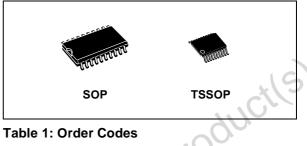


74LCX574

OCTAL D-TYPE FLIP FLOP NON-INVERTING (3-STATE) WITH 5V TOLERANT INPUTS AND OUTPUTS

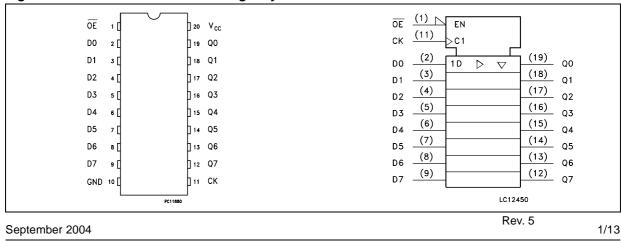

- 5V TOLERANT INPUTS AND OUTPUTS
- HIGH SPEED:
 f_{MAX} = 150 MHz (MIN.) at V_{CC} = 3V
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 24mA (MIN) at V_{CC} = 3V
- PCI BUS LEVELS GUARANTEED AT 24 mA
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- OPERATING VOLTAGE RANGE: V_{CC}(OPR) = 2.0V to 3.6V (1.5V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 574
- LATCH-UP PERFORMANCE EXCEEDS 500mA (JESD 17)
- ESD PERFORMANCE: HBM > 2000V (MIL STD 883 method 3015); MM > 200V

DESCRIPTION

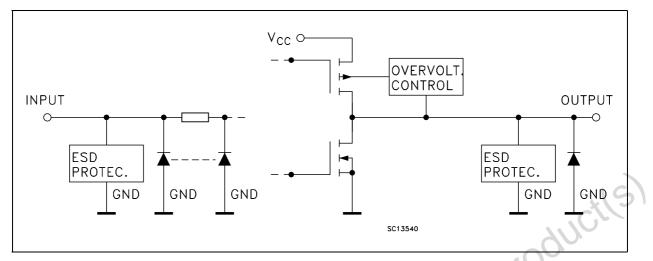
The 74LCX574 is a low voltage CMOS OCTAL D-TYPE FLIP FLOP with 3 STATE OUTPUT NON-INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring C^2MOS technology. It is ideal for low power and high speed 3.3V applications; it can be interfaced to 5V signal environment for both inputs and outputs.

These 8 bit D-Type flip-flops are controlled <u>by</u> a clock input (CK) and an output enable input (\overline{OE}). On the positive transition of the clock, the Q

PACKAGE	T & R
SOP	74LCX574MTR
TSSOP	74LCX574TTR


outputs will be set to the logic state that were setup at the \underline{D} inputs.

While the (\overline{OE}) input is low, the 8 outputs will be in a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state.

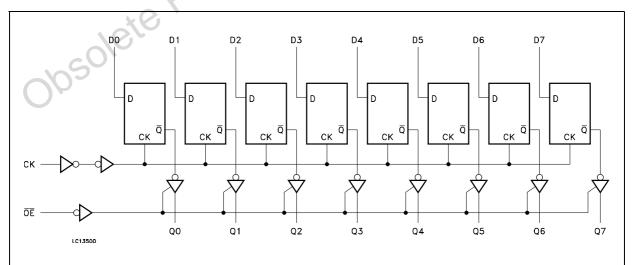

The Output control does not affect the internal operation of flip flops; that is, the old data can be retained or the new data can be entered even while the outputs are off.

It has same speed performance at 3.3V than 5V AC/ACT family, combined with a lower power consumption.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Table 2: Pin Description

PIN N°	SYMBOL	NAME AND FUNCTION
1	OE	3-State Output Enable Input (Active LOW)
2, 3, 4, 5, 6, 7, 8, 9	D0 to D7	Data Inputs
12, 13, 14, 15, 16, 17, 18, 19	Q0 to Q7	3-State Outputs
11	СК	Clock Input (LOW-to-HIGH Edge Triggered)
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage


Table 3: Truth Table

	INPUT	OUTPUT	
OE	СК	D	Q
Н	X	Х	Z
		Х	NO CHANGE
		L	L
L		Н	н

57

X : Don't Care Z : High Impedance

Figure 3: Logic Diagram

This logic diagram has not be used to estimate propagation delays

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
VI	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage (OFF State)	-0.5 to +7.0	V
Vo	DC Output Voltage (High or Low State) (note 1)	-0.5 to V _{CC} + 0.5	V
Ι _{ΙΚ}	DC Input Diode Current	- 50	mA
I _{OK}	DC Output Diode Current (note 2)	- 50	mA
Ι _Ο	DC Output Current	± 50	mA
I _{CC}	DC Supply Current per Supply Pin	± 100	mA
I _{GND}	DC Ground Current per Supply Pin	± 100	mA
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied 1) I_O absolute maximum rating must be observed 2) V_O < GND

Table 5: Recommended Operating Conditions

2) V _O < GND	ecommended Operating Conditions	eter	
Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage (note 1)	2.0 to 3.6	V
VI	Input Voltage	0 to 5.5	V
Vo	Output Voltage (OFF State)	0 to 5.5	V
Vo	Output Voltage (High or Low State)	0 to V _{CC}	V
I _{OH} , I _{OL}	High or Low Level Output Current (V_{CC} = 3.0 to 3.6V)	± 24	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 2.7V)	± 12	mA
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 2)	0 to 10	ns/V

1) Truth Table guaranteed: 1.5V to 3.6V 2) $V_{\rm IN}$ from 0.8V to 2V at $V_{\rm CC}$ = 3.0V

Table 6: DC Specifications

		Те	est Condition		Va	lue		
Symbol	Parameter	v _{cc}		-40 to	85 °C	-55 to	125 °C	Unit
		(Ŭ)		Min.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	2.7 to 3.6		2.0		2.0		V
V_{IL}	Low Level Input Voltage	- 2.7 10 3.0			0.8		0.8	V
V _{OH}	High Level Output	2.7 to 3.6	I _O =-100 μA	V _{CC} -0.2		V _{CC} -0.2		
	Voltage	2.7	I _O =-12 mA	2.2		2.2		N N
		2.0	I _O =-18 mA	2.4		2.4		V
		3.0	I _O =-24 mA	2.2		2.2		
V _{OL}	Low Level Output	2.7 to 3.6	I _O =100 μA		0.2		0.2	5
	Voltage	2.7	I _O =12 mA		0.4		0.4	
		2.0	I _O =16 mA		0.4	~	0.4	V
		3.0	I _O =24 mA		0.55	Y	0.55	
Ι _Ι	Input Leakage Current	2.7 to 3.6	$V_{I} = 0$ to 5.5V		±5	5	± 5	μA
I _{off}	Power Off Leakage Current	0	V _I or V _O = 5.5V		10		10	μA
I _{OZ}	High Impedance Output Leakage Current	2.7 to 3.6	$V_{I} = V_{IH} \text{ or } V_{IL}$ $V_{O} = 0 \text{ to } V_{CC}$	62	± 5		± 5	μΑ
I _{CC}	Quiescent Supply	0.740.0.0	$V_I = V_{CC} \text{ or } GND$		10		10	
	Current	2.7 to 3.6	V_{I} or V_{O} = 3.6 to 5.5V		± 10		± 10	μA
ΔI_{CC}	I _{CC} incr. per Input	2.7 to 3.6	$V_{IH} = V_{CC} - 0.6V$		500		500	μA

Table 7: Dynamic Switching Characteristics

		Те	st Condition				
Symbol	Parameter	v _{cc}		٦	Γ _A = 25 °0	C	Unit
	10,	(V)		Min.	Тур.	Max.	
V _{OLP}	Dynamic Low Level Quiet	3.3	C _L = 50pF		0.8		V
V _{OLV}	Output (note 1)	3.3	$V_{IL} = 0V, V_{IH} = 3.3V$		-0.8		v

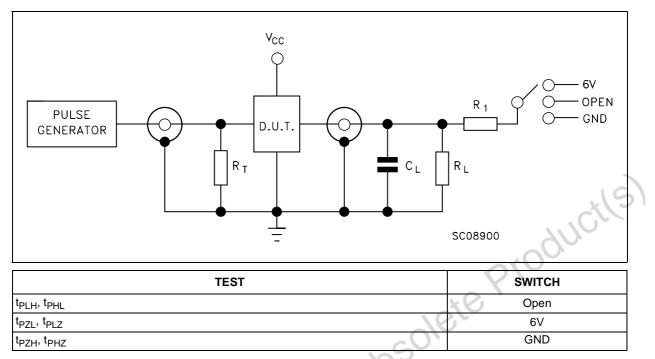
1) Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

57

Table 8: AC Electrical Characteristics

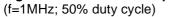
		Tes	st Cond	ition			Va	lue		
Symbol	Parameter	v _{cc}	CL	RL	$t_s = t_r$	-40 to	85 °C	-55 to	125 °C	Unit
		(Ŭ)	(pĒ)	(Ω)	(ns)	Min.	Max.	Min.	Max.	
t _{PLH} t _{PHL}	Propagation Delay	2.7	50	500	2.5	1.5	9.5	1.5	9.5	ns
	Time	3.0 to 3.6	50	500	2.5	1.5	8.5	1.5	8.5	115
t _{PZL} t _{PZH}	Output Enable Time	2.7				1.5	9.5	1.5	9.5	
	to HIGH and LOW	3.0 to 3.6	50	500	2.5	1.5	8.5	1.5	8.5	ns
t _{PLZ} t _{PHZ}	Output Disable Time	2.7				1.5	8.5	1.5	8.5	
	from HIGH to LOW level	3.0 to 3.6	50	500	2.5	1.5	7.5	1.5	7.5	ns C
t _S	Set-Up Time, HIGH	2.7				2.5		2.5		11
	or LOW level (Dn to CK)	3.0 to 3.6	50	500	2.5	2.5		2.5	20	ns
t _h	Hold Time, HIGH or	2.7				1.5		1.5	25	
	LOW level (Dn to CK)	3.0 to 3.6	50	500	2.5	1.5		1.5		ns
t _W	CK Pulse Width,	2.7	50	500	2.5	3.3	50	3.3		ns
	HIGH or LOW	3.0 to 3.6	50	500	2.5	3.3		3.3		115
f _{MAX}	Clock Pulse Frequency	3.0 to 3.6	50	500	2.5	165	0	150		MHz
t _{OSLH} t _{OSHL}	Output To Output Skew Time (note1, 2)	3.0 to 3.6	50	500	2.5	02	1.0		1.0	ns

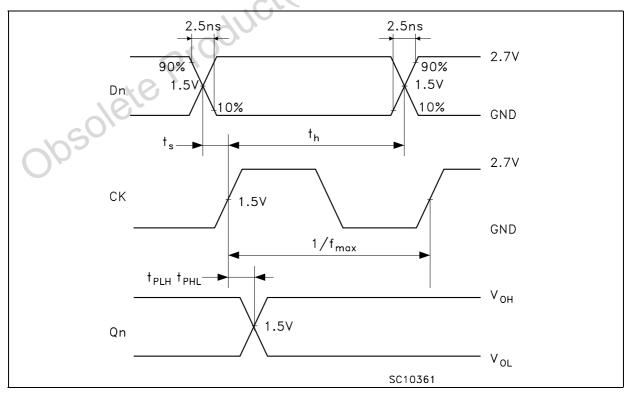
Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (t_{OSLH} = | t_{PLHm} - t_{PLHn}], t_{OSHL} = | t_{PHLm} - t_{PHLn}])
 Parameter guaranteed by design


Table 9: Capacitive Characteristics

			st Condition				
Symbol	Parameter	v _{cc}		٦	Γ _A = 25 °C	2	Unit
	N. C	(V)		Min.	Тур.	Max.	
C _{IN}	Input Capacitance	3.3	$V_{IN} = 0$ to V_{CC}		6		pF
C _{OUT}	Output Capacitance	3.3	$V_{IN} = 0$ to V_{CC}		12		pF
C _{PD}	Power Dissipation Capacitance (note 1)	3.3	f _{IN} = 10MHz V _{IN} = 0 or V _{CC}		25		pF

1) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/8$ (per flip-flop)


Figure 4: Test Circuit



 C_L = 50 pF or equivalent (includes jig and probe capacitance) R_L = R1 = 500 Ω or equivalent

 $R_L = R1 = 500\Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 5: Waveform - Propagation Delays, Setup And Hold Times, Maximum CK Frequency

57

6/13

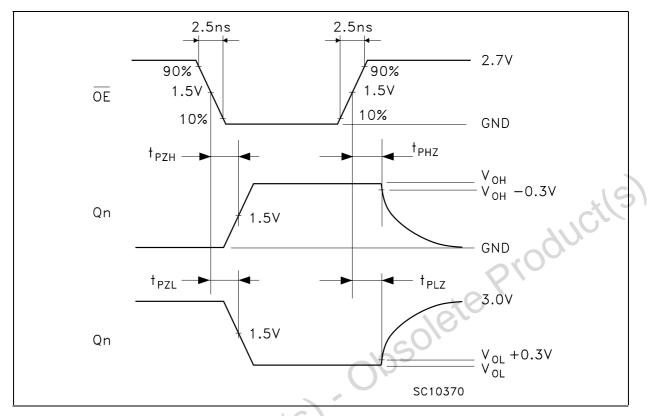
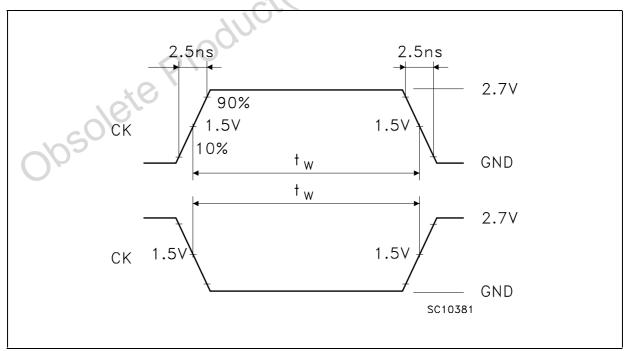
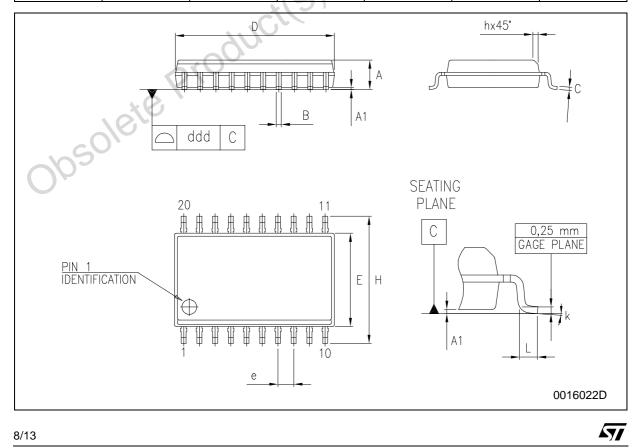
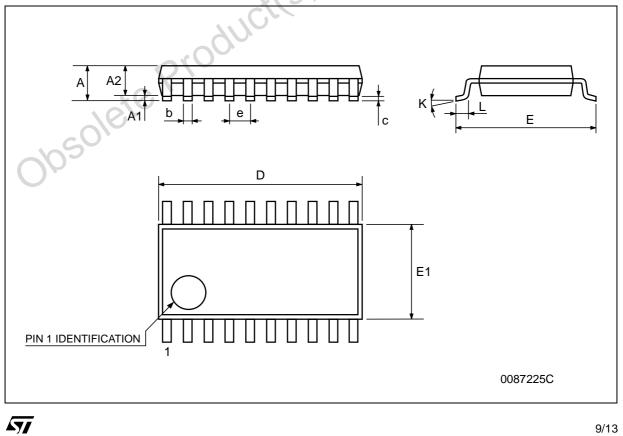



Figure 6: Waveform - Output Enable And Disable Times (f=1MHz; 50% duty cycle)

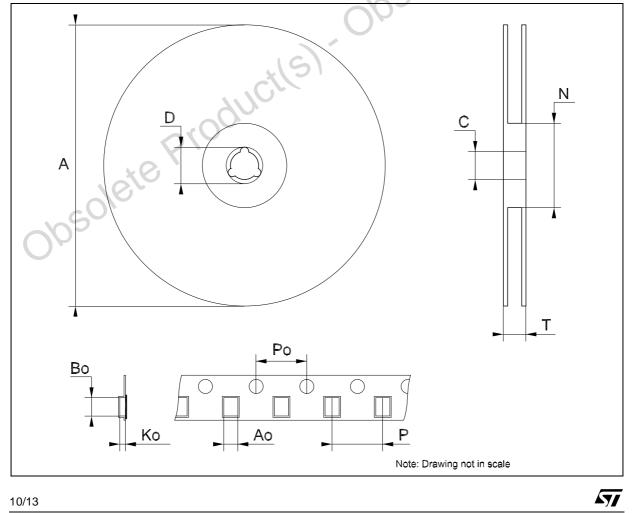

Figure 7: Waveform - Pulse Width (f=1MHz; 50% duty cycle)

57

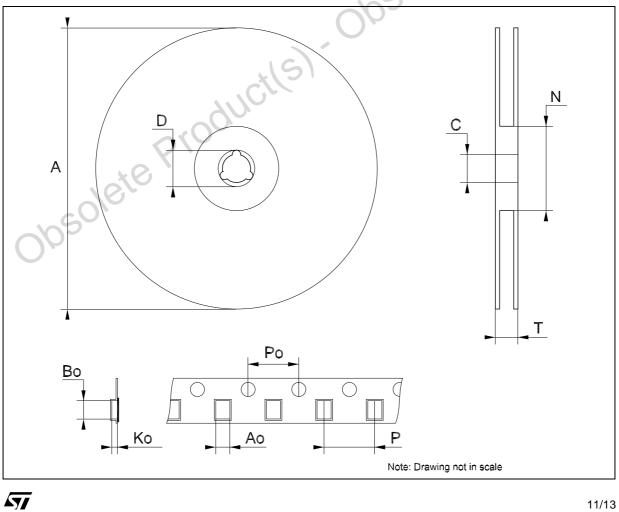
Г


	SO-20 MECHANICAL DATA									
DIM.		mm.			inch					
DINI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.				
А	2.35		2.65	0.093		0.104				
A1	0.1		0.30	0.004		0.012				
В	0.33		0.51	0.013		0.020				
С	0.23		0.32	0.009		0.013				
D	12.60		13.00	0.496		0.512				
Е	7.4		7.6	0.291		0.299				
е		1.27			0.050	30				
Н	10.00		10.65	0.394	.0.	0.419				
h	0.25		0.75	0.010		0.030				
L	0.4		1.27	0.016		0.050				
k	0°		8°	0°		8°				
ddd			0.100			0.004				

T


DIM.		mm.									
DINI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.					
А			1.2			0.047					
A1	0.05		0.15	0.002	0.004	0.006					
A2	0.8	1	1.05	0.031	0.039	0.041					
b	0.19		0.30	0.007		0.012					
С	0.09		0.20	0.004		0.0079					
D	6.4	6.5	6.6	0.252	0.256	0.260					
Е	6.2	6.4	6.6	0.244	0.252	0.260					
E1	4.3	4.4	4.48	0.169	0.173	0.176					
е		0.65 BSC		wSO'	0.0256 BSC						
К	0°		8°	0°		8°					
L	0.45	0.60	0.75	0.018	0.024	0.030					

TSSOP20 MECHANICAL DATA


9/13

	Tape & Reel SO-20 MECHANICAL DATA										
DIM	mm.				inch						
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.					
А			330			12.992					
С	12.8		13.2	0.504		0.519					
D	20.2			0.795							
Ν	60			2.362							
Т			30.4			1.197					
Ao	10.8		11	0.425		0.433					
Во	13.2		13.4	0.520		0.528					
Ko	3.1		3.3	0.122	- Y	0.130					
Po	3.9		4.1	0.153	C	0.161					
Р	11.9		12.1	0.468		0.476					

DIM.	mm.			inch		
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	60			2.362		
Т			22.4			0.882
Ao	6.8		7	0.268		0.276
Во	6.9		7.1	0.272	220	0.280
Ko	1.7		1.9	0.067	- Y	0.075
Po	3.9		4.1	0.153	C	0.161
Р	11.9		12.1	0.468		0.476

Tape & Reel TSSOP20 MECHANICAL DATA

74LCX574

Table 10: Revision History

Date	Revision	Description of Changes
15-Sep-2004 5		Ordering Codes Revision - pag. 1.

Obsolete Product(s). Obsolete Product(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents for other the rule as ortical components in the support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

