

M74HC365

Hex bus buffer with 3-state outputs (non-inverting)

Datasheet - production data

- Pin and function compatible with 74 series 365
- ESD performance
 - HBM: 2 kV
 - MM: 200 V
 - CDM: 1 kV

Description

The M74HC365 is an advanced high-speed CMOS hex bus buffer (3-state) fabricated with silicon gate C^2MOS technology.

All six buffers are controlled by the combination of two enable inputs (G1 and G2). All outputs of these buffers are enabled only when both G1 and G2 inputs are held low. Under all other conditions these outputs are disabled in a high-impedance state.

The M74HC365 has non-inverting outputs.

All inputs are equipped with protection circuits against static discharge and transient excess voltage.

Table II Device cullinary										
Order code Temp. range		Package	Packing	Marking						
M74HC365RM13TR	-55 °C to 125 °C	S016		74HC365						
M74HC365YRM13TR ⁽¹⁾	-40 °C to 125 °C	SO16 (automotive grade)	Tape and reel	74HC365Y						
M74HC365TTR	-55 °C to 125 °C	TSSOP16	Tape and Teel	HC365						
M74HC365YTTR ⁽¹⁾	-40 °C to 125 °C	TSSOP16 (automotive grade)		HC365Y						

Table 1. Device summary

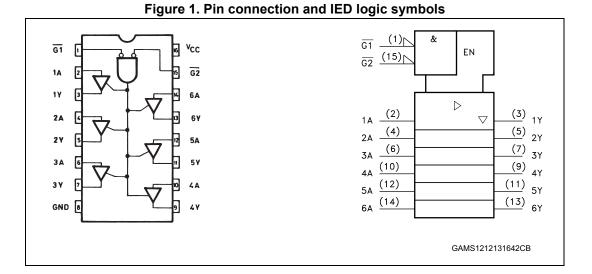
1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

This is information on a product in full production.

Downloaded from Arrow.com.

SO16 TSSOP16

Features


- High-speed: t_{PD} = 10 ns (typ.) at V_{CC} = 6 V
- Low power dissipation:
 I_{CC} = 4 μA (max.) at T_A = 25 °C
- High noise immunity: V_{NIH} = V_{NIL} = 28 % V_{CC} (min)
- Symmetrical output impedance: |I_{OH}| = I_{OL} = 6 mA (min.)
- Balanced propagation delays: $t_{PLH}\cong \ t_{PHL}$
- Wide operating voltage range: V_{CC} (opr) = 2 V to 6 V

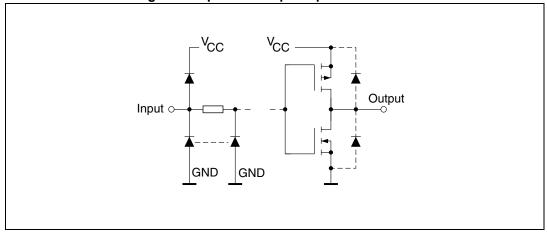
Contents

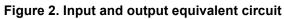
1	Pin information
2	Functional description4
3	Electrical characteristics 5
4	Package information
	4.1 SO16 package information11
	4.2 TSSOP16 package information 12
5	Ordering information13
6	Revision history

1 Pin information

Table 2. Pin description

Pin no	Symbol	Name and function
1, 15	<u>G1, G2</u>	Output enable inputs
2, 4, 6, 10, 12, 14	1A to 6A	Data inputs
3, 5, 7, 9, 11, 13	1Y to 6Y	Data outputs
8	GND	Ground (0 V)
16	V _{CC}	Positive supply voltage


2 Functional description


Table	3.	Truth	table
10.010	•••		

	Outputs		
G1	G2	An	Y
L	L	L	L
L	L	Н	Н
Н	X ⁽²⁾	X ⁽²⁾	Z ⁽¹⁾
X ⁽²⁾	Н	X ⁽²⁾	Z ⁽¹⁾

1. Z = high impedance

2. X = don't care

3 Electrical characteristics

"Absolute maximum ratings" are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	-0.5 to +7	
VI	DC input voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC output voltage	-0.5 to $v_{CC} + 0.5$	
Ι _{ΙΚ}	DC input diode current	±20	
Ι _{ΟΚ}	DC output diode current	±20	
Ι _Ο	DC output current	±35	mA
l _{CC} or I _{GND}	DC V _{CC} or ground current	±70	
PD	Power dissipation	500 ⁽¹⁾	mW
T _{stg}	Storage temperature	-65 to +150	
ΤL	Lead temperature (10 sec)	300	

Table 4	. Absolute	maximum	ratings
---------	------------	---------	---------

1. 500 mW at 65 °C; derate to 300 mW by 10 mW/°C from 65 °C to 85 °C

Symbol	Parameter	Value	Unit	
-				•
V _{CC}	Supply voltage		2 to 6	
VI	Input voltage	0 to V _{CC}	V	
Vo	Output voltage	0 to v _{CC}		
T _{op}	Operating temperature	-55 to 125	°C	
		V _{CC} = 2.0 V	0 to 1000	
t _r , t _f	Input rise and fall time	V _{CC} = 4.5V	0 to 500	ns
		V _{CC} = 6.0 V	0 to 400	

Electrical characteristics

		-	Test condition	Value							
Symbol	Parameter	V _{cc}		T _A = 25 °C			-40 to 85 °C		-55 to 125 °C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
		2.0		1.5			1.5		1.5		
$V_{\rm IH}$	High level input voltage	4.5		3.15			3.15		3.15		V
		6.0		4.2			4.2		4.2		
		2.0				0.5		0.5		0.5	
V _{IL}	Low level input voltage	4.5				1.35		1.35		1.35	V
		6.0				1.8		1.8		1.8	
	High level output voltage	2.0	I _O = -20 μA	1.9	2.0		1.9		1.9		-
		4.5	I _O = -20 μA	4.4	4.5		4.4		4.4		
V _{OH}		6.0	I _O = -20 μA	5.9	6.0		5.9		5.9		V
		4.5	I _O = -6.0 mA	4.18	4.31		4.13		4.10		
		6.0	I _O = -7.8 mA	5.68	5.8		5.63		5.60		
		2.0	I _O = 20 μA		0.0	0.1		0.1		0.1	
		4.5	I _O = 20 μA		0.0	0.1		0.1		0.1	
V _{OL}	Low level output voltage	6.0	I _O = 20 μA		0.0	0.1		0.1		0.1	V
	, enage	4.5	I _O = 6.0 mA		0.17	0.26		0.33		0.40	
		6.0	I _O = 7.8 mA		0.18	0.26		0.33		0.40	
I _I	Input leakage current	6.0	$V_{I} = V_{CC}$ or GND			±0.1		±1		±1	μA
I _{OZ}	High impedance output leakage current	6.0	$V_{I} = V_{IH} \text{ or } V_{IL}$ $V_{O} = V_{CC} \text{ or } GND$			±0.5		±5		±10	μΑ
I _{CC}	Quiescent supply current	6.0	V _I = V _{CC} or GND			4		40		80	μA

Table 6. DC specifications

		Test condition			Value							
Symbol	Parameter	v _{cc}	CL		Т	T _A = 25 °C			85 °C	-55 to 125 °C		Unit
		(V)	(pĒ)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
		2.0				25	60		75		90	
t _{TLH} , t _{THL}	Output transition time	4.5	50			7	12		19		18	ns
		6.0				6	10		13		15	
		2.0				38	90		115		135	
		4.5	50			12	18		23		27	ns
+ +	Propagation delay time	6.0				10	15		20		23	
t _{PLH} , t _{PHL}		2.0				51	130		165		195	
		4.5	150			17	26		33		39	ns
		6.0				14	22		28		33	
		2.0	50			64	130		165		195	
		4.5				16	26		33		39	ns
+ +	High impedance output enable	6.0		R _I = 1 kΩ		14	22		28		33	
t _{PZL} , t _{PZH}	time	2.0				76	150		190		225	
		4.5	150			19	30		38		45	ns
		6.0				16	26		32		38	
	High impedance	2.0				42	130		165		195	
t _{PLZ} , t _{PHZ}	output disable	4.5	50	$R_L = 1 k\Omega$		18	26		33		39	ns
	time	6.0				15	22		28		33	

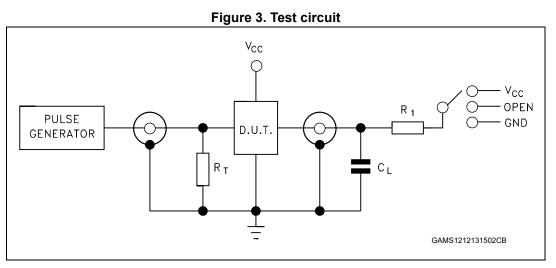

Table 7. AC electrical characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

Table 8. Capacitive characteristics

		Test condition		Value								
Sym Parameter		V _{cc}	T _A = 25 °C			-40 to 85 °C		-55 to 125 °C		Unit		
		(V)	Min	Тур	Max	Min	Max	Min	Max			
C _{IN}	Input capacitance	5.0				5	10		10		10	
C _{PD}	Power dissipation capacitance ⁽¹⁾		-	27		-		-		pF		

 C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load (refer to test circuit). Average operating current can be obtained by the following equation: I_{CC(opr)} = C_{PD} x V_{CC} x f_{IN} + I_{CC}/6(per gate).

1.

Legend: $C_L = 50 \text{ pF}/150 \text{ pF}$ or equivalent (includes jig and probe capacitance). $R_1 = 1 \text{ k}\Omega \text{ or equivalent.}$ $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω).

Table 9. Propagation delay time configuration

Test	Switch	
t _{PLH} , t _{PHL}	Open	
t _{PZL} , t _{PLZ}	V _{CC}	
t _{PZH} , t _{PHZ}	GND	

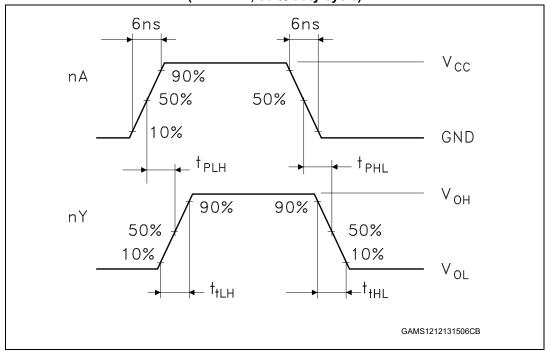
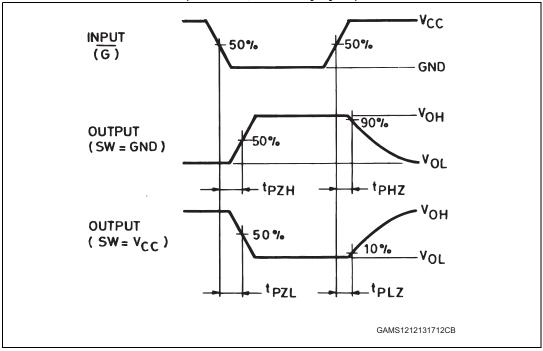
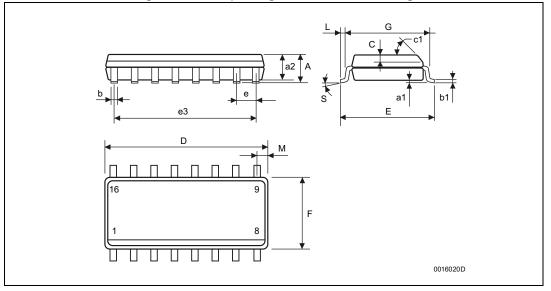



Figure 4. Waveform 1: propagation delay times (f = 1 MHz; 50 % duty cycle)

Figure 5. Waveform 2: Output enable and disable times (f = 1 MHz; 50 % duty cycle)

57

DocID1948 Rev 3

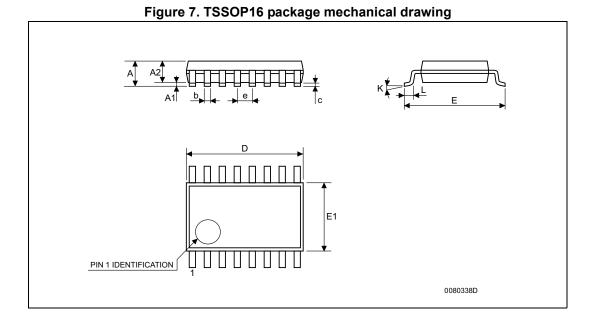

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

10/14

4.1 SO16 package information

Figure 6. SO16 package mechanical drawing


Table 10. SO16 package mechanical data

	Dimensions						
Symbol		mm			inch		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.75			0.068	
a1	0.1		0.2	0.003		0.008	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1	45° (typ.)						
D	9.8		10	0.385		0.393	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		8.89			0.350		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.62			0.024	
S	8° (max.)						

DocID1948 Rev 3

4.2 TSSOP16 package information

Table 11. TSSOP16 package mechanical data

	Dimensions					
Symbol	mm			inch		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	4.9	5	5.1	0.193	0.197	0.201
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65			0.0256	
K	0 °		8 °	0 °		8 °
L	0.45	0.60	0.75	0.018	0.024	0.030

5 Ordering information

Order code	Temp. range Package		Packing	Marking
M74HC365RM13TR	-55 °C to 125 °C	S016		74HC365
M74HC365YRM13TR ⁽¹⁾	-40 °C to 125 °C	SO16 (automotive grade)	Tape and reel	74HC365Y
M74HC365TTR	-55 °C to 125 °C	TSSOP16	Tape and Teel	HC365
M74HC365YTTR ⁽¹⁾	-40 °C to 125 °C	TSSOP16 (automotive grade)		HC365Y

Table 12. Order codes

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

6 Revision history

Date	Revision	Changes
Aug-2001	1	Initial release.
13-Dec-2013	2	Removed DIP16 package <i>Table 1: Device summary</i> : updated order codes, added automotive grade order codes, added temperature range and marking details. Added <i>Section 5: Ordering information</i> .
13-Jan-2014	3	Added ESD data to <i>Features</i>

Table 13. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

14/14

DocID1948 Rev 3

