12-Bit Binary Counter

MC14040B

The MC14040B 12-stage binary counter is constructed with MOS P -Channel and N -Channel enhancement mode devices in a single monolithic structure. This part is designed with an input wave shaping circuit and 12 stages of ripple-carry binary counter. The device advances the count on the negative-going edge of the clock pulse. Applications include time delay circuits, counter controls, and frequency-driving circuits.

Features

- Fully Static Operation
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Common Reset Line
- Pin-for-Pin Replacement for CD4040B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb -Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	Input or Output Voltage Range (DC or Transient)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	Input or Output Current (DC or Transient) per Pin	± 10	mA
P_{D}	Power Dissipation, per Package (Note 1)	500	mW
$\mathrm{~T}_{\mathrm{A}}$	Ambient Temperature Range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (8-Second Soldering)	${ }^{\circ} \mathrm{C}$	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ To $125^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{S S}$ or V_{DD}). Unused outputs must be left open.

SOIC-16 D SUFFIX CASE 751B

TSSOP-16 DT SUFFIX CASE 948F

PIN ASSIGNMENT

Q12 ${ }^{1}$	16
Q6-2	15
Q5 3	14
Q7 [4	13
Q4-5	12
Q3 6	11
Q2 7	10
$\mathrm{VSS}^{\text {[}} 8$	9

MARKING DIAGRAMS

SOIC-16

$$
\begin{array}{ll}
\text { A } & =\text { Assembly Location } \\
\text { WL, L } & =\text { Wafer Lot } \\
\text { YY, Y } & =\text { Year } \\
\text { WW, W } & =\text { Work Week } \\
\text { G or - } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

TRUTH TABLE

Clock	Reset	Output State
$工$	0	No Change
\nearrow	0	Advance to next state
X	1	All Outputs are low

X = Don't Care

LOGIC DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC14040BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14040BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape \& Reel
NLV14040BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape \& Reel
MC14040BDTR2G	TSSOP-16 (Pb-Free)	2500 Units / Tape \& Reel
NLV14040BDTR2G*	TSSOP-16 (Pb-Free)	2500 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF :

$$
\mathrm{I}_{\mathrm{T}}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{\mathrm{T}}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right) \mathrm{Vfk}
$$

where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in $\mathrm{pF}, \mathrm{V}=\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ in volts, f in kHz is input frequency, and $\mathrm{k}=0.001$.

SWITCHING CHARACTERISTICS (Note 5) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Symbol	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{Vdc} \end{aligned}$	Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 6) } \end{aligned}$	Max	Unit
```Output Rise and Fall Time \(\mathrm{T}_{\text {TLH }}, \mathrm{T}_{\text {THL }}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns}\) \(\mathrm{T}_{\mathrm{TLH}}, \mathrm{T}_{\text {THL }}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns}\) \(\mathrm{T}_{\text {TLH }}, \mathrm{T}_{\mathrm{THL}}=(0.55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns}\)```	$\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$		$\begin{aligned} & 100 \\ & 50 \\ & 40 \\ & \hline \end{aligned}$	$\begin{array}{r} 200 \\ 100 \\ 80 \\ \hline \end{array}$	ns
	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 260 \\ & 115 \\ & 80 \end{aligned}$	$\begin{aligned} & 520 \\ & 230 \\ & 160 \end{aligned}$	ns
$\begin{aligned} & \text { Clock to Q12 } \\ & t_{\text {PHL }}, t_{\text {PLH }}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+2415 \mathrm{~ns} \\ & \mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+867 \mathrm{~ns} \\ & \mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+475 \mathrm{~ns} \\ & \hline \end{aligned}$		$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 1625 \\ & 720 \\ & 500 \end{aligned}$	$\begin{aligned} & 3250 \\ & 1440 \\ & 1000 \end{aligned}$	ns
$\begin{aligned} & \text { Propagation Delay Time } \\ & \text { Reset to } Q_{n} \\ & \text { t PHL }=(1.7 \mathrm{~ns} / \mathrm{pF}) C_{L}+485 \mathrm{~ns} \\ & \mathrm{t}_{\text {PHL }}=(0.86 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+182 \mathrm{~ns} \\ & \mathrm{t}_{\text {PHL }}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+145 \mathrm{~ns} \\ & \hline \end{aligned}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 5.0 \\ 10 \\ 15 \\ \hline \end{array}$	-	$\begin{aligned} & 370 \\ & 155 \\ & 115 \\ & \hline \end{aligned}$	$\begin{array}{r} 740 \\ 310 \\ 230 \\ \hline \end{array}$	ns
Clock Pulse Width	$t_{\text {WH }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 385 \\ & 150 \\ & 115 \end{aligned}$	$\begin{aligned} & 140 \\ & 55 \\ & 38 \end{aligned}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	ns
Clock Pulse Frequency	$\mathrm{f}_{\mathrm{cl}}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 2.1 \\ 7.0 \\ 10.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.5 \\ & 4.5 \end{aligned}$	MHz
Clock Rise and Fall Time	${ }_{\text {t }}^{\text {tLH, }}$, $\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	No Limit			ns
Reset Pulse Width	twh	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 960 \\ & 360 \\ & 270 \\ & \hline \end{aligned}$	$\begin{gathered} 320 \\ 120 \\ 80 \end{gathered}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	ns
Reset Removal Time	$\mathrm{t}_{\text {rem }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 130 \\ 50 \\ 30 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 65 \\ & 25 \\ & 15 \\ & \hline \end{aligned}$	-	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.


Figure 1. Power Dissipation Test Circuit and Waveform


Figure 2. Switching Time Test Circuit and Waveforms


Figure 3. Timing Diagram

## APPLICATIONS INFORMATION

## TIME-BASE GENERATOR

A 60 Hz sinewave obtained through a 1.0 Megohm resistor connected directly to a standard 120 Vac power line is applied to the clock input of the MC14040B. By selecting
outputs Q5, Q10, Q11, and Q12 division by 3600 is accomplished. The MC14012B decodes the counter outputs, produces a single output pulse, and resets the binary counter. The resulting output frequency is 1.0 pulse/minute.


Figure 4. Time-Base Generator

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1


| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.


TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1


| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

