

TPDVxx40

40 A high voltage Triacs

Datasheet - production data

Features

- On-state current (I_{T(RMS)}): 40 A
- Max. blocking voltage (V_{DRM}/V_{RRM}): 1200 V
- Gate current (I_{GT}): 200 mA
- Commutation at 10 V/µs: up to 142 A/ms
- Noise immunity: 500 V/µs
- Insulated package:
 - 2,500 V rms (UL recognized: E81734)

Description

The TPDVxx40 series use a high performance alternistor technology. Featuring very high commutation levels and high surge current capability, this family is well adapted to power control on inductive load (motor, transformer...).

Parameter	Blocking voltage V _{DRM} /V _{RRM}	On-state current I _{T(RMS)}	Gate current I _{GT}
TPDV640RG	600 V		
TPDV840RG	800 V	40 A	200 mA
TPDV1240RG	1200 V		

This is information on a product in full production.

1/8

Downloaded from Arrow.com.

1 Characteristics

Symbol	Paramete	Value	Unit		
I _{T(RMS)}	On-state rms current (180° conduction angle) $T_c = 75 \degree C$			40	А
		t _p = 2.5 ms		590	А
I _{TSM}	Non repetitive surge peak on-state current	t _p = 8.3 ms	T _j = 25 °C	370	
		t _p = 10 ms		350	
l ² t	I ² t value for fusing	t _p = 10 ms	T _j = 25 °C	610	A ² S
di/dt	Critical rate of rise of on-state current I _G = 500 mA; dI _G /dt = 1 A/µs	Repetitive F =	Repetitive F = 50 Hz		A/µs
dl/dt		Non repetitive	Non repetitive		
		TPDV640	T _j = 125 °C	600	v
V _{DRM} V _{RRM}	Repetitive peak off-state voltage	TPDV840		800	
. KKIN		TPDV1240		1200	
T _{stg}	Storage junction temperature range			-40 to +150	°C
Tj	Operating junction temperature range				0
ΤL	Maximum lead temperature for soldering	260	°C		
V _{INS(RMS)} ⁽¹⁾	Insulation rms voltage	Insulation rms voltage			

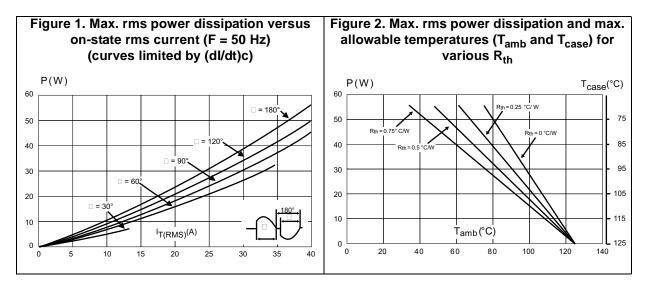
Table 2	Absolute	ratings	(limitina	values)	
	Absolute	ratings	(initiality)	values	

1. A1, A2, gate terminals to case for 1 minute

Table 3. Electrical Characteristics ($T_j = 25$ °C, unless otherwise specified)

Symbol	Test condition		Quadrant		Value	Unit
I _{GT}	V _D = 12 V DC, R _I = 33 Ω		- -	Max.	200	mA
V _{GT}	$v_{\rm D} = 12 v DC, R_{\rm L} = 33 \Omega$		1 - 11 - 111	Max.	1.5	V
V _{GD}	$V_D = V_{DRM} R_L = 3.3 k\Omega$	T _j = 125 °C	- -	Min.	0.2	V
t _{gt}	$V_D = V_{DRM} I_G = 500 \text{ mA } dI_G/dt =$	3A/µs	- -	Тур.	2.5	μs
I _H ⁽¹⁾	I _T = 500 mA Gate open			Тур.	50	mA
1	4.0 %		-	Тур.	100	mA
IL IL	IG - I.2 X IGT	$I_{G} = 1.2 \times I_{GT}$			200	
dV/dt	Linear slope up to : $V_D = 67\% V_{DRM}$ Gate open $T_j = 125 \degree C$			Min.	500	V/µs
V _{TM} ⁽¹⁾	I _{TM} = 56 A t _p = 380 μs	I _{TM} = 56 A t _p = 380 μs		Max.	1.8	V
I _{DRM}	$T_j = 25 \text{ °C}$			Max.	20	μA
I _{RRM}	V _{DRM =} V _{RRM}	T _j = 125 °C		ινιαλ.	8	mA
(dl/dt)c ⁽¹⁾	(dV/dt)c = 200 V/µs			N dire	35	A //20 0
	(dV/dt)c = 10 V/µs	T _j = 125 °C		Min.	142	A/ms

1. For either polarity of electrode A_2 voltage with reference to electrode A_1 .



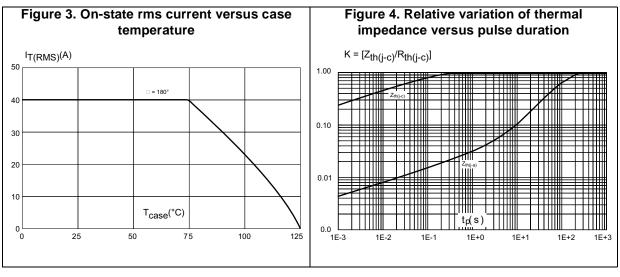

Symbol	Parameter	Parameter		Unit	
P _{G(AV)}	Average gate power dissipation		1	W	
P _{GM}	Peak gate power dissipation $t_p = 20 \ \mu s$		40	W	
I _{GM}	Peak gate current	Peak gate current t _p = 20 µs		A	
V _{GM}	Peak positive gate voltage t _p = 20 µs		16	V	

Table 4. Gate characteristics (maximum values)

Table 5. Thermal resistance

Symbol	Parameter	Value	Unit
R _{th(j-a)}	Junction to ambient	50	°C/W
R _{th(j-c)} DC	Junction to case for DC	1.2	°C/W
R _{th(j-c)} AC	Junction to case for 360 °conduction angle (F = 50 Hz)	0.9	°C/W

DocID18270 Rev 2

57

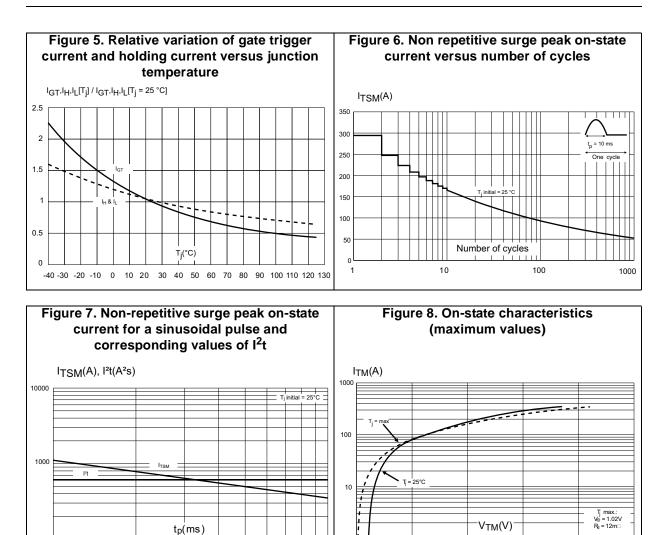
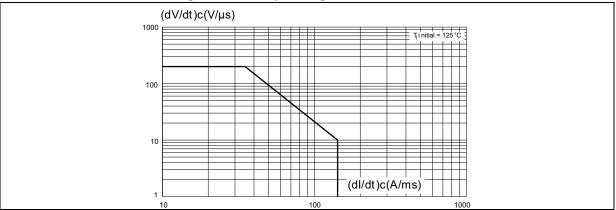
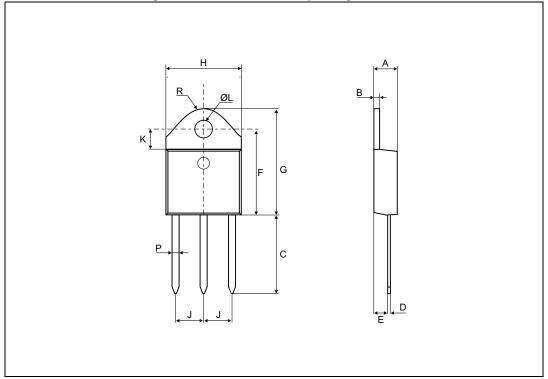



Figure 9. Safe operating area below curve



2 Package information

- Epoxy meets UL94, V0
- Cooling method:C (by conduction)
- Recommended torque value:0.9 to 1.2 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

2.1 TOP3 insulated package information

Figure 10. TOP3 insulated package outline

DocID18270 Rev 2

	Dimensions					
Ref.		Millimeters			Inches ⁽¹⁾	
	Тур.	Min.	Max.	Тур.	Min.	Max.
А		4.4	4.6		0.173	0.181
В		1.45	1.55		0.057	0.061
С		14.35	15.60		0.565	0.614
D		0.5	0.7		0.020	0.028
Е		2.7	2.9		0.106	0.114
F		15.8	16.5		0.622	0.650
G		20.4	21.1		0.815	0.831
Н		15.1	15.5		0.594	0.610
J		5.4	5.65		0.213	0.222
К		3.4	3.65		0.134	0.144
ØL		4.08	4.17		0.161	0.164
Р		1.20	1.40		0.047	0.055
R	4.60			0.181		

1. Values in inches are converted from mm and rounded to 4 decimal digits.

6/8

3 Ordering information

Order code	Marking	Package	Weight	Base qty.	delivery mode	
TPDV640RG	TPDV640					
TPDV840RG	TPDV840	TOP3 insulated	4.5 g	30	Tube	
TPDV1240RG	TPDV1240					

Table 7. Ordering information

4 Revision history

Date	Revision	Changes
30-Mar-2011	1	Initial release.
10-Jun-2015	2	Updated <i>Table 3</i> . Updated <i>Figure 9</i> . Format updated to current standard.

Table 8. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID18270 Rev 2

