ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

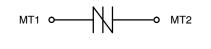
onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application, Buyer shall indemnify and hold ons

Thyristor Surge Protectors

High Voltage Bidirectional

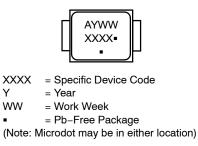
NTVB Series Thyristor Surge Protector Devices (TSPD) protect telecommunication circuits such as central office, access, and customer premises equipment from overvoltage conditions. These are bidirectional devices so they are able to have functionality of 2 devices in one package, saving valuable space on board layout.

These devices will act as a crowbar when overvoltage occurs and will divert the energy away from circuit or device that is being protected.


Use of the NTVB Series in equipment will help meet various regulatory requirements including: GR-1089-CORE, IEC 61000-4-5, ITU K.20/21/45, IEC 60950, TIA-968-A, FCC Part 68, EN 60950, UL 1950.

ON Semiconductor®

http://onsemi.com


BIDIRECTIONAL SURFACE MOUNT THYRISTOR 64 – 350 VOLTS

SMB JEDEC DO-214AA CASE 403C

MARKING DIAGRAM

Υ

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

ELECTRICAL PARAMETERS

	V _{DRM}	V _(BO)	VT	I _{DRM}	I _(BO)	г	Ι _Η
Device	v	v	v	μΑ	mA	Α	mA
NTVB058NSx-L	58	77	4	5	800	2.2	150
NTVB065NSx-L	65	88	4	5	800	2.2	150
NTVB090NSx-L	90	130	4	5	800	2.2	150
NTVB170Sx-L	170	265	4	5	800	2.2	150
NTVB170NSx-L	170	220	4	5	800	2.2	150
NTVB180Sx-L	170	240	4	5	800	2.2	150
NTVB200Sx-L	200	320	4	5	800	2.2	150
NTVB220NSx-L	220	300	4	5	800	2.2	150
NTVB270Sx-L	270	365	4	5	800	2.2	150
NTVB275NSx-L	275	350	4	5	800	2.2	150
NTVB300Sx-L	300	400	4	5	800	2.2	150

SURGE DATA RATINGS

	Wave	eform	X = S	eries ra	tings	
Specification	Voltage μs	Current μs	А	в	с	Unit
GR-1089-CORE	2x10	2x10	150	250	500	A(pk)
TIA-968-A	10x160	10x160	90	150	200	
GR-1089-CORE	10x360	10x360	75	125	175	
TIA-968-A	10x560	10x560	50	100	150	
ITU-T K.20/21	10x700	5x310	75	100	200	
GR-1089-CORE	10x1000	10x1000	50	80	100	

*91 Recognized Components

© Semiconductor Components Industries, LLC, 2010 October, 2010 - Rev. 0

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

Characteristics (Notes 1, 2, 3)		Min	Тур	Max	Unit
Breakover Voltage (Both Polarities) NTVB058NSx-L NTVB065NSx-L NTVB170Sx-L NTVB170NSx-L NTVB170NSx-L NTVB180Sx-L NTVB200Sx-L NTVB220NSx-L NTVB270Sx-L NTVB275NSx-L NTVB300Sx-L	V _(BO)			77 88 130 265 220 240 320 300 365 350 400	V
Off-State Voltage (Both Polarities) NTVB058NSx-L NTVB065NSx-L NTVB170Sx-L NTVB170NSx-L NTVB170NSx-L NTVB180Sx-L NTVB200Sx-L NTVB220NSx-L NTVB270Sx-L NTVB275NSx-L NTVB300Sx-L	V _{DRM}	58 65 90 170 170 200 220 270 275 300			V
$ \begin{array}{ll} \mbox{Off State Current} & (V_{D1} = 50 \ V \) \ \mbox{Both Polarities} \\ (V_{D2} = V_{DRM} \) \ \mbox{Both Polarities} \end{array} $	I _{DRM1} I _{DRM2}			2.0 5.0	μΑ μΑ
Holding Current (Both Polarities) (Note 3) V_S = 500 V; I _T = 2.2 A	Ι _Η	150	250	-	mA
On–State Voltage I _T = 1.0 A(pk) (PW = 300 μ Sec, DC = 2%)	V _T	-	-	4.0	V
Maximum Non-Repetitive Rate of Change of On-State Current (Note 1) (Haefely test method, 1.0 pk < 100 A)		-	-	500	A/μSec
Critical Rate of Rise of Off–State Voltage (Linear Waveform, V_D = 0.8 V_{DRM} , T_J = 25°C)	dv/dt	5.0	-	-	kV/μSec

CAPACITANCE

			Тур		
Characteristics	Symbol	Α	В	С	Unit
(f=1.0 MHz, 1.0 V _{rms} , 2 Vdc bias) NTVB058NSx-L NTVB065NSx-L NTVB090NSx-L NTVB170Sx-L NTVB170NSx-L NTVB180Sx-L NTVB200Sx-L NTVB220NSx-L	Co	84 79 58 39 39 37 36 33	129 123 95 150 59 59 56 52	222 198 154 195 99 97 110 81	pF
NTVB270Sx–L NTVB275NSx–L NTVB300Sx–L		31 28 28	47 44 44	76 97 71	

Electrical parameters are based on pulsed test methods.
Measured under pulsed conditions to reduce heating
Allow cooling before testing second polarity.

SURGE RATINGS

Characteristics	Symbol	Α	В	С	Unit
Nominal Pulse Surge Short Circuit Current Non – Repetitive Double Exponential Decay Waveform (Notes 4, 5 and 6) 2 x 10 μSec 10 x 160 μSec 10 x 360 μSec 10 x 560 μSec 10 x 700 μSec 10 x 1000 μSec	Ipps1 Ipps3 Ipps4 Ipps5 Ipps6 Ipps7	150 90 75 50 75 50	250 150 125 100 100 80	500 200 150 150 200 100	A(pk)

4. Allow cooling before testing second polarity.

Measured under pulse conditions to reduce heating.
Nominal values may not represent the maximum capability of a device.

THERMAL CHARACTERISTICS

Symbol	Rating	Value	Unit
T _{STG}	Storage Temperature Range	–65 to +150	°C
TJ	Operating Temperature Range	-40 to +150	°C
R _{0JA}	Thermal Resistance: Junction-to-Ambient Per EIA/JESD51-3, PCB = FR4 3"x4.5"x0.06" Fan out in a 3x3 inch pattern, 2 oz copper track.	90	°C/W

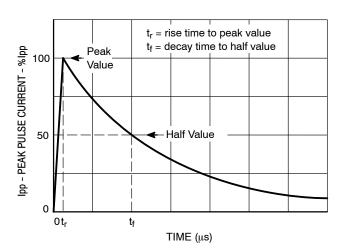


Figure 1. Exponential Decay Pulse Waveform

Symbol	Parameter
V _{DRM}	Peak Off State Voltage
V _(BO)	Breakover Voltage
I _(BO)	Breakover Current
Ι _Η	Holding Current
V _T	On State Voltage
I _T	On State Current

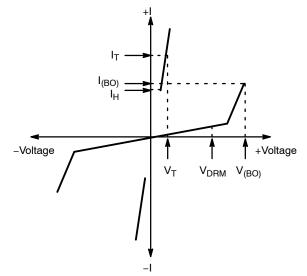
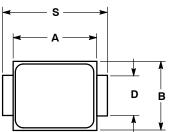
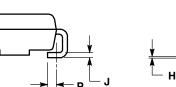
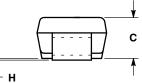


Figure 2. Voltage Current Characteristics of TSPD

ORDERING INFORMATION

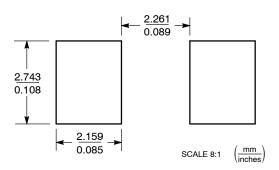

Part Number	Marking	Case	Shipping [†]
NTVB058NSB-L	58NB		
NTVB058NSC-L	58NC		
NTVB065NSA-L	65NA		
NTVB065NSC-L	65NC		
NTVB090NSA-L	90NA		
NTVB170SA-L	170A	7	
NTVB170SC-L	170C		
NTVB170NSC-L	17NC		
NTVB180SA-L	180A		
NTVB200SA-L	200A	SMB	
NTVB200SB-L	200B	(Pb-Free)	2500 / Tape and Reel
NTVB200SC-L	200C	7	
NTVB220NSC-L	22NC	7	
NTVB270SA-L	270A	7	
NTVB270SB-L	270B	7	
NTVB270SC-L	270C	\neg $ $	
NTVB275NSC-L	27NC	\neg $ $	
NTVB300SA-L	300A	\neg $ $	
NTVB300SB-L	300B	\neg $ $	
NTVB300SC-L	300C	\neg $ $	


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

CASE

SMB CASE 403C-01 ISSUE A


NOTES:

 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH. 3. D DIMENSION SHALL BE MEASURED WITHIN DIMENSION P.

	INC	HES	MILLIM	IMETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.160	0.180	4.06	4.57		
В	0.130	0.150	3.30	3.81		
С	0.075	0.095	1.90	2.41		
D	0.077	0.083	1.96	2.11		
Н	0.0020	0.0060	0.051	0.152		
J	0.006	0.012	0.15	0.30		
Κ	0.030	0.050	0.76	1.27		
Ρ	0.020 REF		0.51	REF		
S	0.205	0.220	5.21	5.59		

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees arising in any and all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850

For additional information, please contact your local Sales Representative