MC10E141

5 V ECL 8-Bit Shift Register

Description

The MC10E/100E141 is an 8-bit full-function shift register. The E141 performs serial/parallel in and serial/parallel out, shifting in either direction. The eight inputs $\mathrm{D}_{0}-\mathrm{D}_{7}$ accept parallel input data, while DL/DR accept serial input data for left/right shifting. The Qn outputs do not need to be terminated for the shift operation to function. To minimize noise and power, any Q output not used should be left unterminated.

The select pins, SEL0 and SEL1, select one of four modes of operation: Load, Hold, Shift Left, Shift Right, according to the Function Table.

Input data is accepted a set-up time before the positive clock edge. A HIGH on the Master Reset (MR) pin asynchronously resets all the registers to zero.

The 100 Series contains temperature compensation.

Features

- 700 MHz Min. Shift Frequency
- 8-Bit
- Full-Function, Bi-Directional
- Asynchronous Master Reset
- Pin-Compatible with E241
- PECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$ to 5.7 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
with $\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to -5.7 V
- Internal Input $50 \mathrm{k} \Omega$ Pulldown Resistors
- ESD Protection:
- > 2 kV Human Body Model
- > 200 V Machine Model
- Meets or Exceeds JEDEC Standard EIA/JESD78 IC Latchup Test
- Moisture Sensitivity: Level 3 (Pb-Free)
(For Additional Information, see Application Note AND8003/D)
- Flammability Rating: UL 94 V-0 @ 0.125 in,

Oxygen Index: 28 to 34

- Transistor Count $=565$ Devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor ${ }^{\oplus}$ www.onsemi.com

PLCC-28
FN SUFFIX
CASE 776-02

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping \dagger
MC10E141FNG	PLCC-28 (Pb-Free)	37 Units / Tube
MC10E141FNR2G	PLCC-28 (Pb-Free)	500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

* All V_{CC} and $\mathrm{V}_{\mathrm{CCO}}$ pins are tied together on the die.

Warning: All $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCO}}$, and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
$D_{0}-D_{7}$	ECL Parallel Data Inputs
$D^{2}, D R$	ECL Serial Data Inputs
SELO, SEL1	ECL Mode Select In Inputs
CLK	ECL Clock
$Q_{0}-Q_{7}$	ECL Data Outputs
MR	ECL Master Reset
$V_{\text {CC }}, V_{C C O}$	Positive Supply*
$V_{\text {EE }}$	Negative Supply
NC	No Connect

*From $V_{\text {CC }}$ pin to each $\mathrm{V}_{\mathrm{CCO}}$ pin is an internal 100Ω resistor.

Table 2. FUNCTION TABLE

SEL0	SEL1	FUNCTION
L	L	Load
L	H	Shift Right $\left(D_{n}\right.$ to $\left.D_{n+1}\right)$
H	L	Shift Left $\left(D_{n}\right.$ to $\left.D_{n-1}\right)$
H	H	Hold

Figure 1. 28-Lead Pinout

Figure 2. Logic Diagram
Table 3. EXPANDED FUNCTION TABLE

Function	DL	DR	SEL0	SEL1	MR	CLK	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
Load	X	X	L	L	L	Z	D0	D1	D2	D3	D4	D5	D6	D7
Shift Right	X	L	L	H	L	Z	L	Q0	Q1	Q2	Q3	Q4	Q5	Q6
	X	H	L	H	L	Z	H	L	Q0	Q1	Q2	Q3	Q4	Q5
Shift Left	L	X	H	L	L	Z	L	Q0	Q1	Q2	Q3	Q4	Q5	L
	H	X	H	L	L	Z	Q0	Q1	Q2	Q3	Q4	Q5	L	H
Hold	X	X	H	H	L	Z	Q0	Q1	Q2	Q3	Q4	Q5	L	H
	X	X	H	H	L	Z	Q0	Q1	Q2	Q3	Q4	Q5	L	H
Reset	X	X	X	X	H	X	L	L	L	L	L	L	L	L

MC10E141

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	PECL Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		8	V
V_{EE}	NECL Mode Power Supply	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}$		-8	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline 6 \\ -6 \end{gathered}$	V
$\mathrm{I}_{\text {out }}$	Output Current	Continuous		$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
T_{A}	Operating Temperature Range			0 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	$\begin{array}{\|l\|} \hline 0 \text { lfpm } \\ 500 \text { lfpm } \end{array}$	$\begin{aligned} & \text { PLCC-28 } \\ & \text { PLCC-28 } \end{aligned}$	$\begin{aligned} & 63.5 \\ & 43.5 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	PLCC-28	22 to 26	${ }^{\circ} \mathrm{C} / \mathrm{W}$
V_{EE}	PECL Operating Range NECL Operating Range			$\begin{gathered} 4.2 \text { to } 5.7 \\ -5.7 \text { to }-4.2 \end{gathered}$	V
$\mathrm{T}_{\text {sol }}$	Wave Solder (Pb-Free)			$\begin{aligned} & 265 \\ & 265 \end{aligned}$	${ }^{\circ} \mathrm{C}$

Table 5. 10E SERIES PECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CCx}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		131	181		131	181		131	181	mA
V_{OH}	Output HIGH Voltage (Note 2)	3980	4070	4160	4020	4105	4190	4090	4185	4280	mV
VOL	Output LOW Voltage (Note 2)	3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
V_{IH}	Input HIGH Voltage	3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
V_{IL}	Input LOW Voltage	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.3	0.2		$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $-0.46 \mathrm{~V} /+0.06 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.

Table 6. 10E SERIES NECL DC CHARACTERISTICS $\left(\mathrm{V}_{C C x}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		131	181		131	181		131	181	mA
V_{OH}	Output HIGH Voltage (Note 2)	-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
V_{IH}	Input HIGH Voltage	-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
V_{IL}	Input LOW Voltage	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5	0.3		0.5	0.065		0.3	0.2		$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $-0.46 \mathrm{~V} /+0.06 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.

Table 7. 100E SERIES PECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CCx}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		131	181		131	181		151	181	mA
V_{OH}	Output HIGH Voltage (Note 2)	3975	4050	4120	3975	4050	4120	3975	4050	4120	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	3190	3295	3380	3190	3255	3380	3190	3260	3380	mV
V_{IH}	Input HIGH Voltage	3835	3975	4120	3835	3975	4120	3835	3975	4120	mV
V_{IL}	Input LOW Voltage	3190	3355	3525	3190	3355	3525	3190	3355	3525	mV
$\mathrm{IIH}^{\text {I }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}. $\mathrm{V}_{\text {EE }}$ can vary $-0.46 \mathrm{~V} /+0.8 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.

Table 8. 100E SERIES NECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CCx}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		131	181		131	181		151	181	mA
V_{OH}	Output HIGH Voltage (Note 2)	-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
V_{IH}	Input HIGH Voltage	-1165	-1025	-880	-1165	-1025	-880	-1165	-880	-1025	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-1810	-1645	-1475	-1810	-1645	-1475	-1810	-1475	-1645	mV
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $-0.46 \mathrm{~V} /+0.8 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.

Table 9. AC CHARACTERISTICS $\left(\mathrm{V}_{C C x}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ or $\mathrm{V}_{\mathrm{CCx}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {SHIFT }}$	Max. Shift Frequency	700	900		700	900		700	900		MHz
$\begin{gathered} \mathrm{tPLH}^{\mathrm{t}} \\ \mathrm{PHL} \end{gathered}$	Propagation Delay To Output Clk MR	$\begin{aligned} & 625 \\ & 600 \end{aligned}$	$\begin{aligned} & 750 \\ & 725 \end{aligned}$	$\begin{aligned} & 975 \\ & 975 \end{aligned}$	$\begin{aligned} & 625 \\ & 600 \end{aligned}$	$\begin{aligned} & 750 \\ & 725 \end{aligned}$	$\begin{aligned} & 975 \\ & 975 \end{aligned}$	$\begin{aligned} & 625 \\ & 600 \end{aligned}$	$\begin{aligned} & 750 \\ & 725 \end{aligned}$	$\begin{aligned} & 975 \\ & 975 \end{aligned}$	ps
$\mathrm{t}_{\text {s }}$	Setup Time D SELO SEL1	$\begin{aligned} & 175 \\ & 350 \\ & 300 \end{aligned}$	$\begin{gathered} 25 \\ 200 \\ 150 \end{gathered}$		$\begin{aligned} & 175 \\ & 350 \\ & 300 \end{aligned}$	$\begin{gathered} 25 \\ 200 \\ 150 \end{gathered}$		$\begin{aligned} & 175 \\ & 350 \\ & 300 \end{aligned}$	$\begin{aligned} & 25 \\ & 200 \\ & 150 \end{aligned}$		ps
$t_{\text {h }}$	```Hold Time D SELO SEL1```	$\begin{aligned} & 200 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & -25 \\ & -200 \\ & -150 \end{aligned}$		$\begin{aligned} & 200 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & -25 \\ & -200 \\ & -150 \end{aligned}$		$\begin{aligned} & 200 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & -25 \\ & -200 \\ & -150 \end{aligned}$		ps
t_{RR}	Reset Recovery Time	900	700		900	700		900	700		ps
tPW	Minimum Pulse Width Clk, MR	400			400			400			ps
${ }^{\text {tskEw }}$	Within-Device Skew (Note 2)		60			60			60		ps
$\mathrm{t}_{\text {JITTER }}$	Random Clock Jitter (RMS)		<1			<1			<1		ps
$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Rise/Fall Times (20-80\%)	300	525	800	300	525	800	300	525	800	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. 10 Series: $\mathrm{V}_{\text {EE }}$ can vary $-0.46 \mathrm{~V} /+0.06 \mathrm{~V}$.

100 Series: $\mathrm{V}_{\text {EE }}$ can vary $-0.46 \mathrm{~V} /+0.8 \mathrm{~V}$.
2. Within-device skew is defined as identical transitions on similar paths through a device.

MC10E141

Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices)

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS $^{\text {M }}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family $^{\text {AN1568/D }}-$ Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

MC10E141

PACKAGE DIMENSIONS

28 LEAD PLLC
FN SUFFIX
CASE 776-02
ISSUE F

NOTES:

1. DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOPOF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE 2. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH
3. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE O.jTERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXTREMES OF THE PLASIIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR
BURRS, GATE BURRS AND INTERLEAD BURRS, GATE BURRS AND INTERLEAD
FLASH, BUT INCLUDING ANY MISMATCH FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
4. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.485	0.495	12.32	12.57
B	0.485	0.495	12.32	12.57
C	0.165	0.180	4.20	4.57
E	0.090	0.110	2.29	2.79
F	0.013	0.021	0.33	0.53
G	0.050 BSC		1.27	
BSC				
H	0.026	0.032	0.66	0.81
J	0.020	---	0.51	---
K	0.025	---	0.64	---
R	0.450	0.456	11.43	11.58
U	0.450	0.456	11.43	11.58
V	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
X	0.042	0.056	1.07	1.42
Y	---	0.020	---	0.50
Z	2°	10°	2°	10°
G1	0.410	0.430	10.42	10.92
K1	0.040	---	1.02	---

MC10E141

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

