ON Semiconductor®

http://onsemi.com

Bi-CMOS IC

System Power Supply IC for Automotive Infotainment Multiple Output Linear Voltage Regulator

Overview

The LV5684NPVD is a multiple output linear regulator IC, which allows reduction of quiescent current. The LV5684NPVD is specifically designed to address automotive infotainment systems power supply requirements. The LV5684NPVD integrates 5 linear regulator outputs, 2 high side power switches, over-current limiter, overvoltage protection and thermal shut down. Supply for VDD and SW33V outputs is low voltage specification, which enables drastic reduction of power dissipation compared to the existing model.

Function

- Low consumption current: 50μA (typ, only V_{DD} output is in operation)
- 5 systems of regulator output

V_{DD} for microcontroller: output voltage: 3.3V,

maximum output current: 350mA.

For system: output voltage: 3.3V, maximum output current: 450mA

For audio: output voltage: 5 to 12V (set by external resistors),

maximum output current: 250mA

For illumination: output voltage: 5 to 12V (set by external resistors),

maximum output current: 300mA

For CD: output voltage: 5V/8V, maximum output current: 1300mA

- 2 lines of high side switch with current protection
 - EXT: Maximum output current: 350mA,

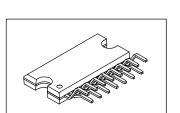
voltage difference between input and output: 0.5V

ANT: Maximum output current: 300mA,

voltage difference between input and output: 0.5V

- Supply input
 - V6IN: 6V for VDD, system (SW33V)
 - V_{CC}1: For internal reference voltage, control circuits

In case of voltage drop of V6IN, $V_{CC}1$ supplies to V_{DD} output.


VCC2: For AUDIO, illumination, CD, EXT/ANT

- Over-current limiter
- Overvoltage protector(OVP): V_{CC}1,V_{CC}2 Typ 23V (All outputs except V_{DD} are turned off)
 Overvoltage shutdown(OVS): V6IN Typ 23V (All outputs except V_{DD} are turned off)
- Thermal shut down : Typ 175°C

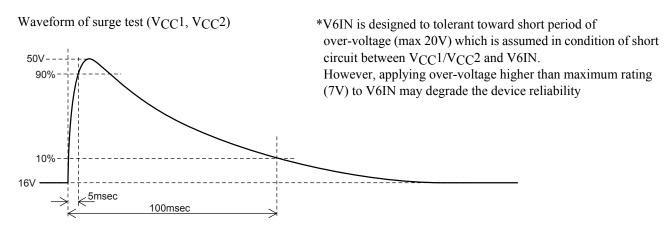
(Warning) The protector functions only improve the IC's tolerance and they do not guarantee the safety of the IC if used under the onditions out of safety range or ratings. Use of the IC such as use under overcurrent protection range, thermal shutdown state or V6IN OVS condition may degrade the IC's reliability and eventually damage the IC.

ORDERING INFORMATION

See detailed ordering and shipping information on page 15 of this data sheet.

HZIP15

Specifications


Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions		Ratings	Unit
Supply voltage	V _{CC} max	V _{CC} 1, V _{CC} 2		36	٧
	V6IN max	V6IN (*)		7	V
Input voltage	V _{IN} max	CTRL1, CTRL2		7	٧
Allowable power dissipation	Pd max	Independent IC	Ta ≤ 25°C	1.3	W
		Al heat sink *		5.3	W
		With an infinity heat sink]	26	W
Peak supply voltage	V _{CC} peak	See below for the waveform	See below for the waveform applied.		٧
Operating ambient temperature	Topr			-40 to +85	°C
Storage temperature	Tstg			-55 to +150	°C
Junction temperature	Tj max			150	°C

^{* :} When the Aluminum heat sink (50mm \times 50mm \times 1.5mm) is used

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Recommended Operating Conditions at Ta = 25°C

VCC1

V C C 1			
Parameter	Conditions	Ratings	Unit
Operating supply voltage 1	V _{DD} output	7 to 16	V
$V_{\rm CC^2}$			
Parameter	Conditions	Ratings	Unit
Operating supply voltage 2	ILM output (10V)	12 to 16	V
	ILM output (8V)	10 to 16	٧
Operating supply voltage 3	AUDIO output (9V)	10 to 16	V
Operating supply voltage 4	CD output (I _O = 1.3A)	10.5 to 16	V
	CD output ($I_O \le 1A$)	10 to 16	٧
Operating supply voltage 5	EXT output, ANT output	10 to 16	V
76IN			
Parameter	Conditions	Ratings	Unit
Operating supply voltage 6	V _{DD} output, SW33V output	5.7 to 6.5	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics at VCC1 = VCC2 = 14.4V, V6IN = 6V at Ta = 25°C (*1)

Parameter	Symbol	Conditions	Ratings			Unit
Parameter	Symbol	Conditions	min	typ	max	Unit
Quiescent current	Icc	V _{DD} w/out load, CTRL1/2 = "L/L"		50	100	μΑ
CTRL1 input (ANT/EXT/ILM)						
Low input voltage	V _{IL} 1		0		0.5	V
M1 input voltage	V _{IM1} 1		0.8	1.1	1.4	V
M2 input voltage	V _{IM2} 1		1.9	2.2	2.5	V
High input voltage	V _{IH} 1		2.9	3.3	5.5	V
Input impedance	R _{IH} 1	input voltage ≤ 3.3V	280	400	480	kΩ
CTRL2 input (CD/AUDIO/SW3	33V)					
Low input voltage	V _{IL} 2		0		0.5	V
M1 input voltage	V _{IM1} 2		0.8	1.1	1.4	V
M2 input voltage	V _{IM2} 2		1.9	2.2	2.5	V
High input voltage	V _{IH} 2		2.9	3.3	5.5	V
Input impedance	R _{IH} 2	input voltage ≤ 3.3V	280	400	480	kΩ
V _{DD} output (3.3V)						
Output voltage	V _O 1	I _O 1 = 200mA	3.13	3.3	3.47	V
Output current	I _O 1	V _O 1 ≥ 3.1V	350			mA
Line regulation	ΔV _{OLN} 1	5.7V < V6IN < 6.5V, I _O 1 = 200mA or V6IN = 0V, 7.5V < V _{CC} 1 < 16V, I _O 1 = 200mA		30	90	mV
Load regulation	ΔV _{OLD} 1	1mA < I _O 1 < 200mA		70	150	mV
Dropout voltage	V _{DROP} 1	$I_O1 = 200$ mA, V6IN = 0V (applicable to $V_{CC}1$)		1.9	2.8	V
Ripple rejection (*2)	R _{REJ} 1	f = 120Hz, V6IN or V _{CC} 1 = 0.5Vpp I _C 1 = 200mA	40	50		dB
SW33V output (3.3V) ; CTRL2	= "M1 or M2 or H	l"	•		•	
Output voltage	V _O 2	I _O 2 = 200mA	3.13	3.3	3.47	V
Output current	I _O 2	V _O 2 ≥ 3.1V	450			mA
Line regulation	ΔV _{OLN} 2	5.7V < V6IN < 6.5V, I _O 2 = 200mA		30	90	mV
Load regulation	ΔV _{OLD} 2	1mA < I _O 2 < 200mA		70	150	mV
Dropout voltage	V _{DROP} 2	I _O 2 = 200mA		0.25	0.5	V
Ripple rejection (*2)	R _{REJ} 2	f = 120Hz, V6IN or V _{CC} 1 = 0.5Vpp I _O 2 = 200mA	40	50		dB
AUDIO (5-12V)output ; CTRL2	2 = "M1 or M2 or I	H"	•		•	
AUDIO_F voltage	V _I 3		1.212	1.25	1.288	V
AUDIO_F input current	I _{IN} 3		-1		1	μА
AUDIO output voltage 1	V _O 3	$I_{O}3 = 200\text{mA}, R1 = 43\text{k}\Omega, R2 = 5.1\text{k}\Omega (*3)$	11.21	11.8	12.39	V
AUDIO output voltage 2	V _O 3'	$I_{O}3 = 150$ mA, R3 = 27k Ω , R4 = 4.7k Ω (*3)	8.13	8.5	8.87	V
AUDIO output voltage 3	V _O 3"	I_O 3 = 150mA, R3 = 30kΩ, R4 = 10kΩ (*3)	4.75	5.0	5.25	V
AUDIO output current	I _O 3		250			mA
Line regulation	ΔV _{OLN} 3	10V < V _{CC} 2 < 16V, I _O 3 = 150mA		30	90	mV
Load regulation	ΔV _{OLD} 3	1mA < I _O 3 < 150mA		70	150	mV
Dropout voltage 1	V _{DROP} 3	I _O 3 = 150mA		0.3	0.45	V
Ripple rejection (*2)	R _{REJ} 3	f = 120Hz, I _O 3 = 150mA	40	50		dB
ILM (5-12V) output ; CTRL1 =	"M1 or M2 or H"		U.	<u> </u>	<u></u>	
ILM_F voltage	V _I 4		1.212	1.25	1.288	V
ILM_F input current	I _{IN} 4		-1		1	μА
ILM output voltage 1	V _O 4	$I_{O}4 = 200$ mA, R1 = 43k Ω , R2 = 5.1k Ω (*3)	11.21	11.8	12.39	V
ILM output voltage 2	V _O 4'	I_0 4 = 200mA, R1 = 56k Ω , R2 = 7.5k Ω (*3)	9.97	10.5	11.03	V
ILM output voltage 3	V _O 4"	I_0 4 = 200mA, R1 = 30k Ω , R2 = 5.6k Ω (*3)	7.6	8.0	8.4	V
ILM output voltage 4	V _O 4'''	$I_0 4 = 200 \text{mA}, R1 = 30 \text{k}\Omega, R2 = 10 \text{k}\Omega (*3)$	4.75	5.0	5.25	V
ILM output current	104		300			mA

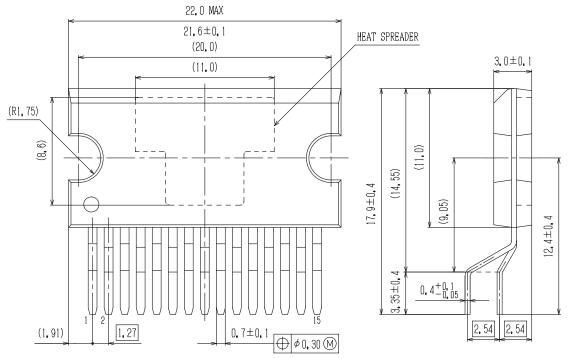
Continued on next page.

Continued from preceding page.

Dorometer	Cumbal	Conditions	Ratings			I I a it
Parameter	Symbol	Conditions	min	typ	max	Unit
Line regulation	ΔV _{OLN} 4	10V < V _{CC} 2 < 16V, I _O 4 = 200mA		30	90	mV
		R1 = $30k\Omega$, R2 = $5.6k\Omega$				
Load regulation	ΔV _{OLD} 4	$1\text{mA} < I_O 4 < 200\text{mA}$		70	150	mV
Dropout voltage 1	V _{DROP} 4	I _O 4 = 200mA		0.7	1.05	V
Dropout voltage 2	V _{DROP} 4'	I _O 4 = 100mA		0.35	0.53	V
Ripple rejection (*2)	R _{REJ} 4	f = 120Hz, I _O 4 = 200mA	40	50		dB
CD (5V/8V output) ; CTRL2	= "H" : 8V, CTRL2	= "M2" : 5V				
Output voltage	V _O 51	I _O 5 = 1000mA	4.75	5.0	5.25	V
	V _O 52	I _O 5 = 1000mA	7.6	8.0	8.4	V
Output current	I _O 5	$V_{O}51 \ge 4.7V, V_{O}52 \ge 7.6V$	1300			mA
Line regulation	ΔV _{OLN} 5	10.5V < V _{CC} 2 < 16V, I _O 5 = 1000mA		50	100	mV
Load regulation	ΔV _{OLD} 5	10mA < I _O 5 < 1000mA		100	200	mV
Dropout voltage 1	V _{DROP} 5	I _O 5 = 1000mA		1.0	1.5	V
Dropout voltage 2	V _{DROP} 5'	I _O 5 = 500mA		0.5	0.75	V
Ripple rejection (*2)	R _{REJ} 5	f = 120Hz, I _O 5 = 1000mA	40	50		dB
EXT_HS-SW ; CTRL1 = "M2	or H"	•				
Output voltage	V _O 6	I _O 6 = 350mA	V _{CC} 2-1.0	V _{CC} 2-0.5		V
Output current	I _O 6	$V_O6 \ge V_{CC}2-1.0$	350			mA
ANT_HS-SW ; CTRL1 = "H"	•	•	•			
Output voltage	V _O 7	I _O 7 = 300mA	V _{CC} 2-1.0	V _{CC} 2-0.5		V
Output current	I _O 7	$V_{O}7 \ge V_{CC}2-1.0$	300			mA

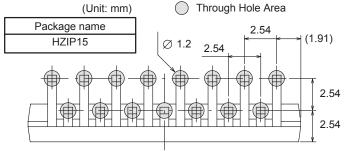
^{*1 :} All the specification is defined based on the tests performed under the conditions where Tj and Ta (= 25°C) are almost equal. These tests were performed with pulse load to minimize the increase of junction temperature (Tj).

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

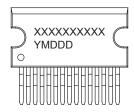

^{*2 :} guaranteed by design

^{*3 :} Using resistors of tolerance within 1%.

Package Dimensions


unit: mm

HZIP15 CASE 945AB ISSUE A


SOLDERING FOOTPRINT*

NOTE: The measurements are not to guarantee but for reference only.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

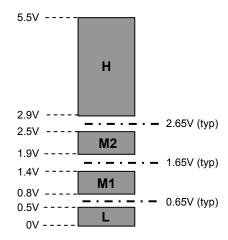
GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

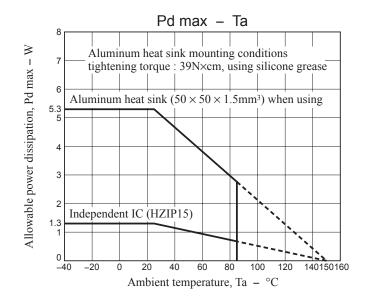
Y = Year

M = Month

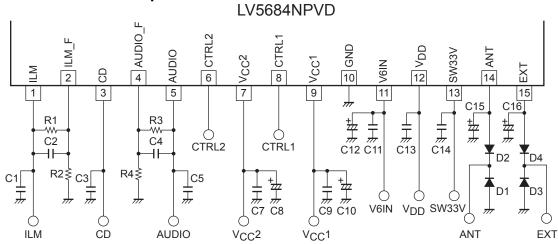
DDD = Additional Traceability Data


*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.

CTRL logic truth table

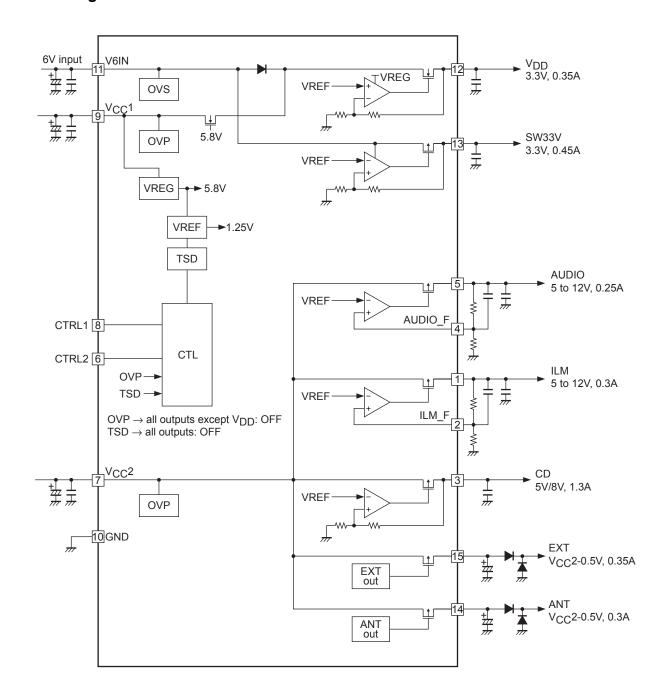

CTRL1	ANT	EXT	ILM
Н	ON	ON	ON
M2	OFF	ON	ON
M1	OFF	OFF	ON
L	OFF	OFF	OFF

CTRL2	CD	AUDIO	SW33V
Н	ON (8V)	ON	ON
M2	ON (5V)	ON	ON
M1	OFF	ON	ON
L	OFF	OFF	OFF


CTRL1/2 voltage range and threshold

• Allowable power dissipation derating curve

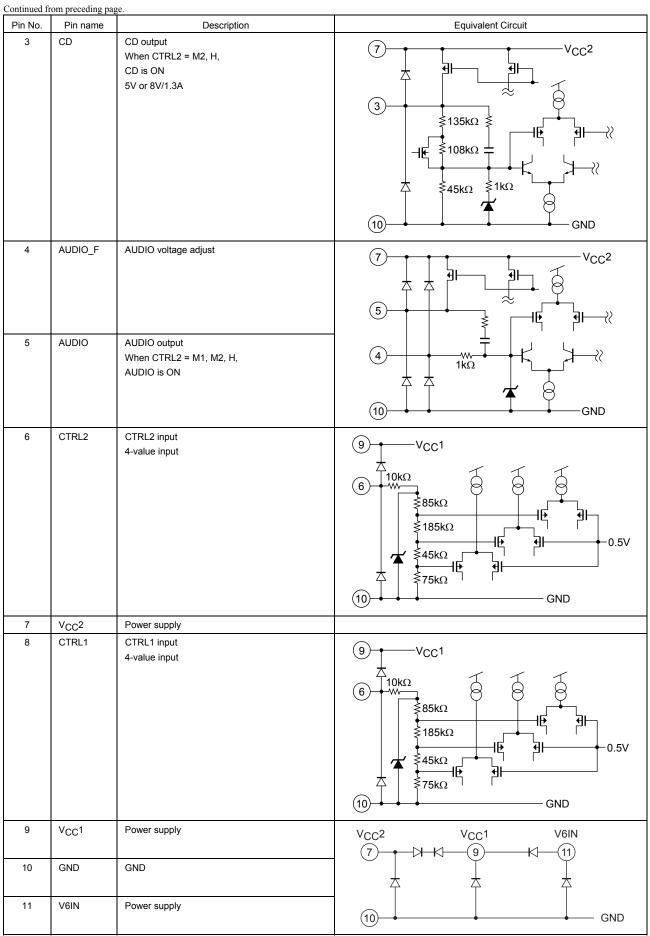
Application Circuit Example



Peripheral parts

Part name	Description	Recommended value	Note
C1, C3, C5, C13, C14	output stabilization capacitor	greater than10μF (*1)	
C2, C4	output stabilization capacitor	0pF	Ceramic capacitor
C8, C10, C12	Capacitor for bypass power supply	C8: greater than 100μF C10,C12: greater than 47μF	Make sure to implement close to V_{CC} and GND.
C7, C9, C11	Capacitor for oscillation protector	greater than 0.22μF	
C15, C16	Capacitor for EXT/ANT output stabilization	greater than 2.2μF	
R1, R2	ILM voltage setting	R1/R2 43kΩ/5.1kΩ : $V_O = 12V$ 56kΩ/7.5kΩ : $V_O = 10.5V$ 30kΩ/5.6kΩ : $V_O = 8V$ 30kΩ/10kΩ : $V_O = 5V$	Use resistors of tolerance within 1%
R3, R4	AUDIO voltage setting	R3/R4 $30k\Omega/10k\Omega : V_O = 5V$ $27k\Omega/4.7k\Omega : V_O = 8.5V$ $43k\Omega/5.1k\Omega : V_O = 12V$	Use resistors of tolerance within 1%
D1, D2, D3, D4	Internal device protector diode	ON Semiconductor SB1003M3	

^(*1) Make sure that output capacitors are greater than 10uF and meets the condition of ESR = 0.001 to 10Ω , in which voltage/ temperature dependence and unit differences are taken into consideration. Moreover, in case of electrolytic capacitor, high-frequency characteristics should be sufficiently good.


Block Diagram

Pin Function

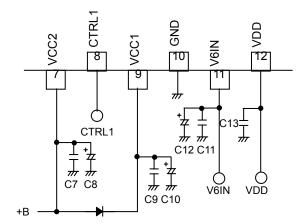
	i iii i diiction					
Pin No.	Pin name	Description	Equivalent Circuit			
1	ILM	ILM output When CTRL1 = M1, M2, H, ILM is ON	7 Vcc2			
2	ILM_F	ILM voltage adjust	$\begin{array}{c c} \hline \\ \hline $			

Continued on next page.

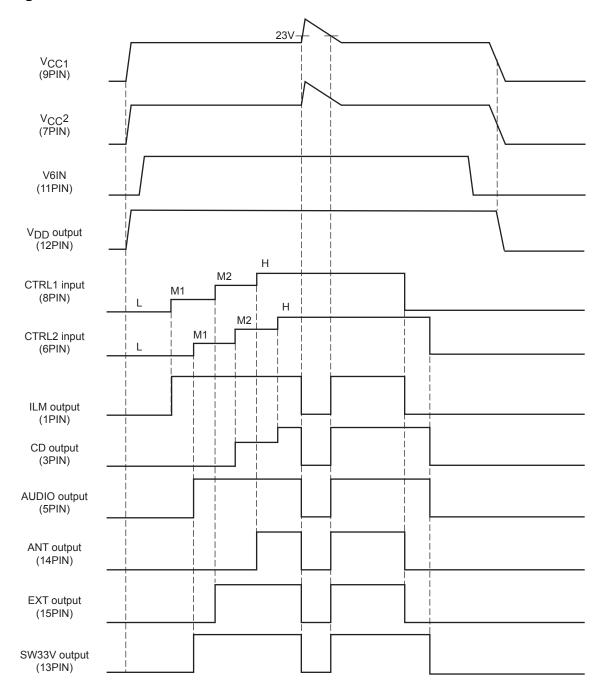
Continued on next page.

	rom preceding pag	1	
Pin No.	Pin name	Description	Equivalent Circuit
12	VDD	V _{DD} output 3.3V/0.35A	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
13	SW33V	SW33V output When CTRL2 = M1, M2, H, SW33V is ON 3.3V/0.45A	11 V6IN 13 ** \$230kΩ ** 140kΩ ** 16 GND GND
14	ANT	ANT output When CTRL1 = H, ANT is ON V _{CC} -0.5V/300mA	$\begin{array}{c c} \hline 7 & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$
15	EXT	EXT output When CTRL1 = M2, H, EXT is ON V _{CC} -0.5V/350mA	7 \$\frac{100kΩ}{5kΩ}\$ VCC ²

■Note for VDD output(PIN12) and V6IN (PIN11)

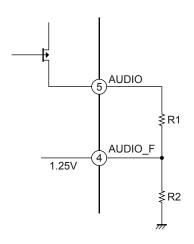

This product doesn't have reverse current prevention feature for the path of VDD to VCC1. As shown above equivalent circuit for PIN12, there exists a parasitic diode from VDD to VCC1. Accordingly if VCC1 voltage drops below approximately VDD-0.7V, reverse current flows from VDD to VCC1. If you need to prevent this current, insert a diode between VCC2 and VCC1 as shown on the figure below.

As the same manner, there is a parasitic diode from V6IN to VCC1.


Do not apply voltage to these terminals so that these parasitic diodes are positively biased.

Use under the following condition.

 $VCC \ge VDD$, $VCC1 \ge V6IN$



Timing Chart

Caution: The above values are obtained when typ.

· How to set AUDIO output voltage

AUDIO_F is determined by internal band-gap reference voltage (typ = 1.25V).

AUDIO output voltage expression

$$AUDIO = (\frac{R_1}{R_2} + 1) \times 1.25[V]$$

$$\frac{R_1}{R_2} = \frac{AUDIO}{1.25} - 1$$

Set the ratio of R1 and R2 to satisfy above expression.

(ex) AUDIO = 9V setting

$$\frac{R_1}{R_2} = \frac{9}{1.25} - 1 = 6.2$$

$$\frac{R_1}{R_2} = \frac{24k\Omega}{3.9k\Omega} \cong 6.15$$

$$\frac{R_1}{R_2} = \frac{24k\Omega}{3.9k\Omega} \approx 6.15$$

$$AUDIO = (6.15 + 1) \times 1.25V \approx 8.94V$$

• ILM output voltage is similarly calculated as AUDIO output.

(ex)
$$ILM = 10.5V$$
 setting

$$\frac{R_1}{R_2} = \frac{10.5}{1.25} - 1 = 7.4$$

$$\frac{R_1}{R_2} = \frac{56k\Omega}{7.5k\Omega} \cong 7.46$$

$$ILM = (7.46 + 1) \times 1.25V \cong 10.575V$$

Note: The above values are typical values. These values have variation among the range of their tolerances.

HZIP15 Heat sink attachment

Heat sinks are used to lower the semiconductor device junction temperature by leading the head generated by the device to the outer environment and dissipating that heat.

a. Unless otherwise specified, for power ICs with tabs and power ICs with attached heat sinks, solder must not be applied to the heat sink or tabs.

b. Heat sink attachment

- Use flat-head screws to attach heat sinks.
- Use also washer to protect the package.
- Use tightening torques in the ranges 39-59Ncm (4-6kgcm).
- If tapping screws are used, do not use screws with a diameter larger than the holes in the semiconductor device itself.
- Do not make gap, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
- Take care a position of via hole.
- Do not allow dirt, dust, or other contaminants to get between the semiconductor device and the tab or heat sink.
- Verify that there are no press burrs or screw-hole burrs on the heat sink.
- Warping in heat sinks and printed circuit boards must be no more than 0.05 mm between screw holes, for either concave or convex warping.
- Twisting must be limited to under 0.05 mm.
- Heat sink and semiconductor device are mounted in parallel.

 Take care of electric or compressed air drivers
- The speed of these torque wrenches should never exceed 700 rpm, and should typically be about 400 rpm.

Heat sink gap Via hole

X

0

c. Silicone grease

- Spread the silicone grease evenly when mounting heat sinks.
- Recommends YG-6260 (Momentive Performance Materials Japan LLC)

d. Mount

- First mount the heat sink on the semiconductor device, and then mount that assembly on the printed circuit board.
- When attaching a heat sink after mounting a semiconductor device into the printed circuit board, when tightening up a heat sink with the screw, the mechanical stress which is impossible to the semiconductor device and the pin doesn't hang.
- e. When mounting the semiconductor device to the heat sink using jigs, etc.,
 - Take care not to allow the device to ride onto the jig or positioning dowel.
 - Design the jig so that no unreasonable mechanical stress is applied to the semiconductor device.

f. Heat sink screw holes

- Be sure that chamfering and shear drop of heat sinks must not be larger than the diameter of screw head used.
- When using nuts, do not make the heat sink hole diameters larger than the diameter of the head of the screws used. A hole diameter about 15% larger than the diameter of the screw is desirable.
- When tap screws are used, be sure that the diameter of the holes in the heat sink are not too small. A diameter about 15% smaller than the diameter of the screw is desirable.
- g. There is a method to mount the semiconductor device to the heat sink by using a spring band. But this method is not recommended because of possible displacement due to fluctuation of the spring force with time or vibration.

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LV5684NPVD-XH	HZIP15 (Pb-Free / Halogen Free)	20 / Fan-Fold

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa