	D371	D372		S121	D481	D482	D483	D484
S94	D373	D374	D375	D376		S122	D485	D486	D487	D488
S95	D377	D378	D379	D380		S123	D489	D490	D491	D492
S96	D381	D382	D383	D384		S124	D493	D494	D495	D496
S97	D385	D386	D387	D388		S125	D497	D498	D499	D500
S98	D389	D390	D391	D392		S126	D501	D502	D503	D504
S99	D393	D394	D395	D396		S127	D505	D506	D507	D508
S100	D397	D398	D399	D400	1	S128	D509	D510	D511	D512

Note: This applies to the case where the S1/P1 to S8/P8 output pins are set to be segment output ports.

For example, the table below lists the segment output states for the S11 output pin.

	Displa	iy data		
D41	D42	D43	D44	Segment output pin (S11) state
0	0	0	0	The LCD segments corresponding to COM1, COM2, COM3, and COM4 are off.
0	0	0	1	The LCD segment corresponding to COM4 is on.
0	0	1	0	The LCD segment corresponding to COM3 is on.
0	0	1	1	The LCD segments corresponding to COM3 and COM4 are on.
0	1	0	0	The LCD segment corresponding to COM2 is on.
0	1	0	1	The LCD segments corresponding to COM2 and COM4 are on.
0	1	1	0	The LCD segments corresponding to COM2 and COM3 are on.
0	1	1	1	The LCD segments corresponding to COM2, COM3, and COM4 are on.
1	0	0	0	The LCD segment corresponding to COM1 is on.
1	0	0	1	The LCD segments corresponding to COM1 and COM4 are on.
1	0	1	0	The LCD segments corresponding to COM1 and COM3 are on.
1	0	1	1	The LCD segments corresponding to COM1, COM3, and COM4 are on.
1	1	0	0	The LCD segments corresponding to COM1 and COM2 are on.
1	1	0	1	The LCD segments corresponding to COM1, COM2, and COM4 are on.
1	1	1	0	The LCD segments corresponding to COM1, COM2, and COM3 are on.
1	1	1	1	The LCD segments corresponding to COM1, COM2, COM3, and COM4 are on.

Output Waveforms (1/3-Duty 1/2-Bias Drive Scheme)

	Control data		Common/segment output waveform
FC0	FC1	FC2	frame frequency fo [Hz]
0	0	0	fosc/6144, f _{CK} /6144
1	0	0	fosc/4608, f _{CK} /4608
0	1	0	fosc/3072, f _{CK} /3072
1	1	0	fosc/2304, f _{CK} /2304
0	0	1	fosc/1536, f _{CK} /1536

Output Waveforms (1/3-Duty 1/3-Bias Drive Scheme)

Common/segment output waveform		Control data	
frame frequency fo [Hz]	FC2	FC1	FC0
fosc/6144, f _{CK} /6144	0	0	0
fosc/4608, f _{CK} /4608	0	0	1
fosc/3072, f _{CK} /3072	0	1	0
fosc/2304, f _{CK} /2304	0	1	1
fosc/1536, f _{CK} /1536	1	0	0

Output Waveforms (1/4-Duty 1/2-Bias Drive Scheme)

Common/segment output waveform		Control data	
frame frequency fo [Hz]	FC2	FC1	FC0
fosc/6144, f _{CK} /6144	0	0	0
fosc/4608, f _{CK} /4608	0	0	1
fosc/3072, f _{CK} /3072	0	1	0
fosc/2304, f _{CK} /2304	0	1	1
fosc/1536, f _{CK} /1536	1	0	0

Output Waveforms (1/4-Duty 1/3-Bias Drive Scheme)

COM1 COM2								- VLCD0 - VLCD1 - VLCD2 - 0V - VLCD0 - VLCD0 - VLCD1 - VLCD2 - 0V
COM2								$ \begin{array}{c} V_{LCD0} \\ V_{LCD1} \\ V_{LCD2} \\ 0V \end{array} $
00140				-7				
COM3								$ - V_{LCD0} - V_{LCD1} - V_{LCD2} - 0V - 0V - 0V - 0V - 0V - 0V - 0V - 0V$
COM4								$- V_{LCD0} - V_{LCD1} - V_{LCD2} - 0V$
LCD driver output when a corresponding to COM1, and COM4 are turned off	all LCD segme COM2, COM3	nts ,						$ - V_{LCD0} - V_{LCD1} - V_{LCD2} - 0V - 0V - 0V - 0V - 0V - 0V - 0V - 0V - 0V - 0V - 0V$
LCD driver output when on corresponding to COM1 a	only LCD segm are on.	nents						$- V_{LCD0} - V_{LCD1} - V_{LCD2} - V_{LCD2}$
LCD driver output when a corresponding to COM2 a	only LCD segm are on.	nents						$- V_{LCD0} - V_{LCD1} - V_{LCD2} - V_{LCD2} - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - $
LCD driver output when I corresponding to COM1	_CD segments and COM2 are	on.						— — V _{LCD} 0 — V _{LCD} 1 — V _{LCD} 2 — 0V
LCD driver output when a corresponding to COM3 a	only LCD segm are on.	nents						$ \begin{array}{c} - & V_{LCD0} \\ - & V_{LCD1} \\ - & - & V_{LCD2} \\ - & - & 0V \end{array} $
LCD driver output when I corresponding to COM1	_CD segments and COM3 are	on.						$ \begin{array}{c} - & V_{LCD0} \\ - & V_{LCD1} \\ - & - & V_{LCD2} \\ - & - & 0V \end{array} $
LCD driver output when I corresponding to COM2	_CD segments and COM3 are	on.						$\begin{array}{c} - & - & V_{LCD0} \\ - & V_{LCD1} \\ - & V_{LCD2} \\ - & 0V \end{array}$
LCD driver output when I corresponding to COM1, and COM3 are on.	_CD segments COM2,							$\begin{array}{c} - & - & V_{LCD0} \\ - & V_{LCD1} \\ - & V_{LCD2} \\ - & 0V \end{array}$
LCD driver output when a corresponding to COM4 a	only LCD segm are on.	nents						$ - V_{LCD0} - V_{LCD1} - V_{LCD2} - 0V - $
LCD driver output when I corresponding to COM2	_CD segments and COM4 are	on.						$\begin{array}{c} - & - & \vee_{LCD0} \\ - & \vee_{LCD1} \\ - & \vee_{LCD2} \\ - & 0 \\ - & 0 \\ \end{array}$
LCD driver output when a corresponding to COM1, and COM4 are on.	all LCD segme COM2, COM3	nts ,						- V _{LCD} 0 - V _{LCD} 1 - V _{LCD} 2 - 0V
		Control data						
	ECO	EC1	ECO	Coi	frame fre	ent output v	vavetorm Hzl	
	0	0	0		fosc/61	44. for/614	4	

fosc/4608, f_{CK}/4608

fosc/3072, f_{CK}/3072

fosc/2304, f_{CK}/2304

fosc/1536, f_{CK}/1536

PWM output port waveforms

	Control data									PWM output								
W10	W11	W12	W13	W14	W15	W20	W21	W22	W23	W24	W25	W30	W31	W32	W33	W34	W35	port waveforms
1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	0	0	1	(1)
1	1	1	0	0	0	1	1	1	1	0	0	1	1	1	0	1	0	(2)
1	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	1	0	(3)

	Control data	l	PWM output waveform
PF0	PF1	PF2	frame frequency fp [Hz]
0	0	0	fosc/1536, f _{CK} /1536
1	0	0	fosc/1408, f _{CK} /1408
0	1	0	fosc/1280, f _{CK} /1280
1	1	0	fosc/1152, f _{CK} /1152
0	0	1	fosc/1024, f _{CK} /1024
1	0	1	fosc/896, f _{CK} /896
0	1	1	fosc/768, f _{CK} /768
1	1	1	fosc/640, f _{CK} /640

Contro	ol data	Clock output port P4
DC 40	DE 14	clock signal frequency
PS40	PF41	fc (=1/Tc) [Hz]
0	1	Clock output port (fosc/2, f _{CK} /2)
1	1	Clock output port (fosc/8, f _{CK} /8)

Clock output port waveform

The INH pin and Display Control

Since the IC internal data (1/3 duty: the display data D1 to D387 and the control data, 1/4 duty: the display data D1 to D512 and the control data) is undefined when power is first applied, applications should set the \overline{INH} pin low at the same time as power is applied to turn off the display (This sets the S1/P1 to S8/P8, S9 to S128, COM1 to COM3, and COM4/S129 to the V_{SS} level.) and during this period send serial data from the controller. The controller should then set the \overline{INH} pin high after the data transfer has completed. This procedure prevents meaningless displays at power on. (See Figures 5 and 6.)

Notes on the Power On/Off Sequences

Applications should observe the following sequences when turning the LC75897PW power on and off. (See Figures 5 and 6)

- At power on: Logic block power supply (V_{DD}) on \rightarrow LCD driver block power supply (V_{LCD}) on
- At power off: LCD driver block power supply (V_{LCD}) off \rightarrow Logic block power supply (V_{DD}) off

However, if the logic and LCD driver block use a shared power supply, then the power supplies can be turned on and off at the same time.

1. 1/3 duty

Figure 5

tc…10 μs min

Figure 6

Notes on Controller Transfer of Display Data

Since the LC75897PW accepts the display data (D1 to D387) divided into three separate transfer operations when using 1/3 duty drive scheme and the data (D1 to D512) divided into four separate transfer operations when using 1/4 duty drive scheme, we recommend that applications transfer all of the display data within a period of less than 30ms to prevent observable degradation of display quality.

OSC pin peripheral circuits

(1) RC oscillator operating mode (control data OC = 0)

When RC oscillator operating mode is selected, an external resistor Rosc and an external capacitor Cosc must be connected between the OSC pin and GND.

(2) External clock operating mode (control data OC = 1)

When selecting the external clock operating mode, connect a current protection resistor Rg (2.2 to 22 k Ω) between the OSC pin and the external clock output pin (external oscillator). Determine the value of the resistance according to the maximum allowable current value of the external clock output pin. Also make sure that the waveform of the external clock is not excessively distorted.

P1 to P3 pin peripheral circuit

It is recommended the circuit shown below be used to adjust the brightness of the LED backlight using PWM output ports P1 to P3.

Note: *2 Connect an external resistor Rosc and an external capacitor Cosc between the OSC pin and GND when selecting the RC oscillator operating mode and connect a current protection resistor Rg (2.2 to 22 k Ω) between the OSC pin and the external clock output pin (external oscillator) when selecting the external clock operating mode (see the note on the OSC pin peripheral circuits).

Note: *2 Connect an external resistor Rosc and an external capacitor Cosc between the OSC pin and GND when selecting the RC oscillator operating mode and connect a current protection resistor Rg (2.2 to 22 k Ω) between the OSC pin and the external clock output pin (external oscillator) when selecting the external clock operating mode (see the note on the OSC pin peripheral circuits).

Note: *2 Connect an external resistor Rosc and an external capacitor Cosc between the OSC pin and GND when selecting the RC oscillator operating mode and connect a current protection resistor Rg (2.2 to 22 k Ω) between the OSC pin and the external clock output pin (external oscillator) when selecting the external clock operating mode (see the note on the OSC pin peripheral circuits).

Note: *2 Connect an external resistor Rosc and an external capacitor Cosc between the OSC pin and GND when selecting the RC oscillator operating mode and connect a current protection resistor Rg (2.2 to 22 k Ω) between the OSC pin and the external clock output pin (external oscillator) when selecting the external clock operating mode (see the note on the OSC pin peripheral circuits).

Sample Application Circuit 5 1/4 Duty, 1/2 Bias (for use with normal panels) (P1) General-purpose (P2) output ports (P3) Used for functions (P4) such as backlight (P5) control (P8) OSC *2 COM1 +3.3V -VDD COM2 Vss COM3 S129/COM4 Vss panel (up to 512 segments) P1/S1 +5.8V -VLCD P2/S2 OPEN V_{LCD}0 P3/S3 P4/S4 V_{LCD}1 P5/S5 V_{LCD}2 P8/S8 C≥0.047µF С S9 0 ĪNH CE From the controller CL S127 S128 DI

Note: *2 Connect an external resistor Rosc and an external capacitor Cosc between the OSC pin and GND when selecting the RC oscillator operating mode and connect a current protection resistor Rg (2.2 to 22 k Ω) between the OSC pin and the external clock output pin (external oscillator) when selecting the external clock operating mode (see the note on the OSC pin peripheral circuits).

Note: *2 Connect an external resistor Rosc and an external capacitor Cosc between the OSC pin and GND when selecting the RC oscillator operating mode and connect a current protection resistor Rg (2.2 to 22 k Ω) between the OSC pin and the external clock output pin (external oscillator) when selecting the external clock operating mode (see the note on the OSC pin peripheral circuits).

Downloaded from Arrow.com.

Note: *2 Connect an external resistor Rosc and an external capacitor Cosc between the OSC pin and GND when selecting the RC oscillator operating mode and connect a current protection resistor Rg (2.2 to 22 k Ω) between the OSC pin and the external clock output pin (external oscillator) when selecting the external clock operating mode (see the note on the OSC pin peripheral circuits).

Note: *2 Connect an external resistor Rosc and an external capacitor Cosc between the OSC pin and GND when selecting the RC oscillator operating mode and connect a current protection resistor Rg (2.2 to 22 k Ω) between the OSC pin and the external clock output pin (external oscillator) when selecting the external clock operating mode (see the note on the OSC pin peripheral circuits).

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC75897PW-E	SPQFP144 20x20 / SQFP144 (Pb-Free)	200 / Tray Foam

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconduct or does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support implication in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was neg