2.5 V / 3.3 V, 125 MHz / 250 MHz LVDS Clock Oscillator

The NBXDPA019 dual frequency crystal oscillator (XO) is designed to meet today's requirements for 2.5 V and 3.3 V LVDS clock generation applications. The device uses a high Q fundamental crystal and Phase Lock Loop (PLL) multiplier to provide selectable 125 MHz or 250 MHz, ultra low jitter and phase noise LVDS differential output.

This device is a member of ON Semiconductor's PureEdge^m clock family that provides accurate and precision clock solutions.

Available in 5 mm x 7 mm SMD (CLCC) package on 16 mm tape and reel in quantities of 1000.

Features

- LVDS Differential Output
- Uses High Q Fundamental Mode Crystal and PLL Multiplier
- Ultra Low Jitter and Phase Noise 0.5 ps (12 kHz 20 MHz)
- Selectable Output Frequency 125 MHz (default) / 250 MHz
- Hermetically Sealed Ceramic SMD Package
- Operating Range: 2.5 V ±5%
 - 3.3 V ±10%
- Total Frequency Stability ±50 ppm
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Ethernet, Gigabit Ethernet
- Infiniband
- Base Stations

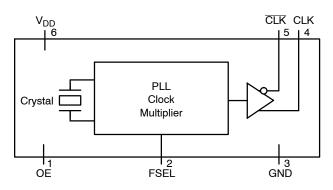
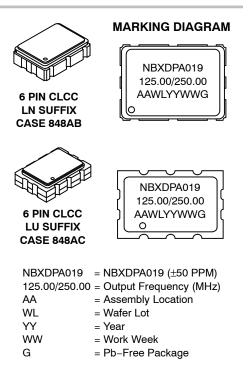



Figure 1. Simplified Logic Diagram

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping [†]
NBXDPA019LN1TAG	CLCC-6 (Pb-Free)	1000/ Tape & Reel
NBXDPA019LNHTAG	CLCC-6 (Pb-Free)	100/ Tape & Reel
NBXDPA019LU1TAG*	CLCC-6 (Pb-Free)	1000/ Tape & Reel
NBXDPA019LUHTAG*	CLCC-6 (Pb-Free)	100/ Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

*Contact factory for availability.

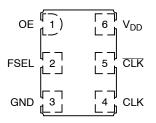


Figure 2. Pin Connections (Top View)

Table 1. PIN DESCRIPTION

Pin No.	Symbol	I/O	Description
1	OE	LVTTL/LVCMOS Control Input	Output Enable Pin. When left floating pin defaults to logic HIGH and output is active. See OE pin description Table 2.
2	FSEL	LVTTL/LVCMOS Control Input	Output Frequency Select Pin. Pin will default to logic HIGH when left open. See Output Frequency Select pin description Table 3.
3	GND	Power Supply	Ground 0 V
4	CLK	LVDS Output	Non–Inverted Clock Output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
5	CLK	LVDS Output	Inverted Clock Output. Typically loaded with 100 Ω receiver termination resistor across differential pair.
6	V _{DD}	Power Supply	Positive power supply voltage. Voltage should not exceed 2.5 V $\pm 5\%$ or 3.3 V $\pm 10\%.$

Table 2. OUTPUT ENABLE TRI-STATE FUNCTION

OE Pin	Output Pins
Open	Active
HIGH Level	Active
LOW Level	High Z

Table 3. OUTPUT FREQUENCY SELECT

FSEL Pin	Output Frequency (MHz)
Open (pin will float high)	125
HIGH Level	125
LOW Level	250

Table 4. ATTRIBUTES

Chara	acteristic	Value	
Input Default State Re	sistor	170 kΩ	
ESD Protection	Human Body Model Machine Model	2 kV 200 V	
Meets or Exceeds JEDEC Standard EIA/JESD78 IC Latchup Test			

1. For additional Moisture Sensitivity information, refer to Application Note AND8003/D.

Table 5. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{DD}	Positive Power Supply	GND = 0 V		4.6	V
l _{out}	LVDS Output Current	Continuous Surge		25 50	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			–55 to +120	°C
T _{sol}	Wave Solder	See Figure 6		260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Symbol	Characteristic	Conditions	Min.	Тур.	Max.	Units
I _{DD}	Power Supply Current			78	105	mA
V _{IH}	OE and FSEL Input HIGH Voltage		2000		V _{DD}	mV
V _{IL}	OE and FSEL Input LOW Voltage		GND – 300		800	mV
Iн	Input HIGH Current OE FSEL		-100 -100		+100 +100	μΑ
IIL	Input LOW Current OE FSEL		-100 -100		+100 +100	μΑ
ΔV_{OD}	Change in Magnitude of V _{OD} for Complementary Output States (Note 3)		0	1	25	mV
V _{OS}	Offset Voltage		1125		1375	mV
ΔV_{OS}	Change in Magnitude of V _{OS} for Complementary Output States (Note 3)		0	1	25	mV
V _{OH}	Output HIGH Voltage	V _{DD} = 2.5 V V _{DD} = 3.3 V		1425	1600	mV
V _{OL}	Output LOW Voltage	V _{DD} = 2.5 V V _{DD} = 3.3 V	900	1075		mV
V _{OD}	Differential Output Voltage		250		450	mV

Table 6. DC CHARACTERISTICS (V _{DD} = 2.5 V \pm 5% or V _{DD} = 3.3 V \pm 10%	A_{A} , GND = 0 V, T_{A} = -40°C to +85°C) (Note 2)
--	---

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

2. Measurement taken with outputs terminated with 100 ohm across differential pair. See Figure 5.

3. Parameter guaranteed by design verification not tested in production.

Symbol	Characteristic	Conditions	Min.	Тур.	Max.	Units
fCLKOUT	Output Clock Frequency	FSEL = HIGH		125		MHz
		FSEL = LOW		250		1
Δf	Frequency Stability – NBXDPA019	(Note 5)			±50	ppm
Φ_{NOISE}	Phase-Noise Performance	100 Hz of Carrier		-108/-103		dBc/Hz
	f _{CLKout} = 125 MHz/250 MHz	1 kHz of Carrier		-122/-116		dBc/Hz
	(See Figures 3 and 4)	10 kHz of Carrier		-129/-123		dBc/Hz
		100 kHz of Carrier		-129/-124		dBc/Hz
		1 MHz of Carrier		-136/-131		dBc/Hz
		10 MHz of Carrier		-159/-156		dBc/Hz
t _{jit} (Φ)	RMS Phase Jitter	12 kHz to 20 MHz		0.5	0.75	ps
t _{jitter}	Cycle to Cycle, RMS	1000 Cycles		4	8	ps
	Cycle to Cycle, Peak-to-Peak	1000 Cycles		17	35	ps
	Period, RMS	10,000 Cycles		2	4	ps
	Period, Peak-to-Peak	10,000 Cycles		7	20	ps
t _{OE/OD}	Output Enable/Disable Time				200	ns
^t DUTY_CYCLE	Output Clock Duty Cycle (Measured at Cross Point)		48	50	52	%
t _R	Output Rise Time (20% and 80%)			250	400	ps
t _F	Output Fall Time (80% and 20%)			250	400	ps
t _{start}	Start-up Time			1	5	ms
	Aging	1 st Year			3	ppm
		Every Year After 1 st			1	ppm

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

4. Measurement taken with outputs terminated with 100 ohm across differential pair. See Figure 5.

5. Parameter guarantees 10 years of aging. Includes initial stability at 25°C, shock, vibration and first year aging.

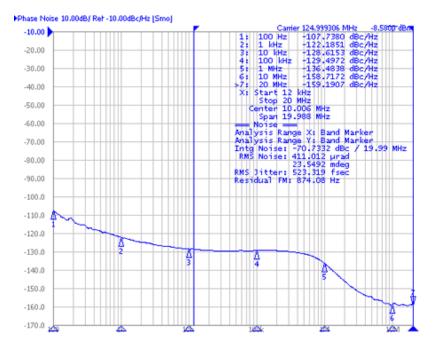


Figure 3. Typical Phase Noise Plot at 125 MHz

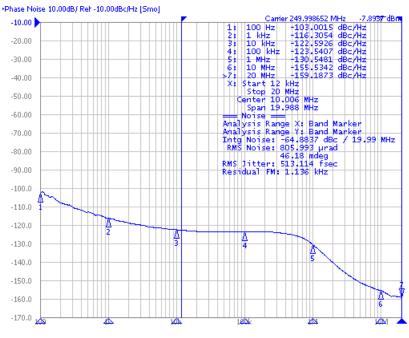
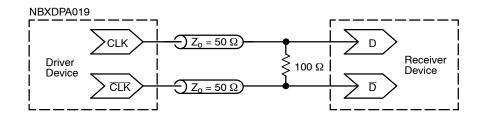



Figure 4. Typical Phase Noise Plot at 250 MHz

Table 8. RELIABILITY COMPLIANCE

Parameter	Standard	Method
Shock	Mechanical	MIL-STD-833, Method 2002, Condition B
Solderability	Mechanical	MIL-STD-833, Method 2003
Vibration	Mechanical	MIL-STD-833, Method 2007, Condition A
Solvent Resistance	Mechanical	MIL-STD-202, Method 215
Resistance to Soldering Heat	Mechanical	MIL-STD-203, Method 210, Condition I or J
Thermal Shock	Environment	MIL-STD-833, Method 1001, Condition A
Moisture Resistance	Environment	MIL-STD-833, Method 1004

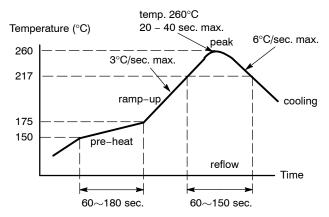
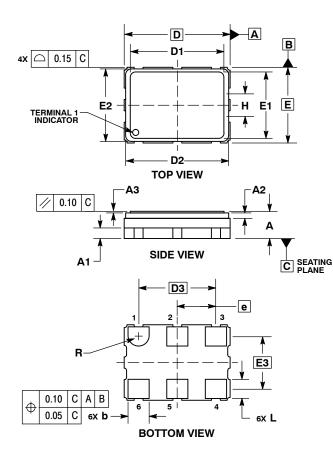
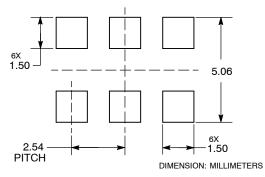



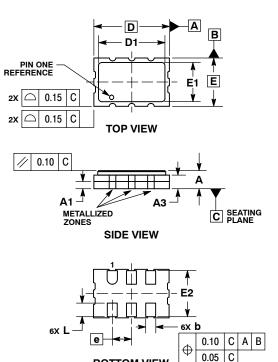
Figure 6. Recommended Reflow Soldering Profile

PACKAGE DIMENSIONS


6 PIN CLCC, 7x5, 2.54P CASE 848AB-01 ISSUE C

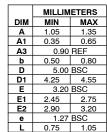
NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.

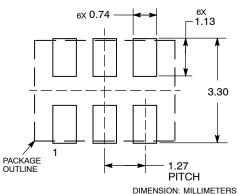
	MILLIMETERS					
DIM	MIN NOM MAX					
Α	1.70	1.80	1.90			
A1		0.70 REF				
A2		0.36 REF				
A3	0.08	0.10	0.12			
b	1.30	1.40	1.50			
D	7.00 BSC					
D1	6.17	6.20	6.23			
D2	6.66	6.81	6.96			
D3	5.08 BSC					
E		5.00 BSC				
E1	4.37	4.40	4.43			
E2	4.65	4.80	4.95			
E3	3.49 BSC					
е	2.54 BSC					
н		1.80 REF				
L	1.17	1.27	1.37			
R	0.70 REF					


SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS


6 PIN CLCC, 5x3.2, 1.27P CASE 848AC-01 ISSUE O


BOTTOM VIEW

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME X14 5M 1994

ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PureEdge is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use personal and solut LC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 700 2910

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative