

12-Bit Binary Counter

MC14040B

The MC14040B 12-stage binary counter is constructed with MOS P-Channel and N-Channel enhancement mode devices in a single monolithic structure. This part is designed with an input wave shaping circuit and 12 stages of ripple-carry binary counter. The device advances the count on the negative-going edge of the clock pulse. Applications include time delay circuits, counter controls, and frequency-driving circuits.

Features

- Fully Static Operation
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Common Reset Line
- Pin-for-Pin Replacement for CD4040B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

PIN ASSIGNMENT

Q12 [1●	16	
Q6 [2	15] Q11
Q5 [3	14] Q10
Q7 [4	13] Q8
Q4 [5	12] Q9
Q3 [6	11] R
Q2 [7	10] C
V _{SS} [8	9] Q1

MARKING DIAGRAMS

SOIC-16

alv Lagation

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or • = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

TRUTH TABLE

Clock	Reset	Output State
	0	No Change
~	0	Advance to next state
X	1	All Outputs are low

X = Don't Care

LOGIC DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14040BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14040BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14040BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
MC14040BDTR2G	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14040BDTR2G*	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP

Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

				-55	5°C		25°C		125°C		
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD}	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15		4.95 9.95 14.95	- - -	Vdc
Input Voltage ($V_O = 4.5 \text{ or } 0.5 \text{ Vdc}$) ($V_O = 9.0 \text{ or } 1.0 \text{ Vdc}$) ($V_O = 13.5 \text{ or } 1.5 \text{ Vdc}$)	"0" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $	Source	ГОН	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8		-1.7 -0.36 -0.9 -2.4	- - -	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	l _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current		I _{in}	15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Total Supply Current (Note (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all outpr buffers switching)	nt,	lτ	5.0 10 15			$I_T = (0$	0.42 μA/kHz) 0.85 μA/kHz) 0.43 μA/kHz)	f + I _{DD}			μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.001.

^{3.} The formulas given are for the typical characteristics only at 25°C.
4. To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time $T_{TLH}, T_{THL} = (1.5 \text{ ns/pF}) \text{ C}_{L} + 25 \text{ ns}$ $T_{TLH}, T_{THL} = (0.75 \text{ ns/pF}) \text{ C}_{L} + 12.5 \text{ ns}$ $T_{TLH}, T_{THL} = (0.55 \text{ ns/pF}) \text{ C}_{L} + 9.5 \text{ ns}$	t _{TLH} , t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time Clock to Q1 $t_{PHL},t_{PLH}=(1.7\;\text{ns/pF})\;C_L+315\;\text{ns}$ $t_{PHL},t_{PLH}=(0.66\;\text{ns/pF})\;C_L+137\;\text{ns}$ $t_{PHL},t_{PLH}=(0.5\;\text{ns/pF})\;C_L+95\;\text{ns}$	t _{PLH} , t _{PHL}	5.0 10 15	- - -	260 115 80	520 230 160	ns
Clock to Q12 t_{PHL} , t_{PLH} = (1.7 ns/pF) C_L + 2415 ns t_{PHL} , t_{PLH} = (0.66 ns/pF) C_L + 867 ns t_{PHL} , t_{PLH} = (0.5 ns/pF) C_L + 475 ns		5.0 10 15	- - -	1625 720 500	3250 1440 1000	ns
Propagation Delay Time Reset to Q_n $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 485 \text{ ns}$ $t_{PHL} = (0.86 \text{ ns/pF}) C_L + 182 \text{ ns}$ $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 145 \text{ ns}$	^t PHL	5.0 10 15		370 155 115	740 310 230	ns
Clock Pulse Width	t _{WH}	5.0 10 15	385 150 115	140 55 38	- - -	ns
Clock Pulse Frequency	f _{cl}	5.0 10 15	- - -	2.1 7.0 10.0	1.5 3.5 4.5	MHz
Clock Rise and Fall Time	t _{TLH} , t _{THL}	5.0 10 15		No Limit		ns
Reset Pulse Width	t _{WH}	5.0 10 15	960 360 270	320 120 80	- - -	ns
Reset Removal Time	t _{rem}	5.0 10 15	130 50 30	65 25 15	- - -	ns

- 5. The formulas given are for the typical characteristics only at 25°C.6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Power Dissipation Test Circuit and Waveform

Figure 2. Switching Time Test Circuit and Waveforms

Figure 3. Timing Diagram

APPLICATIONS INFORMATION

TIME-BASE GENERATOR

A 60 Hz sinewave obtained through a 1.0 Megohm resistor connected directly to a standard 120 Vac power line is applied to the clock input of the MC14040B. By selecting

outputs Q5, Q10, Q11, and Q12 division by 3600 is accomplished. The MC14012B decodes the counter outputs, produces a single output pulse, and resets the binary counter. The resulting output frequency is 1.0 pulse/minute.

Figure 4. Time-Base Generator

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
	COLLECTOR		CATHODE	PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DY		
2.	BASE		ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4		
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE		CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER		ANODE	10.	BASE, #3	10.	EMITTER, #4		
11.			NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER		CATHODE	12.	COLLECTOR, #3	12.	EMITTER, #3		
13.	BASE		CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	SOLDER	RING FOOTPRINT
14.			NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDER	IIIIG FOOTFRINT
15.	EMITTER			15.	EMITTER, #4	15.	BASE, #1		8X
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1	4	— 6.40 — >
								-	0.10
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12 <
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				, 1 1
2.	DRAIN, #1		CATHODE	2.	COMMON DRAIN (OUTPUT	7)		. 🗀 1	16
3.	DRAIN, #2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT			↓ — ·	
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	,			
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT	7)		16X	
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT			.58 J	' <u> </u>
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPUT		U	.50	ı —
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH `	,			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPUT	7)			
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT	ń			
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPUT	ń			
13.	GATE, #2	13.	ANODE	13.	GATE N-CH	,			
14.	SOURCE, #2	14.	ANODE	14.	COMMON DRAIN (OUTPUT	7)			— ↓ PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPUT				<u> </u>
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH				
	•							□ 8	9 + - + -
								— °	_ ↑
									DIMENSIONS: MILLIMETERS
									DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Document Reprinted versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16		PAGE 1 OF 1	

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

0.10 (0.004)

D

-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006

NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252 BSC	
M	0°	8°	0°	8 °

SOLDERING FOOTPRINT

G

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	' '
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative