Low Voltage, Rail-to-Rail Operational Amplifiers
 MC33201, MC33202, MC33204, NCV33201, NCV33202, NCV33204

The MC33201/2/4 family of operational amplifiers provide rail-to-rail operation on both the input and output. The inputs can be driven as high as 200 mV beyond the supply rails without phase reversal on the outputs, and the output can swing within 50 mV of each rail. This rail-to-rail operation enables the user to make full use of the supply voltage range available. It is designed to work at very low supply voltages $(\pm 0.9 \mathrm{~V})$ yet can operate with a supply of up to +12 V and ground. Output current boosting techniques provide a high output current capability while keeping the drain current of the amplifier to a minimum. Also, the combination of low noise and distortion with a high slew rate and drive capability make this an ideal amplifier for audio applications.

Features

- Low Voltage, Single Supply Operation
$(+1.8 \mathrm{~V}$ and Ground to +12 V and Ground)
- Input Voltage Range Includes both Supply Rails
- Output Voltage Swings within 50 mV of both Rails
- No Phase Reversal on the Output for Over-driven Input Signals
- High Output Current ($\mathrm{I}_{\mathrm{SC}}=80 \mathrm{~mA}$, Typ)
- Low Supply Current ($\mathrm{I}_{\mathrm{D}}=0.9 \mathrm{~mA}$, Typ)
- 600Ω Output Drive Capability
- Extended Operating Temperature Ranges $\left(-40^{\circ}\right.$ to $+105^{\circ} \mathrm{C}$ and -55° to $\left.+125^{\circ} \mathrm{C}\right)$
- Typical Gain Bandwidth Product $=2.2 \mathrm{MHz}$
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 10 of this data sheet.

PIN CONNECTIONS

Inputs
(Top View)
MC33202
All Case Styles

(Top View)

Figure 1. Circuit Schematic
(Each Amplifier)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (V_{CC} to V_{EE})	V_{S}	+13	V
Input Differential Voltage Range	$\mathrm{V}_{\text {IDR }}$	Note 1	V
Common Mode Input Voltage Range (Note 2)	V_{CM}	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ to	
$\mathrm{V}_{\mathrm{EE}}-0.5 \mathrm{~V}$	V		
Output Short Circuit Duration		Note 3	sec
Maximum Junction Temperature	t_{s}	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature	T_{J}	${ }^{\circ}$	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation	$\mathrm{T}_{\text {stg }}$	-65 to +150	mW

DC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Characteristic	$\mathrm{V}_{\mathrm{Cc}}=2.0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$	Unit
Input Offset Voltage V_{IO} (max) MC33201, NCV33201V MC33202, NCV33202, V MC33204, NCV33204, V	$\begin{gathered} \pm 8.0 \\ \pm 10 \\ \pm 12 \end{gathered}$	$\begin{gathered} \pm 8.0 \\ \pm 10 \\ \pm 12 \end{gathered}$	$\begin{gathered} \pm 6.0 \\ \pm 8.0 \\ \pm 10 \end{gathered}$	mV
Output Voltage Swing $\mathrm{V}_{\mathrm{OH}}\left(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right)$ $\mathrm{V}_{\mathrm{OL}}\left(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right)$	$\begin{gathered} 1.9 \\ 0.10 \end{gathered}$	$\begin{aligned} & 3.15 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 4.85 \\ & 0.15 \end{aligned}$	$V_{\text {min }}$ $V_{\text {max }}$
Power Supply Current per Amplifier (I_{D})	1.125	1.125	1.125	mA

Specifications at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ are guaranteed by the 2.0 V and 5.0 V tests. $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$.
DC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Ground, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
$\begin{array}{ll} \text { Input Offset Voltage }\left(\mathrm{V}_{\mathrm{CM}} 0 \mathrm{~V} \text { to } 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}} 1.0 \mathrm{~V} \text { to } 5.0 \mathrm{~V}\right) \\ \text { MC33201/NCV33201V: } & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \text { MC33201: } & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ \text { MC33201V/NCV33201V: } & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \\ \text { MC33202/NCV33202, V: } & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \text { MC33202/NCV33202: } & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ \text { MC33202V/NCV33202V: } & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \text { (Note 4) } \\ \text { MC33204/NCV33204V: } & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \text { MC33204: } & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ \text { MC33204V/NCV33204V: } & \mathrm{T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \text { (Note 4) } \end{array}$	3	$\left\|\mathrm{V}_{\mathrm{IO}}\right\|$			$\begin{aligned} & 6.0 \\ & 9.0 \\ & 13 \\ & 8.0 \\ & 11 \\ & 14 \\ & 10 \\ & 13 \\ & 17 \end{aligned}$	mV
Input Offset Voltage Temperature Coefficient ($\mathrm{R}_{\mathrm{S}}=50 \Omega$) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	4	$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}$	-	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V}$ to 5.0 V) $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	5, 6	$\|\mathrm{IIB}\|$	-	$\begin{gathered} 80 \\ 100 \\ \ldots \end{gathered}$	$\begin{aligned} & 200 \\ & 250 \\ & 500 \\ & \hline \end{aligned}$	nA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The differential input voltage of each amplifier is limited by two internal parallel back-to-back diodes. For additional differential input voltage range, use current limiting resistors in series with the input pins.
2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage on either input must not exceed either supply rail by more than 500 mV .
3. Power dissipation must be considered to ensure maximum junction temperature (T_{J}) is not exceeded. (See Figure 2)
4. All NCV devices are qualified for Automotive use.

DC ELECTRICAL CHARACTERISTICS (cont.) ($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Ground, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.0 \mathrm{~V} \text { to } 5.0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	-	$\left\|\mathrm{I}_{10}\right\|$	-	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$	$\begin{gathered} 50 \\ 100 \\ 200 \end{gathered}$	nA
Common Mode Input Voltage Range	-	$V_{\text {ICR }}$	$\mathrm{V}_{\text {EE }}$	-	V_{CC}	V
$\begin{aligned} & \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}\right) \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	7	Avol	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	$\begin{aligned} & 300 \\ & 250 \end{aligned}$	-	kV/V
$\begin{aligned} & \text { Output Voltage Swing }\left(\mathrm{V}_{\mathrm{ID}}= \pm 0.2 \mathrm{~V}\right) \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \\ & R_{L}=600 \Omega \\ & R_{L}=600 \Omega \end{aligned}$	8, 9, 10	V_{OH} $V_{\text {OL }}$ V_{OH} V_{OL}	$\begin{gathered} 4.85 \\ - \\ 4.75 \end{gathered}$	$\begin{aligned} & 4.95 \\ & 0.05 \\ & 4.85 \\ & 0.15 \end{aligned}$	$\begin{gathered} - \\ 0.15 \\ - \\ 0.25 \end{gathered}$	V
Common Mode Rejection ($\mathrm{V}_{\text {in }}=0 \mathrm{~V}$ to 5.0 V)	11	CMR	60	90	-	dB
Power Supply Rejection Ratio $\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}=5.0 \mathrm{~V} / \mathrm{GND}$ to $3.0 \mathrm{~V} / \mathrm{GND}$	12	PSRR	500	25	-	$\mu \mathrm{V} / \mathrm{V}$
Output Short Circuit Current (Source and Sink)	13, 14	Isc	50	80	-	mA
$\begin{aligned} & \text { Power Supply Current per Amplifier }\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}\right) \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to }+105^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	15	ID	-	$\begin{aligned} & 0.9 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.125 \\ & 1.125 \end{aligned}$	mA

AC ELECTRICAL CHARACTERISTICS $\quad\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\right.$ Ground, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
Slew Rate $\left(\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=-2.0 \mathrm{~V} \text { to }+2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{V}}=+1.0\right)$	16, 26	SR	0.5	1.0	-	V/us
Gain Bandwidth Product ($\mathrm{f}=100 \mathrm{kHz}$)	17	GBW	-	2.2	-	MHz
Gain Margin ($\left.\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}\right)$	20,21, 22	A_{M}	-	12	-	dB
Phase Margin ($\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$)	20,21, 22	\emptyset_{M}	-	65	-	Deg
Channel Separation ($\mathrm{f}=1.0 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=100$)	23	CS	-	90	-	dB
Power Bandwidth ($\mathrm{V}_{\mathrm{O}}=4.0 \mathrm{~V}_{\mathrm{pp}}, \mathrm{R}_{\mathrm{L}}=600 \Omega$, THD $\leq 1 \%$)		BW_{P}	-	28	-	kHz
$\begin{aligned} & \text { Total Harmonic Distortion }\left(R_{L}=600 \Omega, V_{O}=1.0 \mathrm{~V}_{\mathrm{pp}}, A_{\mathrm{V}}=1.0\right) \\ & \quad \mathrm{f}=1.0 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{kHz} \end{aligned}$	24	THD	-	$\begin{aligned} & 0.002 \\ & 0.008 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	\%
Open Loop Output Impedance $\left(\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=2.0 \mathrm{MHz}, \mathrm{~A}_{\mathrm{V}}=10\right)$		$\left\|Z_{0}\right\|$	-	100	-	Ω
Differential Input Resistance ($\left.\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}\right)$		$\mathrm{R}_{\text {in }}$	-	200	-	k Ω
Differential Input Capacitance ($\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$)		$\mathrm{C}_{\text {in }}$	-	8.0	-	pF
$\begin{aligned} & \text { Equivalent Input Noise Voltage }\left(R_{S}=100 \Omega\right) \\ & \qquad \begin{array}{l} f=10 \mathrm{~Hz} \\ f=1.0 \mathrm{kHz} \end{array} \end{aligned}$	25	e_{n}	-	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$
Equivalent Input Noise Current $\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=1.0 \mathrm{kHz} \end{aligned}$	25	i_{n}	-	$\begin{aligned} & 0.8 \\ & 0.2 \end{aligned}$	-	$\frac{\mathrm{pA} /}{\sqrt{\mathrm{Hz}}}$

Figure 2. Maximum Power Dissipation versus Temperature

Figure 4. Input Offset Voltage Temperature Coefficient Distribution

Figure 6. Input Bias Current versus Common Mode Voltage

Figure 3. Input Offset Voltage Distribution

Figure 5. Input Bias Current versus Temperature

Figure 7. Open Loop Voltage Gain versus Temperature

MC33201, MC33202, MC33204, NCV33201, NCV33202, NCV33204

Figure 8. Output Voltage Swing versus Supply Voltage

Figure 10. Output Voltage versus Frequency

Figure 12. Power Supply Rejection versus Frequency

Figure 9. Output Saturation Voltage versus Load Current

Figure 11. Common Mode Rejection versus Frequency

Figure 13. Output Short Circuit Current versus Output Voltage

Figure 14. Output Short Circuit Current versus Temperature

Figure 16. Slew Rate versus Temperature

Figure 15. Supply Current per Amplifier versus Supply Voltage with No Load

Figure 17. Gain Bandwidth Product versus Temperature

Figure 18. Voltage Gain and Phase versus Frequency

Figure 19. Voltage Gain and Phase versus Frequency

MC33201, MC33202, MC33204, NCV33201, NCV33202, NCV33204

Figure 20. Gain and Phase Margin versus Temperature

Figure 22. Gain and Phase Margin versus Capacitive Load

Figure 24. Total Harmonic Distortion versus Frequency

Figure 21. Gain and Phase Margin versus Differential Source Resistance

Figure 23. Channel Separation versus Frequency

Figure 25. Equivalent Input Noise Voltage and Current versus Frequency

MC33201, MC33202, MC33204, NCV33201, NCV33202, NCV33204
 DETAILED OPERATING DESCRIPTION

General Information

The MC33201/2/4 family of operational amplifiers are unique in their ability to swing rail-to-rail on both the input and the output with a completely bipolar design. This offers low noise, high output current capability and a wide common mode input voltage range even with low supply voltages. Operation is guaranteed over an extended temperature range and at supply voltages of $2.0 \mathrm{~V}, 3.3 \mathrm{~V}$ and 5.0 V and ground.

Since the common mode input voltage range extends from V_{CC} to V_{EE}, it can be operated with either single or split voltage supplies. The MC33201/2/4 are guaranteed not to latch or phase reverse over the entire common mode range, however, the inputs should not be allowed to exceed maximum ratings.

Circuit Information

Rail-to-rail performance is achieved at the input of the amplifiers by using parallel NPN-PNP differential input stages. When the inputs are within 800 mV of the negative rail, the PNP stage is on. When the inputs are more than 800 mV greater than V_{EE}, the NPN stage is on. This switching of input pairs will cause a reversal of input bias currents (see Figure 6). Also, slight differences in offset voltage may be noted between the NPN and PNP pairs. Cross-coupling techniques have been used to keep this change to a minimum.
In addition to its rail-to-rail performance, the output stage is current boosted to provide 80 mA of output current, enabling the op amp to drive 600Ω loads. Because of this high output current capability, care should be taken not to exceed the $150^{\circ} \mathrm{C}$ maximum junction temperature.

t , TIME ($5.0 \mu \mathrm{~s} / \mathrm{DIV})$
Figure 26. Noninverting Amplifier Slew Rate

t, TIME ($10 \mu \mathrm{~s} / \mathrm{DIV}$)
Figure 27. Small Signal Transient Response

Figure 28. Large Signal Transient Response

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface
between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process.

ORDERING INFORMATION

Operational Amplifier Function	Device	Operating Temperature Range	Package	Shipping ${ }^{\dagger}$
Single	MC33201DR2G	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SOIC-8 (Pb-Free)	2500 / Tape \& Reel
	MC33201VDR2G	$\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$		2500 / Tape \& Reel
	NCV33201VDR2G			2500 / Tape \& Reel
Dual	MC33202DR2G	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SOIC-8 (Pb-Free)	2500 / Tape \& Reel
	MC33202DMR2G		Micro-8 (Pb-Free)	4000 / Tape \& Reel
	NCV33202DMR2G*			
	MC33202VDR2G	$\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$	SOIC-8 (Pb-Free)	2500 / Tape \& Reel
	NCV33202VDR2G*			
Quad	MC33204DR2G	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}$	SO-14 (Pb-Free)	2500 Units / Tape \& Reel
	MC33204DTBR2G		TSSOP-14 (Pb-Free)	2500 Units / Tape \& Reel
	NCV33204DR2G*	$\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$	SO-14 (Pb-Free)	2500 Units / Tape \& Reel
	NCV33204DTBR2G*		TSSOP-14 (Pb-Free)	2500 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MARKING DIAGRAMS

SO-14
VD SUFFIX
CASE 751A
14

$x \quad=1$ or
A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
$\mathrm{G} \quad=\mathrm{Pb}$-Free Package

- = Pb-Free Package
(Note: Microdot may be in either location)
*This marking diagram applies to NCV3320xV
**This marking diagram applies to NCV33202DMR2G

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
	4.80	5.00	0.189	0.197		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27		BSC	0.050		BSC
H	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
M	0	\circ	$8{ }^{\circ}$	$0{ }^{\circ}$		
N	0.25	0.50	0.010	0.020		
\mathbf{S}	5.80	6.20	0.228	0.244		

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE 2:
PIN 1. COLLECTOR,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5. P-DRAIN
6. P-DRAIN
7. N -DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
3. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	BSC
H	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0°	7°	0°	7°

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

ON Semiconductor and (0N are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE

STYLE 5
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE
11. COMMON CATHOD
13. ANODE/CATHODE
14. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-14 NB	

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

Micro8
CASE 846A-02
ISSUE K
DATE 16 JUL 2020
SCALE 2:1

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CINTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN b DUES NDT INCLUDE DAMBAR PRDTRUSIDN ALLIWABLE PRITRUSIDN SHALL BE 0.10 mm IN EXCESS DF MAXIMUM MATERIAL CINDITIDN
4. DIMENSIUNS D AND E DD NDT INCLUDE MLLD FLASH, PRDTRUSIDr GR GATE BURRS, MILD FLASH, PRDTRUSIUNS, $G R$ GATE BURRS SHALL NDT EXCEED 0.15 mm PER SIDE. DIMENSIDN E DDES NDT INCLUDE INTERLEAD FLASH $\square R$ PRITRUSIDN. INTERLEAD FLASH IR PRZTRUSIDN SHALL NDT EXCEED 0.25 mm PER SIDE. DIMENSIINS D AND E ARE DETERMINED AT DATUM F.
5. DATUMS A AND B ARE TV BE DETERMINED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FRIM THE SEATING PLANE TI THE LIWEST PDINT IN THE PACKAGE BGDY.
GENERIC MARKING DIAGRAM*

= Specific Device Code
$\begin{array}{ll}\text { XXXX } & =\text { Specific Device Code } \\ \text { A } & =\text { Assembly Location }\end{array}$
Y = Year
W = Work Week

- = Pb-Free Package

END VIEW
0.65

PITCH ${ }^{-}$
RECDMMENDED MDUNTING FIDTPRINT

DIM	MILLIMETERS		
	MIN.	NIM.	MAX.
A	---	--	1.10
A1	0.05	0.08	0.15
b	0.25	0.33	0.40
C	0.13	0.18	0.23
D	2.90	3.00	3.10
E	2.90	3.00	3.10
e	0.65 BSC		
H_{E}	4.75	4.90	
L	0.40	5.05	

PITCH
STYLE 1:
PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 2:

PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1

STYLE 3:

PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE
4. P-GATE
4. P-GATE
5. P-DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN or may not be present. Some products may not follow the Generic Marking

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MICRO8 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT MOLD FLASH OR GATE BURRS
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	
BSC				
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252	BSC
M	$0{ }^{\circ}$	8°	0°	8°

GENERIC MARKING DIAGRAM*

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \bullet ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-14 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any ans.
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

