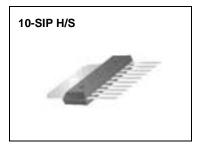
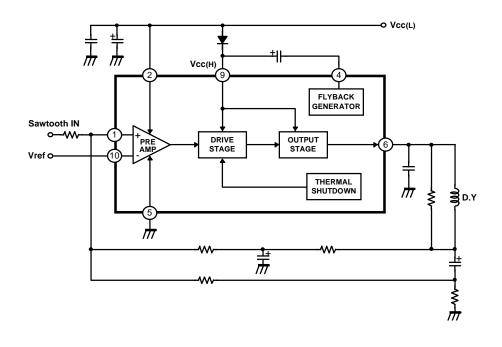


# KA2142C Vertical Deflection Output Circuit

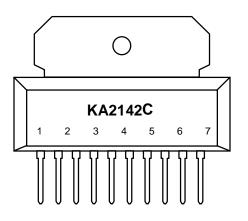
## Features


- High output current
- Pump up circuit
- · Low dissipation
- Minimum number of external parts required
- Direct drive to the deflectin coils
- Internal thermal shutdown circuit

# Applications


- Power Amplifier
- Thermal Protection
- Flyback Generator

# Description


The KA2142C is a monolithic linear IC designed for color TV and monitor vertical deflection output. It is intended for direct drive of the deflection coils with a high efficiency.



### **Internal Block Diagram**



# **Pin Assignments**



| Pin Number | Symbol    | I/O | Pin Function Descrition     |
|------------|-----------|-----|-----------------------------|
| 1          | Vin ( - ) | I   | Inverting Input             |
| 2          | Vcc(L)    | I   | Supply Voltage              |
| 3          | -         | -   | N.C.                        |
| 4          | F.G       | 0   | Flyback Generator           |
| 5          | GND       | -   | Ground                      |
| 6          | Vo        | 0   | Output                      |
| 7          | -         | -   | N.C.                        |
| 8          | -         | -   | N.C.                        |
| 9          | Vcc(H)    | I   | Output Stage Supply Voltage |
| 10         | Vin ( + ) | l   | Non-Inverting Input         |

# **Pin Definitions**

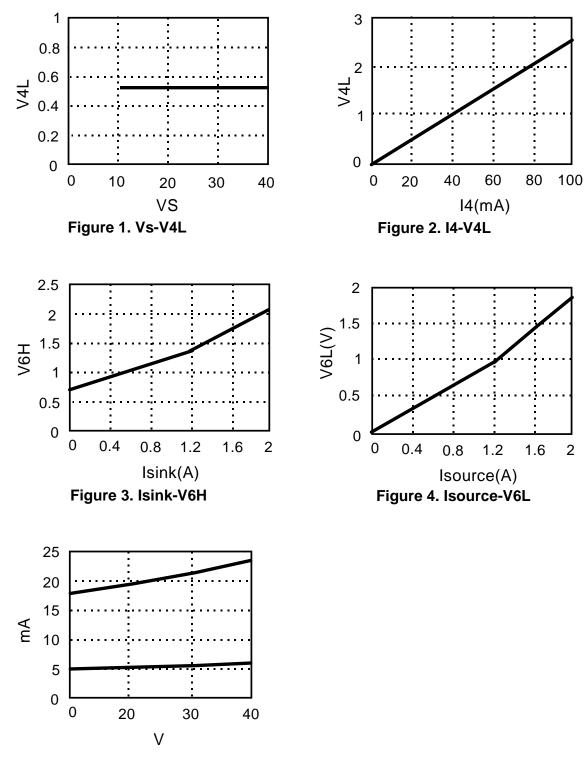
| Pin Number | Pin Name                    | Waveform  | Equivalent Circuit                                                               |  |
|------------|-----------------------------|-----------|----------------------------------------------------------------------------------|--|
| 1          | Inverting Input             |           | ⊙–––−K                                                                           |  |
| 2          | Voltage Supply              | DC        | -                                                                                |  |
| 4          | Flyback Generator           |           |                                                                                  |  |
| 5          | Ground                      | DC        | -                                                                                |  |
| 6          | Output Voltage              |           | V <sub>CC</sub><br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>(<br>( |  |
| 9          | Output Stage Voltage Supply | 2Vs<br>Vs | -                                                                                |  |
| 10         | Non-Inverting Input         | DC        |                                                                                  |  |

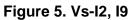
# Absolute Maximum Rating ( $Ta = 25^{\circ}C$ )

| Parameter                                                             | Symbol             | Value         | Unit |
|-----------------------------------------------------------------------|--------------------|---------------|------|
| Supply Voltage                                                        | V <sub>cc(L)</sub> | 35            | V    |
| Flyback Peak Voltage                                                  | V6, V9             | 70            | V    |
| Flyback Generator Voltage                                             | V6                 | 35            | V    |
| Input Voltage                                                         | V1, V10            | V cc(L) - 0.5 | V    |
| Peak - to - Peak Output Current*                                      | lo(p-p)            | 3             | A    |
| Peak - to - Peak Flyback Current ( f = 50 or 60Hz, Tfb $\leq$ 1.5mS ) | I4(p-p)            | 3             | А    |
| Total Power Dissipation (Ta = 25°C)                                   | PD                 | 15            | W    |
| Storage Temperature Range                                             | Tstg               | -40 ~ +150    | °C   |
| Operating Ambient Temperature                                         | T <sub>opt</sub>   | -25 ~ +70     | °C   |

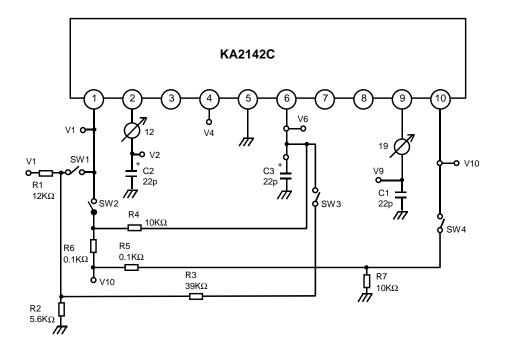
\* Maximum output peak to peak current in TV or Monitor set.

### **Thermal Data**


| Parameter                                       | Symbol           | Value | Unit |
|-------------------------------------------------|------------------|-------|------|
| Thermal Resistance Between Junction and Case    | Rth ( j - c )    | 12    | °C/W |
| Thermal Resistance Between Junction and Ambient | Rth ( j - a)     | 60    | °C/W |
| Thermal Shut down Temperature                   | T <sub>tsd</sub> | 150   | °C   |

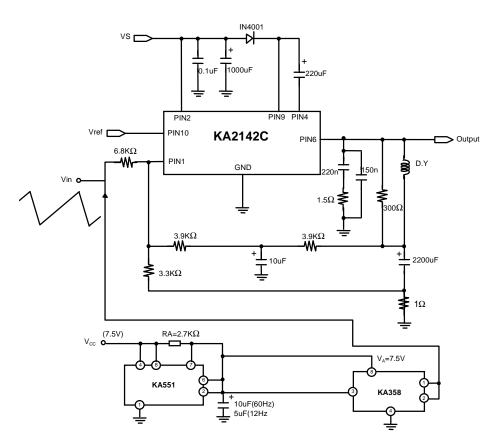

# **Electrical Characteristic**

| Parameter                      | Symbol | Conditions                   | Min. | Тур. | Max. | Unit |
|--------------------------------|--------|------------------------------|------|------|------|------|
| Supply Voltage                 | VCC(L) | _                            | 15   | 25   | 35   | V    |
| Supply Voltage                 | VCC(H) | (H)                          |      | -    | 70   | V    |
| Supply Quiescent Current       | ICC(L) | _                            | -    | 6    | 16   | mA   |
| Supply Quiescent Current       | ICC(H) | -                            | -    | 22   | 36   | mA   |
| Pin4 Saturation Voltage to Gnd | V4SAT  | I4 = 20mA                    | -    | 0.5  | 1    | V    |
| Saturation Voltage to supply   | Vuoat  | l6 = -1.2A                   | -    | 1.6  | 2.2  | V    |
| Saturation Voltage to supply   | VHSAT  | l6 = -0.7A                   | -    | 1.3  | 1.8  | V    |
| Saturation Voltage to ground   | VLOAT  | l6 = 1.2A                    | -    | 1    | 1.4  | V    |
| Saturation Voltage to ground   | VLSAT  | l6 = 0.7A                    | -    | 0.7  | 1    | V    |
| Output Center Voltage VMID     |        | R1=5.6K,Rfb=45K<br>V1=V10=2V | -    | 18   | -    | V    |
| Input Bias Current             | IBIAS  | V1 = 1V, V10 = 2V            | -    | -0.1 | -1   | μA   |

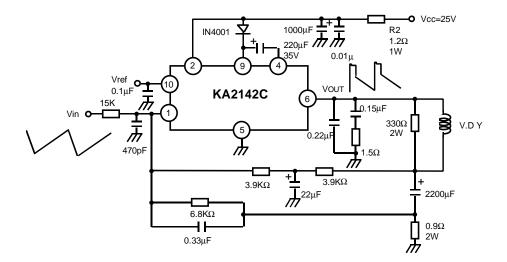

(Refer to the test circuit ,V cc(L)= 35V,unless otherwise specified)








# **DC Test Circuit**

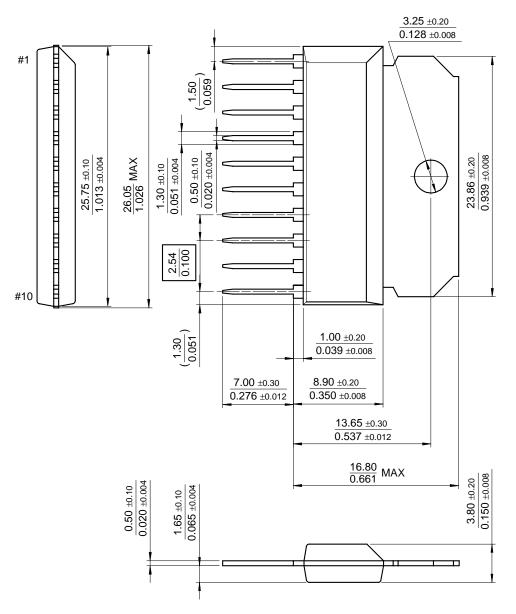



| ITEM   |    | INPUT VOLTAGE (V) |      |      |     |     | SWITCH STATE |     |  |
|--------|----|-------------------|------|------|-----|-----|--------------|-----|--|
|        | V1 | V10               | Vin1 | Vin2 | SW1 | SW2 | SW3          | SW4 |  |
| 12, 19 | -  | -                 | -    | 2    | OFF | ON  | OFF          | ON  |  |
| 11     | 1  | 2                 | -    | -    | OFF | OFF | OFF          | OFF |  |
| V4L    | 3  | 2                 | -    | -    | OFF | OFF | OFF          | OFF |  |
| V6L    | 3  | 2                 | -    | -    | OFF | OFF | OFF          | OFF |  |
| V6H    | 1  | 2                 | -    | -    | OFF | OFF | OFF          | OFF |  |

# **AC Test Circuit**



**Typical Application Circuit** 




#### **Mechanical Dimensions**

#### Package

#### **Dimensions in millimeters**

10-SIP H/S



# **Ordering Information**

| Product Number | Package    | Operating Temperature |
|----------------|------------|-----------------------|
| KA2142C        | 10-SIP H/S | -20°C ~ +70 °C        |

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com