

L6370Q

2.5 A single high-side smart power switch

Datasheet - production data

Features

- Operating voltage range (V_S) 9.5 V to 35 V
- Up to I_{out} = 2.5 A operating current
- R_{DS(on)}: 0.1 Ω
- Internal current limit
- Thermal shutdown
- Open ground protection
- Internal negative voltage clamping for fast demagnetization (V_{demag} = V_s - 50 V)
- Differential inputs with large common mode range and threshold hysteresis
- Undervoltage lockout with hysteresis
- Open load detection
- Two diagnostic outputs
- Output status LED driver
- Non-dissipative short-circuit protection
- Surge and transient protection (IEC61000-4-5)
- Burst transient immunity (IEC61000-4-4)
- ESD protection (human body model ±2 kV)

Applications

- Programmable logic controller
- Industrial PC peripheral input/output
- Numerical control machines
- Drivers for all loads (resistive, capacitive, inductive load)

Description

The L6370Q is a monolithic intelligent power switch in BCDmultipower technology to drive inductive or resistive loads. An internal clamping diode enables the fast demagnetization of inductive loads. Diagnostic for CPU feedback and extensive use of electrical protections make this device extremely rugged and especially suitable for industrial automation applications.

Table 1. Device summary

Part number	Package	Packaging
L6370Q	VFQFPN 7 x 7 x 1 48L	Tube
L6370QTR		Tape and reel

This is information on a product in full production.

Contents

1	Bloc	k diagram and pin description	. 3
	Pin d	lescription	. 4
2	Elec	trical specifications	. 6
	2.1	Absolute maximum ratings	. 6
	2.2	Thermal data	. 6
	2.3	Electrical characteristics	. 7
	2.4	AC operation	. 9
3	Circ	uit description	10
	3.1	Diagnostic truth table	.11
	3.2	Input section	.11
	3.3	Diagnostic logic	.11
	3.4	Short-circuit operation	12
	3.5	Overtemperature protection (OVT)	12
	3.6	Undervoltage protection (UV)	12
	3.7	Demagnetization of inductive loads	13
4	Pacl	kage information	14
	4.1	VFQFPN48 (7 x 7 x 1.0 mm) package information	14
5	Revi	ision history	16

1 Block diagram and pin description

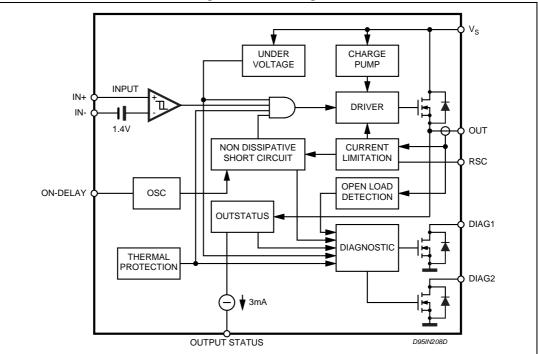
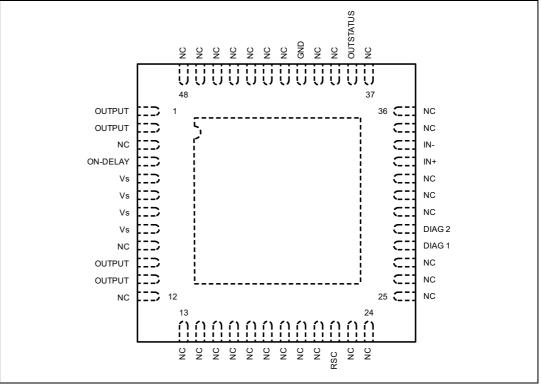



Figure 1.Block diagram

Pin description

	Table 2	2. Pin	description	
--	---------	--------	-------------	--

Pin	Name	Description
1	OUTPUT	High-side output with built-in current limitation
2	OUTPUT	High-side output with built-in current limitation
3	NC	Not connected
4	ON-DELAY	Programmable on-time interval duration during short-circuit operation
5	Vs	Supply voltage input, the value of the supply voltage is monitored to detect undervoltage conditions
6	Vs	Supply voltage input, the value of the supply voltage is monitored to detect undervoltage conditions
7	Vs	Supply voltage input, the value of the supply voltage is monitored to detect undervoltage conditions
8	Vs	Supply voltage input, the value of the supply voltage is monitored to detect undervoltage conditions
9	NC	Not connected
10	OUTPUT	High-side output with built-in current limitation
11	OUTPUT	High-side output with built-in current limitation
12	NC	Not connected
13	NC	Not connected
14	NC	Not connected
15	NC	Not connected
16	NC	Not connected
17	NC	Not connected
18	NC	Not connected
19	NC	Not connected
20	NC	Not connected
21	NC	Not connected
22	RSC	Current limitation settings
23	NC	Not connected
24	NC	Not connected
25	NC	Not connected
26	NC	Not connected
27	NC	Not connected
28	DIAG1	DIAGNOSTIC1 output. This open drain reports the IC working conditions (see <i>Table 6 on page 9</i>).
29	DIAG2	DIAGNOSTIC2 output. This open drain reports the IC working conditions (see <i>Table 6</i>).

Table 2. Pin description (continued)

Pin	Name	Description
30	NC	Not connected
31	NC	Not connected
32	NC	Not connected
33	IN+	Comparator inverting input
34	IN-	Comparator non-inverting input
35	NC	Not connected
36	NC	Not connected
37	NC	Not connected
38	OUTSTATUS	This current source output drives a LED to signal the status of the output pin. The pin is active (source current) when the output pin is considered high.
39	NC	Not connected
40	NC	Not connected
41	GND	Ground
42	NC	Not connected
43	NC	Not connected
44	NC	Not connected
45	NC	Not connected
46	NC	Not connected
47	NC	Not connected
48	NC	Not connected

2 Electrical specifications

2.1 Absolute maximum ratings

Symbol	Parameter	Value	Unit		
Vs	Supply voltage (Tw < 10 ms)	50	V		
V _s - V _o	Supply to output differential voltage (see also $V_{cl})$	Internally limited	V		
V _{od}	Externally forced voltage	-0.3 to 7	V		
I _{od}	Externally forced current	±1	mA		
V _{IN}	Input voltage	-10 to V _s +10	V		
Vi	Differential input voltage	43	V		
I _{IN}	Input current	20	mA		
I _{out}	Output current (see also I _{sc})	Internally limited	А		
E _{AS}	Single pulse avalanche energy (T _{amb} = 125 °C, V _{CC} = 24 V, I _{load} = 2.0 A)	6.0	J		
P _{TOT}	Power dissipation (see also thermal characteristics)	Internally limited	W		
T _{op}	Operating temperature range	-40 to +105	°C		
T _{STG}	Storage temperature	-55 to 150	°C		

Table 3. Absolute maximum ratings

2.2 Thermal data

Table 4. Therma

Symbol	Description	Value	Unit	
R _{th(JC)}	Thermal resistance junction-case	Max.	4	°C/W
R _{th(JA)}	(4)		50	0/10

1. Mounted on a 2-side + vias PCB with a ground dissipating area on the bottom side.

2.3 Electrical characteristics

(V_s = 24 V; T_J = –25 to +125 °C, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{smin}	Supply voltage for valid diagnostics	l _{diag} > 0.5 mA; V _{dg1} = 1.5 V	4	-	35	V
Vs	Supply voltage (operative)	-	9.5	24	35	V
۱ _q	Quiescent current $I_{out} = I_{os} = 0$	V _{il} V _{ih}	-	0.8 3	1.4 4	mA
V _{sth1}	Undervoltage threshold 1	T _{amb} = 0 to +85 °C (see <i>Figure 4</i>)	8.5	9	9.5	V
V _{sth2}	Undervoltage threshold 2	-	8	8.5	9	V
V _{sth3}	Supply voltage hysteresis	-	300	500	700	mV
I _{sc}	Short-circuit current	V_{s} = 9.5 to 35 V; R _L = 2 Ω 5 kΩ < R _{SC} < 30 kΩ	1	5/R _{SC} (k	Ω)	A
		0< R _{SC} < 5 kΩ	2.6	3.2	4	А
Ň		I _{out} = 2.0 A, T _j = 25 °C T _j = 125 °C	-	200 320	280 440	mV
V _{don}	Output voltage drop	I _{out} = 2.5 A, T _j = 25 °C T _j = 125 °C	-	250 400	350 550	mV
I _{oslk}	Output leakage current	$V_i = V_{ii}; V_o = 0 V$	-	-	500	μA
V _{ol}	Low-state out voltage	$V_i = V_{il}; R_L = \infty$	-	0.8	1.5	V
V _{cl}	Internal voltage clamp (V _s - V _O)	I _O = 1 A Single pulsed: T _p = 300 μs	48	53	58	V
I _{old}	Open load detection current	$V_i = V_{ih}$; $T_{amb} = 0$ to + 85 °C	1	3	6	mA
V _{id}	Common mode input voltage range (operative)	V _s = 18 to 35 V	-7	-	15	V
I _{ib}	Input bias current	V _i = -7 to 15 V; -In = 0 V	-250	-	250	μA
V _{ith}	Input threshold voltage	V +ln > V -ln	0.8	1.4	2	V
V _{iths}	Input threshold hysteresis voltage	V +ln > V -ln	50	-	400	mV
R _{id}	Differential input resistance	0 < +ln < +16 V; -ln = 0 V -7 < +ln < 0 V; -ln = 0 V	-	400 150	-	kΩ
		V +ln = V -ln +li 0 V < Vi < 5.5 V -li	-20 -75	-25	+20	
l _{ilk}	Input offset current	-In = GND +Ii 0 V < V + In <5.5 V -Ii	-250	+10 -125	+50	μA
		+ln = GND +li 0 V < V-ln <5.5 V -li	-100 -50	-30 -15	-	

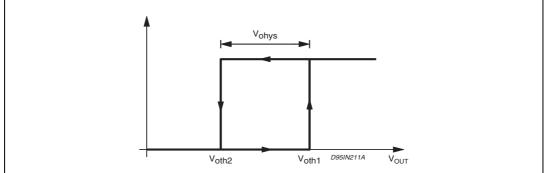
Table 5.	Electrical	characteristics
----------	------------	-----------------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{oth1}	Output status threshold 1 voltage		4.5	5	5.5	V
V _{oth2}	Output status threshold 2 voltage	(See Figure 3)	4	4.5	5.0	V
V _{ohys}	Output status threshold hysteresis		300	500	700	mV
I _{osd}	Output status source current	$V_{out} > V_{oth1}; V_{os} = 2.5 V$	2	-	4	mA
V _{osd}	Active output status driver drop voltage	$V_s - V_{os}$; $I_{os} = 2 \text{ mA}$ $T_{amb} = 0 \text{ to } +85 \text{ °C}$	-	1.5	3	V
I _{oslk}	Output status driver leakage current	$V_{out} < V_{oth2}$; $V_{os} = 0 V$ $V_s = 9.5 \text{ to } 35 V$	-	-	25	μA
V _{dgl}	Diagnostic drop voltage	D1 / D2 = L; I _{diag} = 0.5 mA D1 / D2 = L; I _{diag} = 3 mA	-	40 250	_	mV
I _{dglk}	Diagnostic leakage current	D1 / D2 = H; 0 < V _{dg} < V _s V _s = 9.5 to 35 V	-	-	5	μA
Source dr	ain NDMOS diode					<u>.</u>
V _{fsd}	Forward on voltage	At I _{fsd} = 2.5 A	-	1	1.5	V
I _{fp}	Forward peak current	t = 10 ms; d = 20%	-	-	6	А
t _{rr}	Reverse recovery time	I _f = 2.5 A di/dt = 25 A/μs	-	200	-	ns
t _{fr}	Forward recovery time	-	-	100	-	ns
Thermal c	haracteristics			•	•	
Θ_{lim}	Junction temperature protection	-	135	150	-	°C
Θ_{th}	Thermal hysteresis	-	-	20	-	°C

Table 5. Electrical characteristics	(continued)
-------------------------------------	-------------

Note:

 $V_{il} \le 0.8 V$, $V_{ih} \ge 2 V$ at (V + In > V - In).


2.4 AC operation

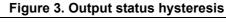

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _r - t _f	Rise or fall time	V_s = 24 V; R_l = 70 Ω ; R_l to ground	-	20	-	μs
t _d	Delay time	-	-	5	-	μs
dV/dt	Slew rate (rise and fall edge)	-	0.7	1	1.5	V/µs
t _{ON}	On-time during short-circuit condition	50 pF < C _{ON} < 2 nF	-	1.28	-	µs/pF
t _{OFF}	Off-time during short-circuit condition	-	-	64	-	t _{ON}
f _{max}	Maximum operating frequency	-	-	25	-	kHz

Table 6. AC operation

3 Circuit description

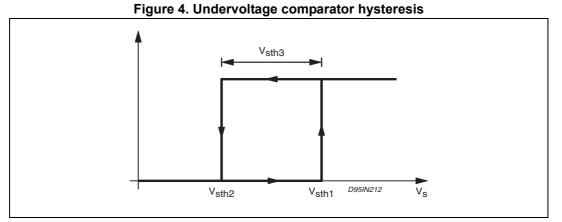
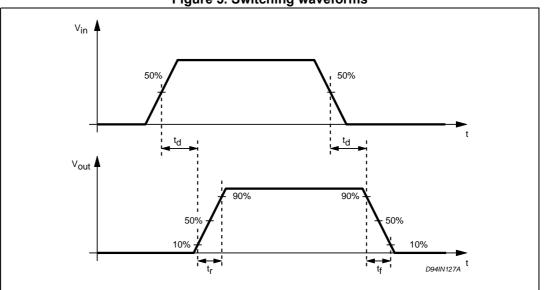



Figure 5. Switching waveforms

3.1 Diagnostic truth table

Input	Output	Diag1	Diag2		
L	L	Н	Н		
Н	Н	Н	Н		
L	L	Н	Н		
Н	Н	L	Н		
L	Н	L	Н		
Н	Н	L	Н		
Н	Х	Н	Н		
L	L	Н	Н		
L	L	Н	Н		
Н	L	L	Н		
L	L	Н	L		
Н	L	Н	L		
L	L	L	L		
Н	L	L	L		
	Input L H L H L H L H L H L H L H L H L H L	Input Output L L H H L L H H L H H H H H L H H H L L H H L L L L L L L L H L L L H L L L H L L L H L H L L L H L H L	Input Output Diag1 L L H H H H L L H H H H L L H H H L H H L H H L H H L H H L H H L H H L H L H L L H L L H L L H L L H H L H H L H H L H H L H H L H		

Table 7. Diagnostic truth table

1. A cold lamp filament, or a capacitive load may activate the current limiting circuit of the IPS, when the IPS is initially turned on.

3.2 Input section

The input section is a high impedance differential stage with high common and differential mode range. Built-in offset of +1.4 V (typical value) and a hysteresis of 400 mV (maximum value) assure high noise immunity.

3.3 Diagnostic logic

The operating conditions of the device are permanently monitored and the following occurrences are indicated by DIAG1/DIAG2 open drain output pins:

- Short-circuit versus ground. A current limit circuit fixes I_{sc} = 3.2 A (typical value) the maximum current that can be sourced from the OUTPUT pin (for more details see Section 3.4: Short-circuit operation)
- Short-circuit versus V_s
- Undervoltage (UV)
- Overtemperature (OVT)
- Open load, if the output current is less than 3 mA (typical value)
- Output DMOS open according to Table 7

3.4 Short-circuit operation

In order to minimize the power dissipation when the output is shorted-to-ground, an innovative, non-dissipative short-circuit protection (patent pending) is implemented, avoiding the thermal protection.

Whenever the output is shorted-to-ground, or, an overcurrent is sinked by the load, the output devices are driven to linear mode, sourcing the I_{sc} current (3.2 A typ.) for a time interval (t_{ON}) defined by the external C_{ON} capacitor connected between the ON-DELAY pin and GND. If the short-circuit increases within the t_{ON} interval the DIAG2 output status is not affected, acting as a programmable diagnostic delay.

This function allows the device to drive a capacitive load or a filament lamp (that exhibits a very low resistance during the initial heading phase) without the diagnostic. If the short-circuit lasts for the whole t_{ON} interval, the output DMOS is switched off and the DIAG2 goes low, for a time interval t_{OFF} lasting t_{ON} 64 times.

At the end of the t_{OFF} interval if the short-circuit condition is still present, the output DMOS is turned on (and the DIAG2 goes high - see *Figure 7*) for another t_{ON} interval and the sequence starts again, otherwise, the normal condition operation is resumed.

The t_{ON} interval can be set to last between 64 ms and 2.56 ms for a C_{ON} capacitor value ranging between 50 pF and 2 nF:

Equation 1

If the ON-DELAY pin is grounded, the non-dissipative short-circuit protection is disabled and the I_{sc} current is delivered until the overtemperature protection shuts the device off. The behavior of the DIAG2 output is, in this situation, showed in *Table 7*.

3.5 **Overtemperature protection (OVT)**

If the chip temperature exceeds Θ_{lim} (measured in a central position in the chip) the chip deactivates itself.

The following actions are taken:

- the output stage is switched off
- the signal DIAG2 is activated (active low)

Normal operation is resumed as soon as (after some seconds) the chip temperature monitored goes back below $\Theta_{\text{lim}}\text{-}\Theta_{\text{th}}$.

The different thresholds with hysteretic behavior assure that any intermittent condition can be generated.

3.6 Undervoltage protection (UV)

The supply voltage is expected to range from 9.5 V to 35 V, even if its reference value is 24 V.

In this range, the device operates correctly. Below 9.5 V the overall system is not reliable.

Protection shuts off the output whenever the supply voltage falls below the mask fixed by V_{sth1} (9 V typ.) and V_{sth2} (8.5 V typ.).

The hysteresis (see *Figure 4*) assures a non-intermittent behavior at low supply voltage with a superimposed ripple. The undervoltage status is indicated by the DIAG1 and DIAG2 outputs (see *Table 7*).

3.7 Demagnetization of inductive loads

An internal Zener diode, limiting the voltage across the power MOSFET between 50 and 60 V (V_{cl}), provides safe and fast demagnetization of inductive loads without external clamping devices. The maximum energy that can be absorbed by an inductive load is specified in *Table 3*.

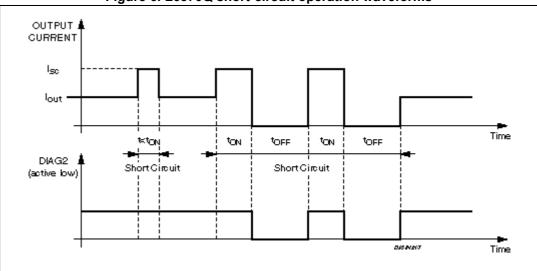
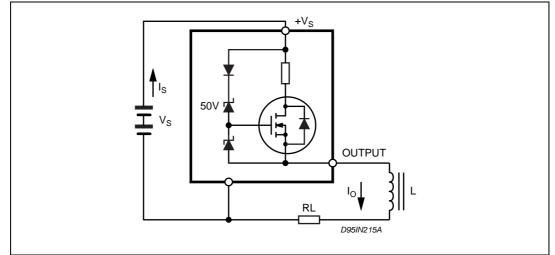
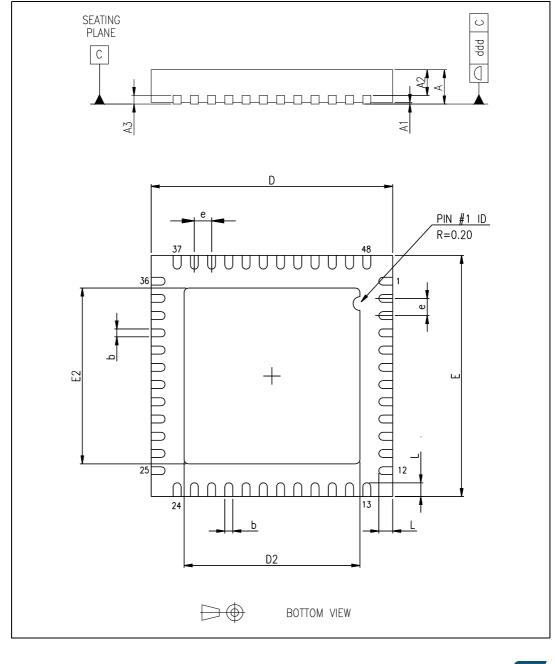



Figure 6. L6370Q short-circuit operation waveforms

Figure 7. Inductive load equivalent circuit



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

4.1 VFQFPN48 (7 x 7 x 1.0 mm) package information

Figure 8. VFQFPN48 (7 x 7 x 1.0 mm) package outline

Symbol	Dimensions (mm)				
Symbol	Min.	Тур.	Max.		
А	0.80	0.90	1.00		
A1	-	0.02	0.05		
A2	-	0.65	1.00		
A3	-	0.25	-		
b	0.18	0.23	0.30		
D	6.85	7.00	7.15		
D2	4.95	5.10	5.25		
E	6.85	7.00	7.15		
E2	4.95	5.10	5.25		
е	0.45	0.50	0.55		
L	0.30	0.40	0.50		
ddd	-	0.08	-		

Table 8. VFQFPN48 (7 x 7 x 1.0 mm) package mechanical data

5 Revision history

Date	Revision	Changes
04-Oct-2011	1	Initial release.
24-Jan-2013	2	Changed the operating temperature range parameter in <i>Table 3</i> . Minor text changes.
06-Apr-2018 3		Updated <i>Table 3</i> (replaced E _i by E _{AS} symbol, updated parameter and value). Minor modifications throughout document.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

