

650 V, 12 A power Schottky silicon carbide diode

Product status link STPSC12065

Product summary			
Symbol Value			
I _{F(AV)}	12 A		
V _{RRM}	650 V		
T _j (max.)	175 °C		
V _F (typ.)	1.30 V		

Features

- No or negligible reverse recovery
- · Switching behavior independent of temperature
- · Dedicated to PFC applications
- · High forward surge capability
- Operating T_i from -40 °C to 175 °C
- D²PAK HV creepage distance (anode to cathode) = 5.38 mm min.
- ECOPACK2 compliant
- · Power efficient product

Applications

- DC/DC converter
- · High frequency inverter
- Snubber
- · Boost PFC function

Description

The SiC diode is an ultra high performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature.

Housed in D²PAK HV, this diode is perfectly suited for a usage in PFC applications, in charging station, DC/DC, easing the compliance to IEC-60664-1.

1 Characteristics

Table 1. Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	Paran	Parameter		
V_{RRM}	Repetitive peak reverse voltage	Repetitive peak reverse voltage		
I _{F(RMS)}	Forward rms current		22	Α
I _{F(AV)}	Average forward current T _C = 145 °C, DC ⁽¹⁾		12	Α
I _{FRM}	Repetitive peak forward current	T_c =145 °C, T_j = 175 °C, δ = 0.1	53	Α
		t_p = 10 ms sinusoidal, T_c = 25 °C	50	
I_{FSM}	Surge non repetitive forward current	t _p = 10 ms sinusoidal, T _c = 125 °C	40	Α
		t _p = 10 μs square, T _c = 25 °C	220	
T _{stg}	Storage temperature range		-55 to +175	°C
Tj	Operating junction temperature	perating junction temperature		

^{1.} Value based on R_{th(j-c)} max.

Table 2. Thermal resistance parameters

Symbol	Parameter	Va	Unit	
Symbol	Farameter	Тур.	Max.	Oille
R _{th(j-c)}	Junction to case	0.85	1.25	°C/W

For more information, please refer to the following application note:

AN5088: Rectifiers thermal management, handling and mounting recommendations

Table 3. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
			V V	-	15	150	
I _R ⁽¹⁾	I _R ⁽¹⁾ Reverse leakage current	T _j = 150 °C	$V_R = V_{RRM}$	-	200	1000	μΑ
		T _j = 25 °C	600 V		8	50	
		T _j = 25 °C		-	1.30	1.45	
V _F ⁽²⁾	Forward voltage drop	T _j = 150 °C	I _F = 12 A	-	1.45	1.65	V
		T _j = 175 °C		-	1.50		

- 1. Pulse test: $t_p = 5$ ms, $\delta < 2\%$
- 2. Pulse test: $t_p = 500 \,\mu\text{s}, \, \delta < 2\%$

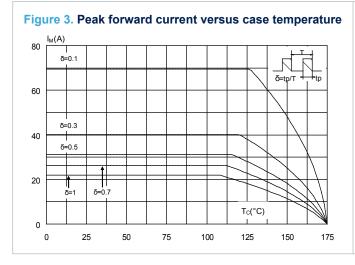
To evaluate the conduction losses use the following equation:

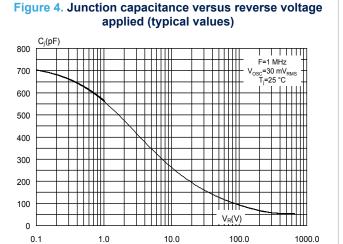
 $P = 1.02 \times I_{F(AV)} + 0.065 \times I_{F^{2}(RMS)}$

For more information, please refer to the following application notes related to the power losses:

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

DS11623 - Rev 3 page 2/14


Table 4. Dynamic electrical characteristics


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Q _{Cj}	Total capacitive charge	V _R = 400 V	-	36	-	nC
C	Total conscitones	V _R = 0 V, T _c = 25 °C, F = 1 MHz	-	750	-	pF
O _j	C _j Total capacitance	V _R = 400 V, T _c = 25 °C, F = 1 MHz	-	60	-	рг

1. Most accurate value for the capacitive charge: $Q_{cj}(V_R) = \int\limits_0^V C_j(V) dV$

1.1 Characteristics (curves)

1.E+01
1.E-02
0 50 100 150 200 250 300 350 400 450 500 550 600 650

DS11623 - Rev 3 page 3/14

Figure 5. Relative variation of thermal impedance junction to case versus pulse duration



Figure 6. Non-repetitive peak surge forward current versus pulse duration (sinusoidal waveform)

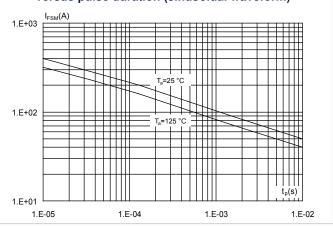


Figure 7. Total capacitive charges versus reverse voltage applied (typical values)

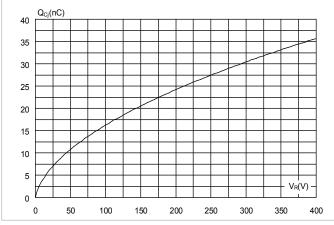
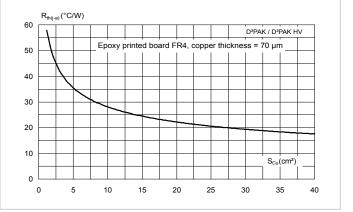



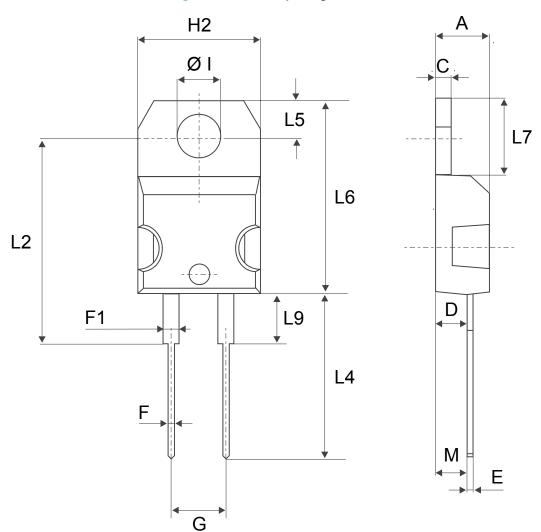
Figure 8. Thermal resistance junction to ambient versus copper surface under tab (typical values)

DS11623 - Rev 3 page 4/14

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 TO-220AC package information


Epoxy meets UL 94,V0

Cooling method: by conduction (C)

Recommended torque value: 0.55 N·m

Maximum torque value: 0.70 N·m

Figure 9. TO-220AC package outline

DS11623 - Rev 3 page 5/14

Table 5. TO-220AC package mechanical data


		Dime	nsions		
Ref.	Millim	Millimeters		nes	
	Min.	Max.	Min.	Max.	
А	4.40	4.60	0.173	0.181	
С	1.23	1.32	0.048	0.051	
D	2.40	2.72	0.094	0.107	
Е	0.49	0.70	0.019	0.027	
F	0.61	0.88	0.024	0.034	
F1	1.14	1.70	0.044	0.066	
G	4.95	5.15	0.194	0.202	
H2	10.00	10.40	0.393	0.409	
L2	16.40	typ.	0.645 typ.		
L4	13.00	14.00	0.511	0.551	
L5	2.65	2.95	0.104	0.116	
L6	15.25	15.75	0.600	0.620	
L7	6.20	6.60	0.244	0.259	
L9	3.50	3.93	0.137	0.154	
М	2.6 typ.		0.102	2 typ.	
ØI	3.75	3.85	0.147	0.151	

2.2 D²PAK package information

- Epoxy meets UL94, V0.
- Cooling method: by conduction (C)

Figure 10. D²PAK package outline

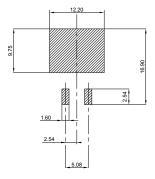
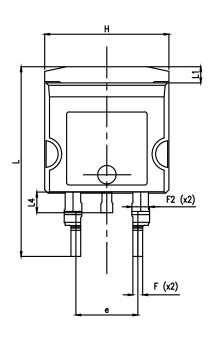

DS11623 - Rev 3 page 7/14

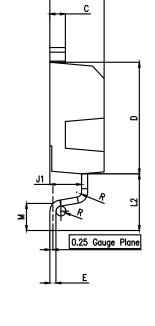
Table 6. D²PAK package mechanical data

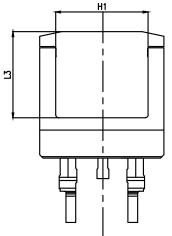
			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.40		4.60	0.173		0.181
A1	0.03		0.23	0.001		0.009
b	0.70		0.93	0.028		0.037
b2	1.14		1.70	0.045		0.067
С	0.45		0.60	0.018		0.024
c2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1	7.50	7.75	8.00	0.295	0.305	0.315
D2	1.10	1.30	1.50	0.043	0.051	0.060
E	10		10.40	0.394		0.409
E1	8.30	8.50	8.70	0.326	0.335	0.343
E2	6.85	7.05	7.25	0.266	0.278	0.282
е		2.54			0.100	
e1	4.88		5.28	0.190		0.205
Н	15		15.85	0.591		0.624
J1	2.49		2.69	0.097		0.106
L	2.29		2.79	0.090		0.110
L1	1.27		1.40	0.049		0.055
L2	1.30		1.75	0.050		0.069
R		0.4			0.015	
V2	0°		8°	0°		8°

Figure 11. D²PAK recommended footprint (dimensions are in mm)

Footprint_26


DS11623 - Rev 3 page 8/14




2.3 D²PAK high voltage package information

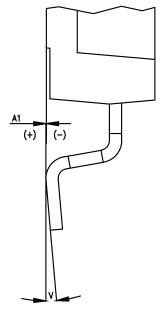

• Epoxy meets UL94, V0

Figure 12. D²PAK high voltage package outline

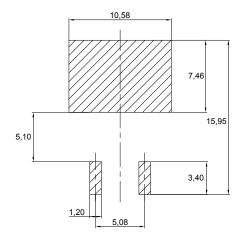

DS11623 - Rev 3 page 9/14

Table 7. D²PAK high voltage package mechanical data

Ref.		Dimensions	
Ket.	Min.	Тур.	Max.
А	4.30	-	4.70
A1	0.03	-	0.20
С	1.17	-	1.37
D	8.95	-	9.35
е	4.98	-	5.18
Е	0.50	-	0.90
F	0.78	-	0.85
F2	1.14	-	1.70
Н	10.00	-	10.40
H1	7.40	-	7.80
J1	2.49	-	2.69
L	15.30	-	15.80
L1	1.27	-	1.40
L2	4.93	-	5.23
L3	6.85	-	7.25
L4	1.5	- 1.7	
M	2.6	-	2.9
R	0.20	-	0.60
V	0°	-	8°

Figure 13. D²PAK high voltage footprint in mm

Note: For package and tape orientation, reel and inner box dimensions and tape outline please check TN1173.

DS11623 - Rev 3 page 10/14

2.3.1 Creepage distance between anode and cathode

Table 8. Creepage distance between anode and cathode

Symbol	Parameter	Value	Unit	
Cd _{A-K1}	Minimum creepage distance between A and K1 (with top coating)		5.38	mm
Cd _{A-K2}	Minimum creepage distance between A and K2 (without top coating) D²PAK HV			

Note: D²PAK HV creepage distance (anode to cathode) = 5.38 mm min. (refer to IEC 60664-1)

Figure 14. Creepage with top coating

Minimum distance between A & K1 = 5.38 mm (with top coating)

Figure 15. Creepage without top coating

Creepage

K2

Minimum distance between A & K2 = 3.48 mm (without top coating)

DS11623 - Rev 3 page 11/14

3 Ordering information

Table 9. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPSC12065D	PSC12065D	TO-220AC	1.86 g	50	Tube
STPSC12065G-TR	PSC12065G	D²PAK	1.48 g	1000	Tape and reel
STPSC12065G2-TR	PSC12065G2	D²PAK HV	1.48 g	1000	Tape and reel

DS11623 - Rev 3 page 12/14

Revision history

Table 10. Document revision history

Date	Revision	Changes
29-Apr-2016	1	First issue.
12-Jul-2018	2	Added D²PAK package and Applications section.
25-Mar-2021	3	Updated Descrition title and Description. Inserted STPOWER logo and product label "ST Sustainable".Added D²PAK HV package information. Minor text changes.

DS11623 - Rev 3 page 13/14

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS11623 - Rev 3 page 14/14