ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
LMV331, NCV331, LMV393, LMV339

Single, Dual, Quad General Purpose, Low Voltage Comparators

The LMV331 is a CMOS single channel, general purpose, low voltage comparator. The LMV393 and LMV339 are dual and quad channel versions, respectively. The LMV331/393/339 are specified for 2.7 V to 5 V performance, have excellent input common-mode range, low quiescent current, and are available in several space saving packages.

The LMV331 is available in 5-pin SC-70 and TSOP-5 packages. The LMV393 is available in a 8 -pin Micro ${ }^{\text {™ }}$, SOIC-8, and a UDFN8 package, and the LMV339 is available in a SOIC-14 and a TSSOP-14 package.

The LMV331/393/339 are cost effective solutions for applications where space saving, low voltage operation, and low power are the primary specifications in circuit design for portable applications.

Features

- Guaranteed 2.7 V and 5 V Performance
- Input Common-mode Voltage Range Extends to Ground
- Open Drain Output for Wired-OR Applications
- Low Quiescent Current: $60 \mu \mathrm{~A} /$ channel TYP @ 5 V
- Low Saturation Voltage 200 mV TYP @ 5 V
- Propagation Delay 200 ns TYP @ 5 V
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant
Typical Applications
- Battery Monitors
- Notebooks and PDA's
- General Purpose Portable Devices
- General Purpose Low Voltage Applications

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

Figure 2. Hysteresis Curve

LMV331，NCV331，LMV393，LMV339

MARKING DIAGRAMS

SC－70

 CASE 419A

CCA＝Specific Device Code
M＝Date Code
－＝Pb－Free Package
（Note：Microdot may be in either location）

TSOP－5 CASE 483

A＝Assembly Location
Y＝Year
W＝Work Week
－＝Pb－Free Package
（Note：Microdot may be in either location）

SOIC－14
CASE 751A

A＝Assembly Location
WL＝Wafer Lot
Y＝Year
WW＝Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
CASE 751A

UDFN8 CASE 517AJ

CA＝Specific Device Code
M＝Date Code
－＝Pb－Free Package
（Note：Microdot may be in either location）

SOIC－8 CASE 751

A＝Assembly Location
L＝Wafer Lot
Y $\quad=$ Year
W＝Work Week
－$\quad=$ Pb－Free Package
TSSOP－14
CASE 948G
14 月H日月日日月
LMV
339
ALYW－
1 \＃\＃\＃\＃\＃\＃

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
－	$=$ Pb－Free Package

（Note：Microdot may be in either location）

PACKAGE PINOUTS

LMV331, NCV331, LMV393, LMV339

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V_{S}	Voltage on any Pin (referred to V^{-}pin)	5.5	V
$\mathrm{~V}_{\text {IDR }}$	Input Differential Voltage Range	\pm Supply Voltage	V
T_{J}	Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating Ambient Temperature RangeLMV331, LMV393, LMV339 NCV331 (Note 3)	-40 to 85 -40 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{L}	Mounting Temperature (Infrared or Convection (1/16" From Case for 30 Seconds))	260	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Tolerance (Note 1) Machine Model Human Body Model	100 1000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
$V_{\text {CC }}$	Supply Voltage Temperature Range (Note 2)	2.7 to 5.0	
$\theta_{\text {JA }}$	Thermal Resistance	V	
	SC-70	280	
	TSOP-5	333	
	Micro8	238	
	SOIC-8	212	
	UDFN8	350	
	SOIC-14	156	
	TSSOP-14	190	

1. Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).
2. The maximum power dissipation is a function of $T_{J(M A X)}, \theta_{J A}$. The maximum allowable power dissipation at any ambient temperature is $P_{D}=\left(T_{J(M A X)}-T_{A}\right) /_{\theta J A}$. All numbers apply for packages soldered directly onto a PC board.
3. NCV prefix is qualified for automotive usage.

LMV331, NCV331, LMV393, LMV339

2.7 V DC ELECTRICAL CHARACTERISTICS (All limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.35 \mathrm{~V}$ unless otherwise noted.)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input Offset Voltage	V_{IO}			1.7	9	mV
Input Offset Voltage Average Drift	$\mathrm{T}_{\mathrm{C}} \mathrm{V}_{\mathrm{IO}}$			5		$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Input Bias Current (Note 4)	I_{B}			<1		nA
Input Offset Current (Note 4)	I_{IO}			<1		nA
Input Voltage Range	V_{CM}			0 to 2		V
Saturation Voltage	$\mathrm{V}_{\mathrm{SAT}}$	$\mathrm{I}_{\mathrm{SINK}} \leq 1 \mathrm{~mA}$		120		mV
Output Sink Current	I_{O}	$\mathrm{V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$	5	23		mA
Supply Current	I			40	100	$\mu \mathrm{~A}$
				70	100	140
				140	200	

2.7 V AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{V}^{-}=0 \mathrm{~V}\right.$ unless otherwise noted.)

Parameter	Symbol	Condition	Min	Typ	Max
Propagation Delay - High to Low	tPHL	Input Overdrive $=10 \mathrm{mV}$ Input Overdrive $=100 \mathrm{mV}$		1000	
Propagation Delay - Low to High	tPLH	Input Overdrive $=10 \mathrm{mV}$ Input Overdrive $=100 \mathrm{mV}$		ns	

4. Guaranteed by design and/or characterization.
5.0 V DC ELECTRICAL CHARACTERISTICS (All limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}$ unless otherwise noted. Limits over temperature are guaranteed by design and/or characterization.)

Parameter	Symbol	Condition (Note 6)	Min	Typ	Max	Unit
Input Offset Voltage	V_{10}	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {LO }}$ to $\mathrm{T}_{\text {HIGH }}$		1.7	9	mV
Input Offset Voltage Average Drift		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {LO }}$ to $\mathrm{T}_{\text {HIGH }}$		5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current (Note 5)	I_{B}	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {LO }}$ to $\mathrm{T}_{\text {HIGH }}$		<1		nA
Input Offset Current (Note 5)	I_{10}	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {LO }}$ to $\mathrm{T}_{\text {HIGH }}$		<1		nA
Input Voltage Range	V_{CM}			0 to 4.2		V
Voltage Gain (Note 5)	A_{V}		20	50		V/mV
Saturation Voltage	$\mathrm{V}_{\text {SAT }}$	$\begin{gathered} \mathrm{I}_{\mathrm{SINK}}=10 \mathrm{~mA} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {LO }} \text { to } \mathrm{T}_{\mathrm{HIGH}} \end{gathered}$		200	$\begin{aligned} & 400 \\ & 700 \end{aligned}$	mV
Output Sink Current	Io	$\mathrm{V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}$	10	84		mA
Supply Current LMV331	I_{CC}	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {LO }}$ to $\mathrm{T}_{\text {HIGH }}$		60	$\begin{aligned} & 120 \\ & 150 \end{aligned}$	$\mu \mathrm{A}$
Supply Current LMV393	I_{CC}	$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {LO }}$ to $\mathrm{T}_{\text {HIGH }}$		100	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$
Supply Current LMV339	I_{CC}	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {LO }}$ to $\mathrm{T}_{\text {HIGH }}$		170	$\begin{aligned} & 300 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$
Output Leakage Current (Note 5)		$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {LO }}$ to $\mathrm{T}_{\text {HIGH }}$		0.003	1	$\mu \mathrm{A}$

5.0 V AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{V}^{-}=0 \mathrm{~V}\right.$ unless otherwise noted.)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Propagation Delay - High to Low	tPHL	Input Overdrive $=10 \mathrm{mV}$ Input Overdrive $=100 \mathrm{mV}$		1500		ns
			900		800	
Propagation Delay - Low to High	tPLH	Input Overdrive $=10 \mathrm{mV}$ Input Overdrive $=100 \mathrm{mV}$		200		ns

5. Guaranteed by design and/or characterization.
6. For LMV331, LMV393, LMV339: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

For NCV331: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

LMV331, NCV331, LMV393, LMV339

TYPICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega\right.$ unless otherwise specified)

Figure 3. Supply Current vs. Supply Voltage (Output High)

Figure 5. $\mathrm{V}_{\text {SAT }}$ vs. Output Current at

$$
\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}
$$

Figure 4. Supply Current vs. Supply Voltage (Output Low)

Figure 6. $\mathrm{V}_{\text {SAT }}$ vs. Output Current at
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

LMV331, NCV331, LMV393, LMV339

NEGATIVE TRANSITION INPUT - $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$

Figure 7. 10 mV Overdrive

Figure 8. $\mathbf{2 0}$ mV Overdrive

Figure 9. 100 mV Overdrive

LMV331, NCV331, LMV393, LMV339

POSITIVE TRANSITION INPUT - $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$

Figure 10.10 mV Overdrive

Figure 11.20 mV Overdrive

Figure 12. 100 mV Overdrive

LMV331, NCV331, LMV393, LMV339

NEGATIVE TRANSITION INPUT - $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 13.10 mV Overdrive

Figure 14. 20 mV Overdrive

Figure 15. 100 mV Overdrive

LMV331, NCV331, LMV393, LMV339

POSITIVE TRANSITION INPUT - $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 16. 10 mV Overdrive

Figure 17. 20 mV Overdrive

Figure 18. 100 mV Overdrive

APPLICATION CIRCUITS

Basic Comparator Operation

The basic operation of a comparator is to compare two input voltage signals, and produce a digital output signal by determining which input signal is higher. If the voltage on the non-inverting input is higher, then the internal output transistor is off and the output will be high. If the voltage on the inverting input is higher, then the output transistor will be on and the output will be low. The LMV331/393/339 has an open-drain output stage, so a pull-up resistor to a positive supply voltage is required for the output to switch properly.

The size of the pull-up resistor is recommended to be between $1 \mathrm{k} \Omega$ and $10 \mathrm{k} \Omega$. This range of values will balance two key factors; i.e., power dissipation and drive capability for interface circuitry.

Figure 19 illustrates the basic operation of a comparator and assumes dual supplies. The comparator compares the input voltage (V_{IN}) on the non-inverting input to the reference voltage ($\mathrm{V}_{\mathrm{REF}}$) on the inverting input. If $\mathrm{V}_{\text {IN }}$ is less than $\mathrm{V}_{\text {REF }}$, the output voltage (V_{O}) will be low. If V_{IN} is greater than $\mathrm{V}_{\mathrm{REF}}$, then V_{O} will be high.

Comparators and Stability

A common problem with comparators is oscillation due to their high gain. The basic comparator configuration in Figure 19 may oscillate if the differential voltage between the input pins is close to the device's offset voltage. This can happen if the input signal is moving slowly through the comparator's switching threshold or if unused channels are connected to the same potential for termination of unused channels. One way to eliminate output oscillations or 'chatter' is to include external hysteresis in the circuit design.

Inverting Configuration with Hysteresis

An inverting comparator with hysteresis is shown in Figure 20.

When $\mathrm{V}_{\text {IN }}$ is less than the voltage at the non-inverting node, V_{+}, the output voltage will be high. When $\mathrm{V}_{\text {IN }}$ is greater than the voltage at V_{+}, then the output will be low. The hysteresis band (Figure 21) created from the resistor network is defined as:

$$
\Delta \mathrm{V}_{+}=\mathrm{V}_{\mathrm{T} 1}-\mathrm{V}_{\mathrm{T} 2}
$$

where $\mathrm{V}_{\mathrm{T} 1}$ and $\mathrm{V}_{\mathrm{T} 2}$ are the lower and upper trip points, respectively.

Figure 21.
$\mathrm{V}_{\mathrm{T} 1}$ is calculated by assuming that the output of the comparator is pulled up to supply when high. The resistances R_{1} and R_{3} can be viewed as being in parallel which is in series with R_{2} (Figure 22). Therefore $\mathrm{V}_{\mathrm{T} 1}$ is:

$$
V_{T 1}=\frac{V_{C C} R_{2}}{\left(R_{1} \| R_{3}\right)+R_{2}}
$$

$\mathrm{V}_{\mathrm{T} 2}$ is calculated by assuming that the output of the comparator is at ground potential when low. The resistances R_{2} and R_{3} can be viewed as being in parallel which is in series with R_{1} (Figure 23). Therefore $\mathrm{V}_{\mathrm{T} 2}$ is:

$$
\mathrm{V}_{\mathrm{T} 2}=\frac{\mathrm{V}_{\mathrm{CC}}\left(\mathrm{R}_{2} \| \mathrm{R}_{3}\right)}{\mathrm{R}_{1}+\left(\mathrm{R}_{2} \| \mathrm{R}_{3}\right)}
$$

LMV331, NCV331, LMV393, LMV339

Figure 22.

Figure 23.

Non-inverting Configuration with Hysteresis

A non-inverting comparator is shown in Figure 24.

Figure 24.
The hysteresis band (Figure 25) of the non-inverting configuration is defined as follows:

$$
\Delta V_{\text {in }}=V_{C C} R_{1} / R_{2}
$$

Figure 25.

When $\mathrm{V}_{\text {IN }}$ is much less than the voltage at the inverting input ($\mathrm{V}_{\mathrm{REF}}$), then the output is low. R_{2} can then be viewed as being connected to ground (Figure 26). To calculate the voltage required at V_{IN} to trip the comparator high, the following equation is used:

$$
V_{\mathrm{in} 1}=\frac{\mathrm{V}_{\mathrm{ref}}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{R_{2}}
$$

When the output is high, $\mathrm{V}_{\text {IN }}$ must less than or equal to $\mathrm{V}_{\text {REF }}\left(\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {REF }}\right.$) before the output will be low again (Figure 27). The following equation is used to calculate the voltage at $V_{\text {IN }}$ to switch the output back to the low state:

$$
V_{i n 2}=\frac{V_{\text {ref }}\left(R_{1}+R_{2}\right)-V_{c C} R_{1}}{R_{2}}
$$

Figure 26.

Figure 27.

Termination of Unused Inputs

Proper termination of unused inputs is a good practice to keep the output from 'chattering.' For example, if one channel of a dual or quad package is not being used, then the inputs must be connected to a defined state. The recommended connections would be to tie one input to V_{CC} and the other input to ground.

LMV331, NCV331, LMV393, LMV339

ORDERING INFORMATION

Order Number	Number of Channels	Specific Device Marking	Package Type	Shipping †
LMV331SQ3T2G	Single	CCA	SC-70 (Pb-Free)	$3000 /$ Tape \& Reel
LMV331SN3T1G	Single	3CA	TSOP-5 (Pb-Free)	$3000 /$ Tape \& Reel
NCV331SN3T1G	Single	3CA	TSOP-5 (Pb-Free)	$3000 /$ Tape \& Reel
LMV393DMR2G	Dual	V393	Micro8 (Pb-Free)	$4000 /$ Tape \& Reel
LMV393DR2G	Dual	V393	SOIC-8 (Pb-Free)	$2500 /$ Tape \& Reel
LMV393MUTAG	Dual	CA	UDFN8 (Pb-Free)	$3000 /$ Tape \& Reel
LMV339DR2G	Quad	SMVIC-14 (Pb-Free)	$2500 /$ Tape \& Reel	
LMV339DTBR2G	Quad	LSMV (Pb-Free)	$2500 /$ Tape \& Reel	

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*Contact factory.

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	
G	0.026 BSC		0.65	

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

```
```

STYLE 1:

```
```

STYLE 1:
PIN 1. BASE
PIN 1. BASE
2. EMITTER
2. EMITTER
3. BASE
3. BASE
4. COLLECTOR
4. COLLECTOR
5. COLLECTOR

```
```

 5. COLLECTOR
    ```
```

```
STYLE 2:
    PIN 1. ANODE
        STYLE 3
```

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR
5. COLLECTOR 2/BASE

STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 3
PIN 1. ANODE
2. EMITTER 2. N/C
3. ANODE 2
4. CATHODE
5. CATHODE

STYLE 8

PIN 1. CATHODE
2. COLLECTOR
3. N / C
4. BASE
5. EMITTER

SOLDER FOOTPRINT

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

STYLE 5:

PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42984B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88A (SC-70-5/SOT-353) | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSOP-5
CASE 483
ISSUE N
DATE 12 AUG 2020
SCALE 2:1

NOTES

1. DIMENSIONING AND TOLERANCING PER ASME

Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH

THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD

FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

| DIM | MILLIMETERS | |
| :---: | :---: | :---: |
| | MIN | MAX |
| \mathbf{A} | 2.85 | 3.15 |
| \mathbf{B} | 1.35 | 1.65 |
| \mathbf{C} | 0.90 | 1.10 |
| \mathbf{D} | 0.25 | 0.50 |
| \mathbf{G} | 0.95 | BSC |
| \mathbf{H} | 0.01 | 0.10 |
| \mathbf{J} | 0.10 | 0.26 |
| \mathbf{K} | 0.20 | 0.60 |
| \mathbf{M} | 0 | 10° |
| \mathbf{S} | 2.50 | 3.00 |

GENERIC MARKING DIAGRAM*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

UDFN8 1.8x1.2, 0.4P CASE 517AJ-01

ISSUE O
DATE 08 NOV 2006
SCALE 4:1

MOUNTING FOOTPRINT

SOLDERMASK DEFINED

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP.
4. MOLD FLASH ALLOWED ON TERMINAL
5. ALONG EDGE OF PACKAGE. FLASH MAY AOT EXCEED O.O3 ONTO BOTTOM NOT EXCEED 0.03 ONTO B
6. DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

| | MILLIMETERS | |
| :---: | :---: | :---: |
| DIM | MIN | MAX |
| A | 0.45 | 0.55 |
| A1 | 0.00 | 0.05 |
| A3 | 0.127 | REF |
| b | 0.15 | |
| | 0.25 | |
| b2 | 0.30 | |
| REF | | |
| D | 1.80 BSC | |
| E | 1.20 BSC | |
| e | 0.40 BSC | |
| L | 0.45 | 0.55 |
| L1 | 0.00 | |
| L2 | 0.03 | |

GENERIC MARKING DIAGRAM*

| XXM | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$$
\begin{array}{ll}
\text { XX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON23417D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN8 1.8X1.2, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

| DIM | MILLIMETERS | | INCHES | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | MIN | MAX | MIN | MAX | | |
| | 4.80 | 5.00 | 0.189 | 0.197 | | |
| B | 3.80 | 4.00 | 0.150 | 0.157 | | |
| C | 1.35 | 1.75 | 0.053 | 0.069 | | |
| D | 0.33 | 0.51 | 0.013 | 0.020 | | |
| G | 1.27 | | BSC | 0.050 | | BSC |
| H | 0.10 | 0.25 | 0.004 | 0.010 | | |
| J | 0.19 | 0.25 | 0.007 | 0.010 | | |
| K | 0.40 | 1.27 | 0.016 | 0.050 | | |
| M | 0 | \circ | $8{ }^{\circ}$ | $0{ }^{\circ}$ | | |
| N | 0.25 | 0.50 | 0.010 | 0.020 | | |
| \mathbf{S} | 5.80 | 6.20 | 0.228 | 0.244 | | |

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^1] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

| PIN 1. | EMITTER |
| ---: | :--- |
| 2. | COLLECTOR |
| 3. | COLLECTOR |
| 4. | EMITTER |
| 5. | EMITTER |
| 6. | BASE |
| 7. | BASE |
| 8. | EMITTER |
| STYLE 5: | |
| PIN 1. | DRAIN |
| 2. | DRAIN |
| 3. | DRAIN |
| 4. | DRAIN |
| 5. | GATE |
| 6. | GATE |
| 7. | SOURCE |
| 8. | SOURCE |

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
7. COLLECTOR, \#1

STYLE 2:
PIN 1. COLLECTOR,
2. COLLECTOR, \#1
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14:
PIN 1. N-SOURCE
2. N-GATE

P-SOURCE
P-GATE
5. P-DRAIN
6. P-DRAIN
7. N -DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBUULK
7. VBULK
8. VIN

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| :---: | :---: | :---: |
| DESCRIPTION: | SOIC-8 NB | PAGE 2 OF 2 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

| DIM | MILLIMETERS | | INCHES | |
| :---: | :---: | :---: | :---: | :---: |
| | MIN | MAX | MIN | MAX |
| | 1.35 | 1.75 | 0.054 | 0.068 |
| A1 | 0.10 | 0.25 | 0.004 | 0.010 |
| A3 | 0.19 | 0.25 | 0.008 | 0.010 |
| b | 0.35 | 0.49 | 0.014 | 0.019 |
| D | 8.55 | 8.75 | 0.337 | 0.344 |
| E | 3.80 | 4.00 | 0.150 | 0.157 |
| e | 1.27 | BSC | 0.050 | BSC |
| H | 5.80 | 6.20 | 0.228 | 0.244 |
| h | 0.25 | 0.50 | 0.010 | 0.019 |
| L | 0.40 | 1.25 | 0.016 | 0.049 |
| M | 0° | 7° | 0° | 7° |

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

ON Semiconductor and (0N are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE
STYLE $5:$

PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE
11. COMMON CATHOD
13. ANODE/CATHODE
14. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| :---: | :---: | :---: |
| DESCRIPTION: | SOIC-14 NB | PAGE 2 OF 2 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

Micro8
CASE 846A-02
ISSUE K
DATE 16 JUL 2020
SCALE 2:1

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CINTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN b DUES NDT INCLUDE DAMBAR PRDTRUSIDN ALLIWABLE PRITRUSIDN SHALL BE 0.10 mm IN EXCESS DF MAXIMUM MATERIAL CINDITIDN
4. DIMENSIUNS D AND E DD NDT INCLUDE MLLD FLASH, PRDTRUSIDr GR GATE BURRS, MILD FLASH, PRDTRUSIUNS, $G R$ GATE BURRS SHALL NDT EXCEED 0.15 mm PER SIDE. DIMENSIDN E DDES NDT INCLUDE INTERLEAD FLASH $\square R$ PRITRUSIDN. INTERLEAD FLASH IR PRZTRUSIDN SHALL NDT EXCEED 0.25 mm PER SIDE. DIMENSIINS D AND E ARE DETERMINED AT DATUM F.
5. DATUMS A AND B ARE TV BE DETERMINED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FRIM THE SEATING PLANE TI THE LIWEST PDINT IN THE PACKAGE BGDY.
GENERIC MARKING DIAGRAM*

= Specific Device Code
$\begin{array}{ll}\text { XXXX } & =\text { Specific Device Code } \\ \text { A } & =\text { Assembly Location }\end{array}$
Y = Year
W = Work Week

- = Pb-Free Package

END VIEW
0.65

PITCH ${ }^{-}$
RECDMMENDED MDUNTING FIDTPRINT

| DIM | MILLIMETERS | | |
| :---: | :---: | :---: | :---: |
| | MIN. | NIM. | MAX. |
| A | --- | -- | 1.10 |
| A1 | 0.05 | 0.08 | 0.15 |
| b | 0.25 | 0.33 | 0.40 |
| C | 0.13 | 0.18 | 0.23 |
| D | 2.90 | 3.00 | 3.10 |
| E | 2.90 | 3.00 | 3.10 |
| e | 0.65 BSC | | |
| H_{E} | 4.75 | 4.90 | |
| L | 0.40 | 5.05 | |

PITCH
STYLE 1:
PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE $2:$

PIN 1. SOURCE 1
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
6. DRAIN 2
8. DRAIN 1

STYLE 3:

PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE
4. P-GATE
4. P-GATE
5. P-DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MICRO8 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT MOLD FLASH OR GATE BURRS
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

| DIM | MILLIMETERS | | INCHES | |
| :---: | :---: | :---: | :---: | :---: |
| | MIN | MAX | MIN | MAX |
| A | 4.90 | 5.10 | 0.193 | 0.200 |
| B | 4.30 | 4.50 | 0.169 | 0.177 |
| C | --- | 1.20 | --- | 0.047 |
| D | 0.05 | 0.15 | 0.002 | 0.006 |
| F | 0.50 | 0.75 | 0.020 | 0.030 |
| G | 0.65 | BSC | 0.026 | |
| BSC | | | | |
| H | 0.50 | 0.60 | 0.020 | 0.024 |
| J | 0.09 | 0.20 | 0.004 | 0.008 |
| J1 | 0.09 | 0.16 | 0.004 | 0.006 |
| K | 0.19 | 0.30 | 0.007 | 0.012 |
| K1 | 0.19 | 0.25 | 0.007 | 0.010 |
| L | 6.40 | BSC | 0.252 | BSC |
| M | $0{ }^{\circ}$ | 8° | 0° | 8° |

GENERIC MARKING DIAGRAM*

| A | $=$ Assembly Location |
| :--- | :--- |
| L | $=$ Wafer Lot |
| Y | $=$ Year |
| W | $=$ Work Week |
| - | $=$ Pb-Free Package |

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \bullet ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-14 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any ans.
rights of others.

ON Semiconductor and $O N$ are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

[^1]: ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

