

HD Radio™ baseband receiver

Datasheet - production data

Features

- IBOC (in-band on-channel) digital audio broadcast signal decoding for AM/FM hybrid and all-digital modes
- Dual-channel HD 1.5 for background scanning and data services
- HD codec (HDC) audio decompression
- Metadata support for HD Radio reception
- MPS (main program service), SPS (supplemental program service) and PAD (program associated data) data decoding
- Advanced HD Radio feature support:
 - Conditional access (CA)
 - Apple ID3 tag
 - Multicasting
 - Electronic program guide (EPG)
 - Real-time traffic
 - Audio time shifting
- Variable input base-band data-rate I2S-like interface supporting 650, 675, 744.1875, 882, 912 kS/s data rates
- Secondary RF base-band interface for dual tuner applications
- Glueless interface to Synchronous SDRAM addressing up to 512 Mbit of SDRAM in x16 configuration
- Optional Serial Flash memory SPI interface for application code storage

This is information on a product in full production.

- IIS serial audio interface with programmable sample rate converter
- Primary and secondary serial interfaces for based on industry standard IIC and SPI
- Several General purpose IOs
- One Internal clock oscillator and two internal PLLs
- External clock input
- 1.2 V core supply; 3.3 V I/O supply
- Automotive qualified in accordance with AEC-Q100

Description

The STA680 is an HD-radio base-band processor for car-radio applications. The STA680 functionality includes audio decompression and data processing, while multiple interfaces ensure flexible integration into the system.

The STA680 takes full advantage of HD 1.5 Radio benefits including CD-like audio quality from HD Radio FM broadcasts and FM-like audio quality using HD Radio AM, while program associated data or traffic information is received from the second channel.

Table 1. Device summary

Order code	Package ⁽¹⁾	Packing
STA680	LFBGA 168 balls (12x12x1.4 mm)	Tray
STA680TR	LFBGA 168 balls (12x12x1.4 mm)	Tape & Reel
STA680Q	LQFP144 (20x20mm)	Tray

www.st.com

1. ECOPACK® compliant.

Contents STA680

Contents

1	Bloc	k diagra	am and pin description	6
	1.1	Block o	diagram	6
	1.2	Pin des	scription	7
		1.2.1	LQFP description	7
		1.2.2	LFBGA description	8
		1.2.3	Pin list	9
		1.2.4	I/Os supply groups	16
2	Gen	eral des	cription	17
	2.1	Receiv	er system overview	17
	2.2	HD Ra	dio processing	18
	2.3	Dual ch	nannel HD 1.5 Radio processing	18
	2.4	Overvi	ew of main functional blocks	19
		2.4.1	Adjacent channel filter	19
		2.4.2	HiFi2 core	19
		2.4.3	Vectra core	19
		2.4.4	DMA	19
		2.4.5	Hardware accelerator (VITERBI)	19
3	Ope	ration a	nd general remarks	20
	3.1	Clock s	schemes	20
	3.2	Power	on	22
4	Pow	er supp	ly ramp-up phase	23
	4.1	Oscilla	tor setting time	23
	4.2	Boot se	equence	23
	4.3		I operation mode	
5	Digi	tal I/O ar	nd memory interfaces	25
	5.1	Interfac	ces: LQFP vs. LFBGA	25
	5.2	Base-b	pand I ² S interface	26
	5.3		pand I ² S interface frequency diversity	
	5.4		nterface (AIF)	
			,	

		5.4.1	Output serial audio interface (SAI)	28
		5.4.2	Audio sample rate converter (ASRC)	29
	5.5	Serial pe	eripheral interfaces (SPI)	. 30
		5.5.1	Host micro serial peripheral interface (SPI1)	31
		5.5.2	Flash serial peripheral interface (SPI2)	31
	5.6	I ² C inter	faces	. 32
		5.6.1	Host micro I ² C interface (I2C1)	33
	5.7	SDRAM	interface	. 34
6	Elec	trical spe	ecifications	. 36
	6.1	Absolute	e maximum ratings	. 36
	6.2	Thermal	data	. 36
	6.3	Operatir	ng conditions	. 37
7	Pack	age info	rmation	. 40
8	Revi	sion hist	ory	. 42

List of tables STA680

List of tables

Table 1.	Device summary	1
Table 2.	Pins description	9
Table 3.	Reference clock configuration	. 20
Table 4.	Power on timing parameters	
Table 5.	Interface list	. 25
Table 6.	Baseband interfaces pin list	. 26
Table 7.	BBI timing values	
Table 8.	AIF pin list	. 28
Table 9.	Serial audio interface timing values	. 29
Table 10.	SPI interface timing values	. 30
Table 11.	Host micro SPI pin list	. 31
Table 12.	Flash SPI pin list	
Table 13.	Host and auxiliary I ² C interface pin list	. 32
Table 14.	I ² C interface timing values	
Table 15.	I2C1 interface device address	
Table 16.	SDRAM Interface pin description	
Table 17.	SDRAM interface timing values	. 35
Table 18.	Absolute maximum ratings	. 36
Table 19.	Thermal data	
Table 20.	DC electrical characteristics	. 37
Table 21	Document revision history	42

STA680 List of figures

List of figures

Figure 1.	Functional block diagram	6
Figure 2.	LQFP pinout (top view)	7
Figure 3.	LFBGA ball-out (top view)	8
Figure 4.	System block diagram	17
Figure 5.	Functional block diagram for HD Radio demodulating and decoding	18
Figure 6.	Clock generation unit	21
Figure 7.	Power on timing	22
Figure 8.	Crystal characteristics	22
Figure 9.	BBI waveforms and timings	27
Figure 10.	Serial audio interface waveforms and timings	29
Figure 11.	SPI interface timings diagrams and waveforms	30
Figure 12.	Timing diagrams and waveform for the two I ² C interfaces	32
Figure 13.	Timing diagrams and waveform for the SDRAM interface	34
Figure 14.	LQFP144 (20x20x1.4 mm) mechanical data and package dimensions	40
Figure 15	LERGA 168 halls (12x12x1 4 mm) mechanical data and package dimensions	41

DocID14860 Rev 9 5/43

1 Block diagram and pin description

1.1 Block diagram

Figure 1. Functional block diagram SDRAM **STA680** Vectra LX Tensilica DSP HiFi nsilica Cor SDRAM Interface OTP RF Tuner (i.e. TDA7706) BaseBand Interface AHB Bus RF Tuner Clock Gen. Unit AHB/APB Bridge Turner & Audio Boundary Scan JTAG DMA Interface Peripheral PLL System PLL Û Peripheral Bus LDO I/O & Control Interface SPI SD/MMC Crystal Oscillator GPIO :-1[]F-: Xtal 28.224 SERIAL FLASH (bootable) MAIN MICRO

GAPGPS00114

1.2 Pin description

The STA680 is available in two different packages targeting different application cost and complexity. It comes both in a 20x20mm LQFP package with 144 pins, and in a 12x12mm LFBGA with 168 balls with 0.8mm pitch.

1.2.1 LQFP description

Figure 2 presents the pinout of the STA680 for the LQFP package option. Different colors have been used for I/O signals from different interfaces according to *Table 2* reported in Section 1.2.3.

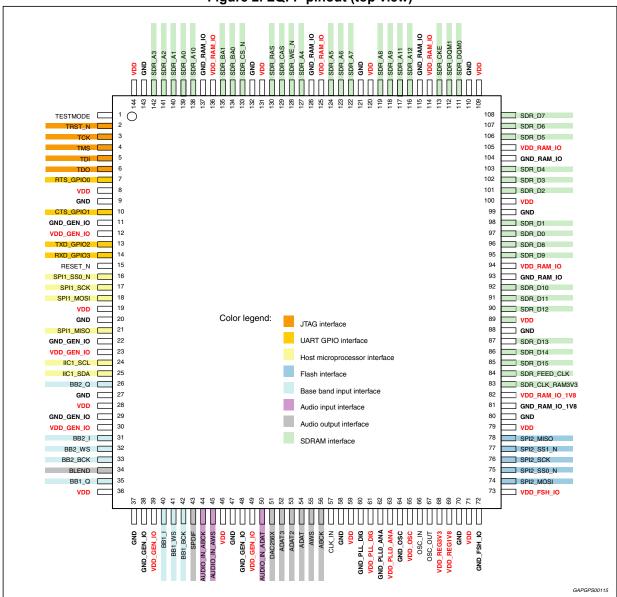
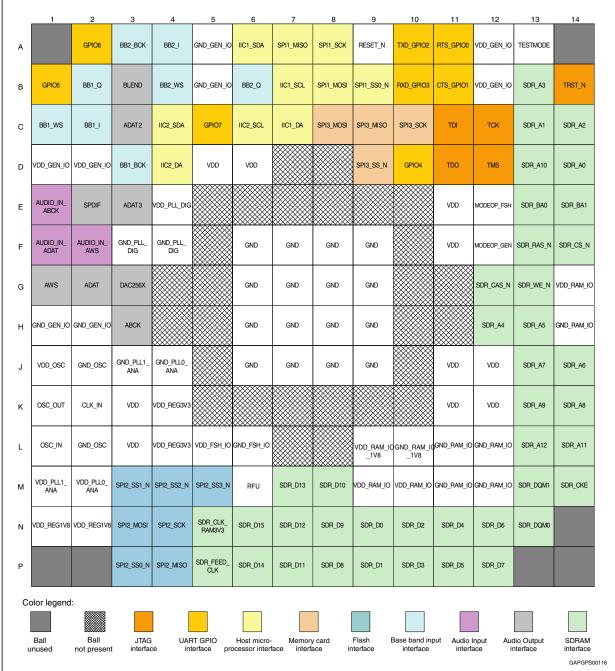



Figure 2. LQFP pinout (top view)

1.2.2 LFBGA description

Figure 3 presents the ball-out of the STA680 for the LFBGA package option. Different colors have been used for I/O signals from different interfaces according to *Table 2* reported in Section 1.2.3.

Figure 3. LFBGA ball-out (top view)

57/

1.2.3 Pin list

The *Table 2* describes the primary function and behavior of the STA680 pins.

Table 2. Pins description

Pin #	Ball#	Signal name	Туре	Pull-up /down ⁽¹⁾	Electrical	Supply group	Description
Test				7401111		9.000	
1	A13	TESTMODE	I	Pull-down	1.8 V or 3.3 V	Generic IO supply	Factory test mode enable
Standa	rd 1149.	1 JTAG interface					
2	B14	TRST_N	I	Pull-up	1.8 V or 3.3 V	Generic IO supply	JTAG active-low test reset
3	C12	TCK	I	Pull-down	1.8 V or 3.3 V	Generic IO supply	JTAG test clock
4	D12	TMS	I	Pull-up	1.8 V or 3.3 V	Generic IO supply	JTAG test mode state
5	C11	TDI	I	Pull-up	1.8 V or 3.3 V	Generic IO supply	JTAG test data in
6	D11	TDO	0	-	1.8 V or 3.3 V	Generic IO supply	JTAG test data out
GPIO &	UART i	nterfaces					
7	A11	RTS_GPI00	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	UART ready to send / GPIO bit 0
10	B11	CTS_GPIO1	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	UART clear to send / GPIO bit 1
13	A10	TXD_GPIO2	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	UART transmit data / GPIO bit 2
14	B10	RXD_GPIO3	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	UART receive data / GPIO bit 3
Not bonded	D10	GPIO4	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	GPIO bit 4
Not bonded	B1	GPIO5	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	GPIO bit 5
Not bonded	A2	GPIO6	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	GPIO bit 6
Not bonded	C5	GPIO7	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	GPIO bit 7
Reset							
15	A9	RESET_N	I	Pull-up	1.8 V or 3.3 V	Generic IO supply	Device active-low reset

Table 2. Pins description (continued)

	Table 2.1 ins description (continued)								
Pin#	Ball#	Signal name	Туре	Pull-up /down ⁽¹⁾	Electrical	Supply group	Description		
Host pr	ocessoi	rinterfaces							
16	В9	SPI1_SS0_N	I	Pull-up	1.8 V or 3.3 V	Generic IO supply	SPI interface 1 active-low slave select		
17	A8	SPI1_SCK	I	Pull-up	1.8 V or 3.3 V	Generic IO supply	SPI interface 1 serial clock		
18	B8	SPI1_MOSI	I	Pull-up	1.8 V or 3.3 V	Generic IO supply	SPI interface 1 serial data master out/slave in		
21	A7	SPI1_MISO	0	Pull-up	1.8 V or 3.3 V	Generic IO supply	SPI interface 1 serial data master in/slave out		
24	B7	IIC1_SCL	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	IIC interface 1 serial clock line		
25	A6	IIC1_SDA	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	IIC interface 1 serial data line		
Not bonded	C7	IIC1_DA	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	IIC interface 1 data acknowledged		
Not bonded	C6	IIC2_SCL	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	Reserved		
Not bonded	C4	IIC2_SDA	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	Reserved		
Not bonded	D4	IIC2_DA	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	Reserved		
IIS tune	r interfa	ices							
40	C2	BB1_I	I	Pull-down	1.8 V or 3.3 V	Generic IO supply	Primary baseband interface serial I data		
35	B2	BB1_Q	I	Pull-down	1.8 V or 3.3 V	Generic IO supply	Primary baseband interface serial Q data		
41	C1	BB1_WS	I	Pull-down	1.8 V or 3.3 V	Generic IO supply	Primary baseband interface word strobe		
42	D3	BB1_BCK	I	Pull-down	1.8 V or 3.3 V	Generic IO supply	Primary baseband interface bit clock		
31	A4	BB2_I	I	Pull-down	1.8 V or 3.3 V	Generic IO supply	Secondary baseband interface serial I data		
26	В6	BB2_Q	I	Pull-down	1.8 V or 3.3 V	Generic IO supply	Secondary baseband interface serial Q data		
32	B4	BB2_WS	I	Pull-down	1.8 V or 3.3 V	Generic IO supply	Secondary baseband interface word strobe		
33	A3	BB2_BCK	I	Pull-down	1.8 V or 3.3 V	Generic IO supply	Secondary baseband interface bit clock		

Table 2. Pins description (continued)

	Table 2. Pins description (continued)								
Pin #	Ball#	Signal name	Туре	Pull-up /down ⁽¹⁾	Electrical	Supply group	Description		
IIS audi	o input	interface							
45	F2	AUDIO_IN_AWS	I	Pull-up	1.8 V or 3.3 V	Generic IO supply	Reserved		
44	E1	AUDIO_IN_ABCK	I	Pull-up	1.8 V or 3.3 V	Generic IO supply	Reserved		
50	F1	AUDIO_IN_ADAT	I	Pull-down	1.8 V or 3.3 V	Generic IO supply	Reserved		
Audio o	output ir	nterfaces							
55	G1	AWS	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	Digital audio output word strobe		
56	НЗ	ABCK	I/O	Pull-up	1.8 V or 3.3 V	Generic IO supply	Digital audio output clock		
54	G2	ADAT	0	ı	1.8 V or 3.3 V	Generic IO supply	Digital audio output serial data		
53	C3	ADAT2	0	-	1.8 V or 3.3 V	Generic IO supply	Reserved		
52	E3	ADAT3	0	-	1.8 V or 3.3 V	Generic IO supply	Reserved		
43	E2	SPDIF	0	-	1.8 V or 3.3 V	Generic IO supply	Reserved		
34	ВЗ	BLEND	0	-	1.8 V or 3.3 V	Generic IO supply	Digital audio output blend output		
51	G3	DAC256X	0	-	1.8 V or 3.3 V	Generic IO supply	Digital audio output oversampling clock		
Clock	& oscill	ator							
57	K2	CLK_IN	I	-	1.8 V or 3.3 V	Generic IO supply	Reference digital clock		
66	L1	OSC_IN	ana	-	1.8 V	Osc supply	28,224MHz crystal in or digital clock input		
67	K1	OSC_OUT	ana	-	1.8 V	Osc supply	Crystal output		
SPI Fla	sh inter	face							
78	P4	SPI2_MISO	I	Pull-up	1.8 V or 3.3 V	Flash IO supply	SPI interface 2 serial data master in/slave out		
74	N3	SPI2_MOSI	0	Pull-up	1.8 V or 3.3 V	Flash IO supply	SPI interface 2 serial data master out/slave in		
75	P3	SPI2_SS0_N	0	Pull-up	1.8 V or 3.3 V	Flash IO supply	SPI interface 2 active-low slave select 0		
77	М3	SPI2_SS1_N	0	Pull-up	1.8 V or 3.3 V	Flash IO supply	Reserved		
Not bonded	M4	SPI2_SS2_N	0	Pull-up	1.8 V or 3.3 V	Flash IO supply	Reserved		

DocID14860 Rev 9

11/43

Table 2. Pins description (continued)

	Table 2. Pins description (continued)								
Pin #	Ball#	Signal name	Туре	Pull-up /down ⁽¹⁾	Electrical	Supply group	Description		
Not bonded	M5	SPI2_SS3_N	0	Pull-up	1.8 V or 3.3 V	Flash IO supply	Reserved		
76	N4	SPI2_SCK	0	Pull-up	1.8 V or 3.3 V	Flash IO supply	SPI interface 2 serial clock		
SPI SD/	MMC in	terface							
Not bonded	C9	SPI3_MISO	I	Pull-up	1.8 V or 3.3 V	Generic IO supply	Reserved		
Not bonded	C8	SPI3_MOSI	0	Pull-up	1.8 V or 3.3 V	Generic IO supply	Reserved		
Not bonded	D9	SPI3_SS_N	0	Pull-up	1.8 V or 3.3 V	Generic IO supply	Reserved		
Not bonded	C10	SPI3_SCK	0	Pull-up	1.8 V or 3.3 V	Generic IO supply	Reserved		
SDRAN	l interfa	ce							
84	P5	SDR_FEED_CLK	ı	-	3.3 V	SDRAM IO supply	Feedback clock from SDRAM interface		
83	N5	SDR_CLK_RAM 3V3	0	-	3.3 V	SDRAM IO supply	Clock to SDRAM for 3.3 V interface		
97	N9	SDR_D0	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 0		
98	P9	SDR_D1	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 1		
101	N10	SDR_D2	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 2		
102	P10	SDR_D3	I/O	i	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 3		
103	N11	SDR_D4	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 4		
106	P11	SDR_D5	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 5		
107	N12	SDR_D6	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 6		
108	P12	SDR_D7	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 7		
96	P8	SDR_D8	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 8		
95	N8	SDR_D9	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 9		
92	M8	SDR_D10	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 10		
91	P7	SDR_D11	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 11		

Table 2. Pins description (continued)

Pin #	Ball#	Signal name	Туре	Pull-up /down ⁽¹⁾	Electrical	Supply group	Description
90	N7	SDR_D12	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 12
87	M7	SDR_D13	I/O	-	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 13
86	P6	SDR_D14	I/O	1	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 14
85	N6	SDR_D15	I/O	1	3.3 V	SDRAM IO supply	SDRAM bidirectional data bit 15
111	N13	SDR_DQM0	0	-	3.3 V	SDRAM IO supply	Low-byte data input/output mask
112	M13	SDR_DQM1	0	1	3.3 V	SDRAM IO supply	High-byte data input/output mask
128	G13	SDR_WE_N	0	-	3.3 V	SDRAM IO supply	Active-low write enable
129	G12	SDR_CAS_N	0	-	3.3 V	SDRAM IO supply	Active-low column address strobe
130	F13	SDR_RAS_N	0	-	3.3 V	SDRAM IO supply	Active-low row address strobe
113	M14	SDR_CKE	0	-	3.3 V	SDRAM IO supply	Clock enable
133	F14	SDR_CS_N	0	-	3.3 V	SDRAM IO supply	Active-low chip select
134	E13	SDR_BA0	0	1	3.3 V	SDRAM IO supply	Bank select address 0
135	E14	SDR_BA1	0	1	3.3 V	SDRAM IO supply	Bank select address 1
139	D14	SDR_A0	0	1	3.3 V	SDRAM IO supply	Address bit 0 to SDRAM
140	C13	SDR_A1	0	1	3.3 V	SDRAM IO supply	Address bit 1 to SDRAM
141	C14	SDR_A2	0	-	3.3 V	SDRAM IO supply	Address bit 2 to SDRAM
142	B13	SDR_A3	0	-	3.3 V	SDRAM IO supply	Address bit 3 to SDRAM
127	H12	SDR_A4	0	-	3.3 V	SDRAM IO supply	Address bit 4 to SDRAM
124	H13	SDR_A5	0	-	3.3 V	SDRAM IO supply	Address bit 5 to SDRAM
123	J14	SDR_A6	0	-	3.3 V	SDRAM IO supply	Address bit 6 to SDRAM
122	J13	SDR_A7	0	-	3.3 V	SDRAM IO supply	Address bit 7 to SDRAM

Table 2. Pins description (continued)

	Table 2. Pins description (continued)								
Pin #	Ball#	Signal name	Туре	Pull-up /down ⁽¹⁾	Electrical	Supply group	Description		
119	K14	SDR_A8	0	ı	3.3 V	SDRAM IO supply	Address bit 8 to SDRAM		
118	K13	SDR_A9	0	-	3.3 V	SDRAM IO supply	Address bit 10 to SDRAM		
138	D13	SDR_A10	0	-	3.3 V	SDRAM IO supply	Address bit 10 to SDRAM		
117	L14	SDR_A11	0	-	3.3 V	SDRAM IO supply	Address bit 11 to SDRAM		
116	L13	SDR_A12	0	-	3.3 V	SDRAM IO supply	Address bit 12 to SDRAM		
Supplie	s								
Not bonded	F12	MODEOP_GEN	I	Pull-up	3.3 V	SDRAM IO supply	Define the opereting voltage of the "Generic I/O" supply group. If tied low the I/Os work at 1.8V else they work at 3.3V. Default value is 3.3V.		
Not bonded	E12	MODEOP_FSH	I	Pull-up	3.3 V	SDRAM IO supply	Define the opereting voltage of the "Flash I/O" supply group. If tied low the I/Os work at 1.8V else they work at 3.3V. Default value is 3.3V.		
8, 19, 28, 36, 46, 59, 71, 79, 89, 100, 109, 120, 131, 144	D5, D6, E11, F11, J11, J12, K3, K11, K12,	VDD	n/a	-	1.2 V	Core supply	Power supply for core logic		
9, 20, 27, 37, 47, 58, 70, 80, 88, 99, 110, 121, 132, 143	F6, F7, F8, F9, G6, G7, G8, G9, H6, H7, H8, H9, J6, J7, J8, J9	GND	n/a	-	-	Core supply	Ground for core logic		

Table 2. Pins description (continued)

	Table 2. Fins description (continued)								
Pin #	Ball#	Signal name	Туре	Pull-up /down ⁽¹⁾	Electrical	Supply group	Description		
11, 22, 29, 38, 48	A5, B5, H1, H2	GND_GEN_IO	n/a	-	-	Generic IO supply	Generic I/Os ground		
12, 23, 30, 39, 49	A12, B12, D1, D2	VDD_GEN_IO	n/a	-	1.8 V or 3.3 V	Generic IO supply	Generic I/Os power supply		
72	L6	GND_FSH_IO	n/a	-	-	Flash IO supply	Ground for Flash Interface I/Os		
73	L5	VDD_FSH_IO	n/a	-	1.8 V or 3.3 V	Flash IO supply	Power supply for Flash Inteface I/Os		
93, 104, 115, 126, 137	H14, L11, L12, M11, M12	GND_RAM_IO	n/a	-	-	SDRAM IO supply	Ground for SDRAM Interface I/Os		
94, 105, 114, 125, 136	G14, M9, M10	VDD_RAM_IO	n/a	-	3.3 V	SDRAM IO supply	Power supply for SDRAM Interface I/Os		
60	F3, F4	GND_PLL_DIG	n/a	1	ı	PLL digital supply	Ground for PLL digital part		
61	E4	VDD_PLL_DIG	n/a	-	1.2 V	PLL digital supply	Power supply for PLL digital part		
62	J4	GND_PLL0_ANA	n/a	-	1	PLL analog supply	Ground for PLL0 analog part ⁽²⁾		
62	J3	GND_PLL1_ANA	n/a	-	-	PLL analog supply	Ground for PLL1 analog part ⁽²⁾		
63	M2	VDD_PLL0_ANA	n/a	-	1.8 V	PLL analog supply	Power supply for PLL0 analog part ⁽³⁾		
63	M1	VDD_PLL1_ANA	n/a	-	1.8 V	PLL analog supply	Power supply for PLL1 analog part ⁽³⁾		
64	J2, L2	GND_OSC	n/a	-	-	Osc supply	Ground for oscillator core		
65	J1	VDD_OSC	n/a	-	1.8 V	Osc supply	Power supply for oscillator core		
68	K4, L4	VDD_REG3V3	n/a	-	3.3 V	LDO supply	Voltage regulator input power supply@3.3 Volt		
69	N1, N2	VDD_REG1V8	n/a	-	1.8 V	LDO supply	Voltage regulator output power supply@1.8 Volt		

, , , , , , , , , , , , , , , , , , ,							
Pin #	Ball#	Signal name	Туре	Pull-up /down ⁽¹⁾	Electrical	Supply group	Description
82	L9	VDD_RAM_IO _1V8	n/a	-	1.8 V	n/a	Reserved - connect to 1.8 V supply
81	L10	GND_RAM_IO _1V8	n/a	-	-	n/a	Reserved - Connect to ground
Others							
Not bonded	M6	RFU	n/a	-	n/a	n/a	Reserved for future use - do not connect

Table 2. Pins description (continued)

- 2. In the LQFP package GND PLL0 ANA and GND PLL1 ANA are bonded together.
- 3. In the LQFP package VDD_PLL0_ANA and VDD_PLL1_ANA are bonded together.

1.2.4 I/Os supply groups

The STA680 I/O signals can be grouped into three different supply domains, as shown in (see *Table 2*):

- Generic IO supply
- Flash IO supply
- SDRAM IO supply group

In the LQFP package option all three groups must be supplied with 3.3 V.

In the LFBGA package the three supply groups can independently operate at 3.3 V or 1.8 V.

- The SDRAM IO supply group must always be supplied with 3.3 V.
- The MODEOP_GEN pin selects the operating voltage of the Generic_IO supply group. If it is shorted to ground then all the I/O signals belonging to the Generic_IO supply group will work at 1.8 V; if the MODEOP_GEN pin is left floating or is tied to 3.3 V all the group I/Os will operate at 3.3 V.
- The MODEOP_FSH pin selects the operating voltage of the Flash_IO supply group. If it is shorted to ground then all the I/O signals belonging to the Flash_IO supply group will work at 1.8 V; if the MODEOP_FSH pin is left floating or is tied to 3.3 V the Flash Interface I/Os will operate at 3.3 V.

^{1.} Each input pin has a pull-up/down resistor to its default value. Unless otherwise specified, unused pins can be left unconnected after verifying that the impedance value of the pull-up/down resistor (see *Table 20*) is sufficient to guarantee noise immunity in user application environment.

STA680 General description

2 General description

The STA680 is a system-on-chip designed for demodulating and decoding HD Radio signals.

The STA680 is the base-band signal processor needed by an HD Radio receiver: it includes the OFDM demodulator, error correction, audio and data decoding of the digital channel.



Figure 4. System block diagram

The architecture of STA680 consists of a mixed hardware/software implementation. Computation-intensive functional blocks are implemented using custom logic. Software implementation is more efficient for functional blocks where flexibility is needed.

2.1 Receiver system overview

Such flexibility enables the STA680 to support both the HD 1.0 single-channel, and HD 1.5 double-channel applications, as shown in *Figure 4*. *Figure 5* shows the internal simplified block diagram of the STA680.

The STA680 receives the digital base-band signal from the digital tuner (e.g. TDA7706) and extracts the HD-encoded audio and data services as shown in *Figure 5*. STA680 is compatible with conventional base-band radio reception tuners (e.g. TDA7706).

General description STA680

Figure 5. Functional block diagram for HD Radio demodulating and decoding

2.2 HD Radio processing

The STA680 HD Radio decoder performs the processing of the IBOC signal. The native internal processing data rate is 744.1875 kS/s for FM and 46.51171875 kS/s for AM.

The input I²S base-band interface accepts several input sample rates thanks to the availability of a reconfigurable sample rate converter. The supported rates are: 650 kS/s, 675 kS/s, 882 kS/s and 912 kS/s.

The STA680 is responsible for the detection, acquisition and demodulation of the IBOC signal. This processing is mainly performed inside the Vectra DSP core. The demodulated signal is then passed to the Hi-Fi processor for decoding and handling of data services. The digital 44.1 kHz decompressed audio is streamed out by means of the Digital Audio Interface.

The STA680 requires a 4Mwords x16bits external SDRAM (with up to 32Mword x16bits supported) for data storage in order to process the HD Radio stream

2.3 Dual channel HD 1.5 Radio processing

The STA680 is capable of simultaneously demodulating two different HD Radio streams. This feature enables the device to decode the main HD Radio audio stream in parallel with the data service broadcasted by a different radio channel (for instance this feature allows to continue receiving traffic information provided by one radio station while listening to music from a different station).

The implementation of the dual stream HD Radio processing requires that two AM/FM RF tuners be connected to the STA680, as shown in *Figure 4*

STA680 General description

2.4 Overview of main functional blocks

2.4.1 Adjacent channel filter

This module performs digital filtering of the IBOC channel. It receives the complex baseband I/Q IBOC signal input from the tuner and pre-conditions the signal for subsequent modem processing.

2.4.2 HiFi2 core

The HiFi2 is a signal processing engine specifically designed to provide high quality 24-bit audio processing. The HiFi2 uses the Tensilica Xtensa LX engine with additional useful hardware capabilities such as:

- Specialized instructions for 24-bit Audio MAC & stream coding
- Dual MAC (each supports 24 x 24 and 32 x 16 bit format)
- Huffman Encode / Decode and truncate functions
- Two way Single-Instruction-Multiple-Data arithmetic and logic operations

2.4.3 Vectra core

The Vectra LX is on-chip a powerful, configurable 32-bit RISC engine optimized for DSP with VLIW capabilities. The Vectra LX includes eight MAC units, sixteen 160-bit vector operation registers, and a number of SIMD arithmetic instructions. Custom instructions in the Vectra are tailored to DSP applications such as filters and FFTs. The Vectra processor has been further configured with specific instructions for efficient performance on the HD Radio application.

2.4.4 DMA

A ten-channel DMA controller is attached to the AHB bus to allow the Vectra and HiFi2 processor cores to efficiently move large data-blocks.

2.4.5 Hardware accelerator (VITERBI)

The complex convolutional Viterbi hardware accelerator supports both K constants of 7 and 9, for IBOC digital FM and AM processing respectively.

DocID14860 Rev 9

19/43

Operation and general remarks 3

3.1 Clock schemes

The STA680 needs an external clock source to drive the internal Phase Locked Loops (PLLs) that generate the clocks needed by the DSP cores and their peripherals.

The STA680 accepts several external reference clock sources, as listed below:

- The reference clock can be supplied through the use of an external crystal or as a digital signal coming from an external IC.
- The reference clock can have different frequencies and different input pins can be used.

The selection of the clock input mode is performed during the power-on phase of the device by latching the value of the pins ADAT3, BLEND and DAC256X on the rising edge of the RESET N signal (see Section 3.2); these values shall be selected according to Table 3.

[ADAT3, BLEND, Clock frequency Input pin Clock type **DAC256X**] (MHz) $[0,0,0]^{(1)}$ Crystal OSC IN 28.224 OSC_IN or CLK_IN (2) [0,0,1]Digital 23.3472 Digital OSC IN or CLK IN (2) 36.48 [0,1,0]OSC IN or CLK IN (2) [0,1,1]Digital 2.9184 Digital BB1 BCK(3) 10.4 [1,0,0] BB1 BCK⁽³⁾ [1,0,1] Digital 10.8 BB1 BCK⁽³⁾ Digital 14.112 [1,1,0] [1,1,1] Digital AUDIO_IN_ABCK(3) 2.9184

Table 3. Reference clock configuration

DocID14860 Rev 9 20/43

^{1.} Default setting.

When using OSC_IN pin to input the reference clock the CLK_IN pin must be connected to ground and vice

When using BB1_BCK or AUDIO_IN_ABCK to input the reference clock it is suggested to connect the OSC_IN to ground and to tie the CLK_IN pin to high value (3.3 V or 1.8 V depending on the configuration).

Figure 6. Clock generation unit SW application-controlled full - half frequency with 50% duty cycle DIV2 clock to SDRAM up to 136 MHz core in normal drive supply) Core Clock up to 160 MHz PLL (core in over drive supply) BB1 BCK AUDIO_IN_ABCK clock to Cores up to 166MHz CLK_IN Peripheral clock to Peripherals OSC_IN Clock PLL Internal up to 70.56MHz CLK SEL (integer multiple of 44.1kHz Oscillator OSC_OUT audio sampling rate) PLL Settings OSC EN Encoder BLEND ADAT3

Figure 6 shows a simplified version of the internal clock generation unit.

Clock generation unit

Some remarks on the clock input pin follows:

- OSC IN is always a 1.8 V input pin.
- CLK_IN, BB1_BCK and AUDIO_IN_ABCK are 3.3 V for the LQFP package, whereas they can be configured as either 3.3 V or 1.8 V pins for the LFBGA (see Section 1.2.4)
- When the clock is fed through the CLK_IN pin, the OSC_IN pin must be connected to ground (and vice versa).
- The BB1_BCK pin is the bit clock of the digital interface to the baseband Tuner. When
 this pin is selected as input for the reference clock, the selected clock frequency must
 be chosen compatibly with the Primary baseband Interface settings (see Section 5.2):
 - 10.4 MHz = 16 * 2 * 650 kHz \rightarrow BBI set to 650 Ksample/s
 - 10.8 MHz = 16 * 2 * 675 kHz \rightarrow BBI set to 675 Ksample/s
 - 14.112 MHz = 16 * 2 * 882 kHz \rightarrow BBI set to 882 Ksample/s
- The AUDIO_IN_ABCK pin is the bit clock of the digital audio input interface to the Tuner. When this pin is selected as the reference clock source, the STA680 Input Serial Audio Interface must be configured as follows:
 - Slave mode
 - Input sample rate = 45.6 kHz
 - Word length = 32 bit

With this settings the reference clock frequency is 2.9184 MHz = 32 * 2 * 45.6 kHz.

 When the device reference clock comes from BB1_BCK or AUDIO_IN_ABCK it is suggested to connect the OSC_IN to ground and to tie the CLK_IN pin to its high value (3.3 V or 1.8 V depending on the configuration).

3.2 Power on

This chapter describes the power-on procedure for the cold start (i.e. when the device is not supplied before being turned on). Figure 7 and Table 4 show the timing for the cold start power up sequence.

Boot pins are latched at startup. Their default value is logic 0, in case logic 1 is needed a 6K2 pull-up resistor should be connected on the corresponding boot line. After reset release, the boot selection lines become outputs.

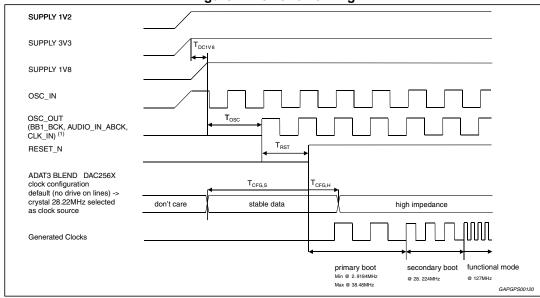


Figure 7. Power on timing

In case the Reference Clock is fed through BB1_BCK, AUDIO_IN_BCK or CLK_IN the Power On timing diagram is the same as Figure 7 where OSC_OUT is substituted by the external supplied stable reference clock.

Symbol Parameter Min Max Unit Same ramp-up time for External supply ramp-up time T_{ramp-up} 3.3 V and 1.2 V supply T_{DC1V8} DC1V8 regulator start-up time 1 ms $T_{OSC}^{(1)}$ Oscillator start-up time 400 μs 2 T_{RST} Reset release time ms $\mathsf{T}_{\mathsf{CFG},\mathsf{S}}$ Setup time for clock configuration 0.1 μs Hold time for clock configuration 10 T_{CFG,H}

Table 4. Power on timing parameters

Model Value 50 Ohm Rm Lm 1.33 mH CI1 Cm 26 fF CO 7 pF Ci = CI1 = CI3 38pF (33pF + 5pF parasitic) Equivalent circuit of a quartz crystal GAPGPS00121

Figure 8. Crystal characteristics

The oscillator start-up time depends on the crystal connected to the internal oscillator. The given value is estimated for a crystal with characteristic shown in Figure 8.

4 Power supply ramp-up phase

The external power supply circuit on the board has to ensure that all the power supplies are ramped up to their specified levels The ramp up phase of each power domain should start at the same time.

The RESET_N pin must be kept low from the beginning.

For normal applications, the TESTMODE pin (Factory test mode enable, see *Table 3*) must be connected to ground.

4.1 Oscillator setting time

Once the power supply has reached the operating level, the internal voltage regulator gets functional after T_{DC1V8} = 1ms (see *Table 4*) and starts supplying the 1.8 V voltage to internal IPs such as PLLs and Crystal Oscillator.

The PLL is powered up but not yet functional since the internal logic keeps it in bypass mode until a stable clock is available and STA680 has entered the secondary boot phase.

As shown in *Figure 7*, if an external crystal is connected to the internal oscillator this will output a correct waveform after $T_{OSC} = 400 \, \mu s$ (see *Table 4*).

Alternatively, if no crystal is used, a digital clock must be supplied according to the instructions detailed in *Section 3.1*. In this case the Power On timing diagram is the same as *Figure 7* where OSC_OUT is substituted by the external supplied stable reference clock (alternatively BB1 BCK, AUDIO IN BCK or CLK IN).

The RESET_N pin must be kept low for an additional $T_{RST} = 2$ ms both when using a crystal and when using an external reference clock.

As described in *Section 3.1* the internal clock configuration is defined by the status of the pins ADAT3, BLEND and DAC256X; this is latched on the rising edge of the RESET_N signal.

The voltage of the three pins must be stable from at least T_{CFG} = 0.1 μ s before the rising edge of the RESET N signal.

4.2 Boot sequence

Once the RESET_N signal has been released and the power up sequence correctly executed, the STA680 enters the boot procedure, which consists of two phases:

- 1. device setup
- 2. application authentication and download.

During the first phase, the STA680 executes the on-chip primary boot code contained in the Boot ROM.

The primary boot synchronizes the internal cores, initializes the SPI and IIC interfaces and automatically selects the secondary boot code source by looking for a pre-defined pattern into UART1, Flash, SPI1, IIC1 and IIC2.

Once the source of the secondary boot code has been identified, the STA680 executes the following steps:

- 1. code authentication
- 2. SDRAM initialization
- 3. secondary boot code download to SDRAM.

In order to decrease the boot time during the secondary phase, the STA680 performs the setup of the PLLs and sets the internal clock frequency to 28.224 MHz (see *Figure 7*). Subsequently it downloads and validates the application code either from the external Flash memory or from the host microcontroller. This ends the boot procedure.

4.3 Normal operation mode

After the execution of the boot code, the device enters the normal operation mode by jumping to the main program loop.

577

5 Digital I/O and memory interfaces

5.1 Interfaces: LQFP vs. LFBGA

The STA680 connectivity depends on the selected package^(a). The differences between the two package options are listed in *Table 5*.

Table 5. Interface list

Interface name	Direction	LQFP	LFBGA
Baseband interface 1	I	√	V
Baseband interface 2 (data only)	I	√	√
I ² S audio input	I	√	√
I ² S audio output (six channels)	0	√	√
I ² C primary interface (Micro)	I/O	√	√
I ² C secondary Interface	I/O	х	√
SPI micro interface	I/O	√	√
SPI Flash interface (double chip select)	I/O	√	√
SPI Flash interface extension (up to 4 chip select)	I/O	х	√
SPI SD/MMC	I/O	х	√
SDRAM interface	I/O	√	√
S/PDIF interface	0	√	√
UART interface	I/O	√	√
4 GPIO lines	I/O	х	√
JTAG test interface (boundary scan only)	I/O	√	V

a. STA680 firmware determines actual feature availability. Refer to the STA680 firmware Release Notes.

DocID14860 Rev 9 25/43

5.2 Base-band I²S interface

The STA680 has two digital Base-Band Interfaces (BBI1 and BBI2).

The tuners receive the analog signals from the antenna, sample them, perform down conversion and channel selection, and transmit the digital base-band streams to the STA680 by means of BBI1 and BBI2

Each BB interface consists of four wires: two serial data lines (I/Q), one bit clock line and one frame clock line. The serial data is always transmitted with the MSB first and a 16-bit word length. The complex base-band signal needs to be at zero IF.

Most common data rates are supported by using the internal base-band sample rate converter. The allowed base-band interface data rates are:

- 650 kS/s,
- 675 kS/s,
- 882 kS/s
- 912 kS/s.

Table 6. describes the pin functionality of both BBI1 and BBI2.

Table 6. Baseband interfaces pin list

Pin name	Designation	Туре	Drive
BB1_WS	Primary baseband interface word strobe	I	-
BB1_BCK	Primary baseband interface bit clock	I	-
BB1_I	Primary baseband interface serial I data	I	-
BB1_Q	Primary baseband interface serial Q data	I	-
BB2_WS	Secondary baseband interface word strobe	I	-
BB2_BCK	Secondary baseband interface bit clock	I	-
BB2_I	Secondary baseband interface serial I data	I	-
BB2_Q	Secondary baseband interface serial Q data	I	-

The base-band interface supports the modes shown in *Figure 9* Timing information for the protocols shown in *Figure 9* is detailed in *Table 7*.

577

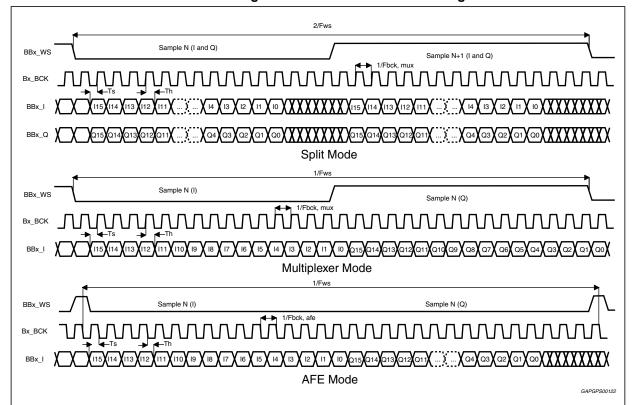


Figure 9. BBI waveforms and timings

Table 7. BBI timing values

Symbol	Parameter		Working Rate				
Fws	Word Strobe	650	675	744.1875	882	912	kHz
Fbck,split	Bit clock in SPLIT mode		16 x Fws			kHz	
Fbck,mux	Bit clock in MUX mode	32 x Fws				kHz	
Fbck,afe	Bit clock in AFE mode	32 x Fws				kHz	
Th	Data hold time	4			4		ns
Ts	Data setup time		8				ns

5.3 Base-band I²S interface frequency diversity

When the STA680 is paired with the TDA7706 tuner it can benefit from the supported baseband interface frequency diversity that allows to improve the EMI robustness of the system.

The frequency diversity technique allows the base-band data-rate to be varied at run-time depending on the frequency of the tuned station, thus moving the intrinsic radiation of the BBI digital lines away from the signal of interest.

577

DocID14860 Rev 9

27/43

5.4 Audio interface (AIF)

The STA680 uses a stereo I²S interface for sending the decoded digital audio back to the tuner, where the blending with the legacy AM/FM demodulated audio occurs.

The receivers and transmitters can be used either in master mode, running with the STA680 internal audio frequency of 44.1 kHz or in slave mode running with a frequency determined by the external device. In slave mode, the internal Audio Sample Rate Converter (ASRC, see *Chapter 5.4.2*) adapts the external data rate (from 44.1 to 48 kSps) to the internal one.

Pin name Designation **Drive** Type **AWS** I/O 4mA Digital audio output word strobe **ABCK** Digital audio output clock I/O 4mA **ADAT** 0 4mA Digital audio output serial data DAC256X Digital audio output oversampling clock (256 x Fs) 0 4mA **BLEND** 0 Digital audio output blend output 4mA

Table 8. AIF pin list

5.4.1 Output serial audio interface (SAI)

The output serial audio interface is used to send the decoded audio from the HD Radio Decoder to an external IC (e.g. TDA7706).

The output SAI is an I2S interface which provides audio samples in stereo at a 44,1 kS/s data rate in master mode. In slave mode, other sample rates (from 44.1 to 48kSps) are supported by means of the internal ASRC (see Section 5.4.2).

The output SAI interface is composed by three lines: one data line and two clock lines.

The output SAI supports a 32x or 64x bit clock with 16-bit precision audio data. The 32x clock mode has no bit padding. The 64x clock mode adds 16-bits zero padding at the end of the 16-bit audio data. *Figure 10* shows timing diagrams for the supported modes.

An oversampled audio master-clock is also available for directly interfacing the STA680 to an external DAC. *Table 8* shows the timing values for the output SAI interface.

577

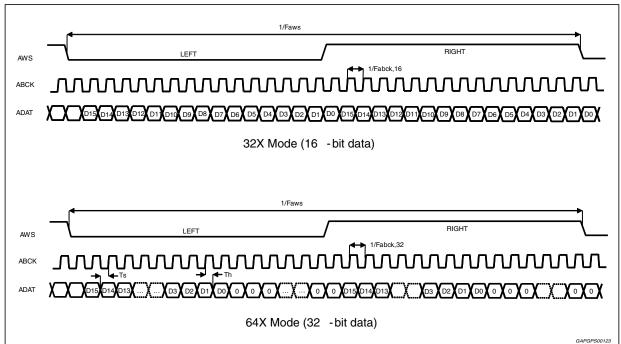


Figure 10. Serial audio interface waveforms and timings

Table 9. Serial audio interface timing values

Symbol	Parameter		Working rate			
Faws	Word strobe	44.1 ±10 Hz	45.6 ±15 Hz	48 ±15 Hz	kHz	
Fabck,16	Bit clock for 16-bit data	32 x Faws			MHz	
Fabck,32	Bit clock for 32-bit data	64 x Faws			MHz	
Th	Data hold time	5			ns	
Ts	Data setup time		20			

5.4.2 Audio sample rate converter (ASRC)

The STA680 embeds a stereo channel sample rate converter to be used in combination with either the output (one single data-line) or the input SAI. The ASRC has a Total Harmonic Distortion plus Noise (THD+N) level at 1 kHz smaller than -85 dB (0.0056%).

The supported data rates are:

- 44,100 (± 10 Hz),
- 45,600 (± 15 Hz)
- 48,000 (± 15 Hz)

577

DocID14860 Rev 9

29/43

Serial peripheral interfaces (SPI) 5.5

The STA680 provides two serial peripheral interfaces:

- SPI1 is intended for communicating with the Host Microcontroller.
- SPI2 interfaces the STA680 to the external flash memory

The maximum SPI clock frequency in master mode is 25 MHz.

In slave mode the maximum input clock frequency is a function of the internal peripheral clock.

In particular the maximum frequency is $F_{SPI} = \frac{F_{perif}}{8}$, where F_{perif} 56.448MHz

(for STA680-51001569-05000033-C0002.000 firmware version) is the frequency of the clock feeding the peripheral bus and blocks.

Figure 11 shows the timing diagrams and waveform for the three SPI interfaces.

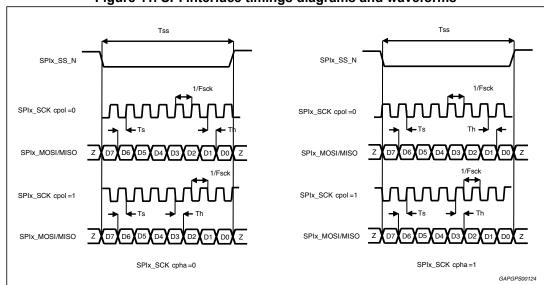


Figure 11. SPI interface timings diagrams and waveforms

Table 10 shows the timing values for the SPI interface.

Working rate **Symbol Parameter** Unit Min. Max. Chip select 8/Fsck Tss ns Fsck Serial bit clock, slave mode 1.076 8000 kHz 1.076 25000 kHz Fsck Serial bit clock, master mode 7 Th Data hold time ns 15 Ts Data setup time

Table 10. SPI interface timing values

DocID14860 Rev 9 30/43

5.5.1 Host micro serial peripheral interface (SPI1)

SPI1 is used to interface the STA680 with a host processor interface.

The communication with the host-microcontroller can alternatively be performed via I²C as described in *Section 5.6.1*.

The Host Micro SPI is a slave only interface.

For the relevant pin description see *Table 11*.

Table 11. Host micro SPI pin list

Pin name	Designation	Туре	Drive
SPI1_MISO	Host Micro SPI data master in/slave out	0	4mA
SPI1_MOSI	Host Micro SPI data master out/slave in	I	-
SPI1_SCK	Host Micro SPI clock	I	4mA
SPI1_SS_N	Host Micro SPI active-low slave select 1	I	4mA

5.5.2 Flash serial peripheral interface (SPI2)

SPI2 is typically used for connecting the STA680 to an external Flash memory where the boot code and configuration parameters could be stored. The minimum required capacity for this purpose is 1 Mbit. SPI2 is master-only.

Up to 4 chip select lines are available on the STA680 with the BGA package. For the relevant pin description see *Table 12*.

Table 12. Flash SPI pin list

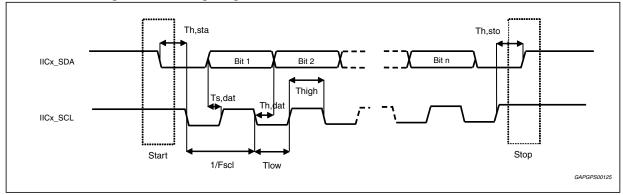
Pin name	Designation	Туре	Drive
SPI2_MISO	Flash SPI data master in/slave out	I	-
SPI2_MOSI	Flash SPI data master out/slave in	0	4mA
SPI2_SCK	Flash SPI clock	0	4mA
SPI2_SS_N	Flash SPI active-low slave select 1	0	4mA
SPI2_SS1_N	Flash SPI active-low slave select 2	0	4mA
SPI2_SS2_N	Flash SPI active-low slave select 3 (1)	0	4mA
SPI2_SS3_N	Flash SPI active-low slave select 4 (1)	0	4mA

^{1.} Only available in BGA package.

5.6 I²C interfaces

The STA680 features two I²C interfaces. For the relevant pin description see *Table 13*.

Table 13. Host and auxiliary I²C interface pin list


Pin name	Designation	Туре	Drive
IIC1_SCL	Host Micro I ² C interface serial clock line	I/O	4mA
IIC1_SDA	Host Micro I ² C interface serial data line	I/O	4mA
IIC1_DA (1)	Host Micro I ² C interface data acknowledged	I/O	4mA
IIC2_SCL	Auxiliary I ² C interface serial clock line	I/O	4mA
IIC2_SDA	Auxiliary I ² C interface serial data line	I/O	4mA
IIC2_DA (1)	Auxiliary I ² C interface data acknowledged	I/O	4mA

^{1.} Only available in BGA package.

The data pin of the I^2C interface is an open drain driver and it needs a resistive pull- up as required by Philips' I^2C specification.

Figure 12 shows timing diagrams and waveform for the two I²C interface.

Figure 12. Timing diagrams and waveform for the two I²C interfaces

In *Table 14* the timing values for the I²C interfaces are reported.

Table 14. I²C interface timing values

Symbol	Parameter	Standar	d-mode	Fast-	Unit	
Symbol	Parameter	Min.	Max.	Min.	Max.	Oilit
Fscl	SCL clock frequency	-	100	-	400	kHz
Tlow	Low period of SCL clock	4.7	-	1.3	-	μs
Thigh	High period of SCL clock	4	-	0.6	-	μs
Th, dat	Data hold time	5	-		-	μs
Ts, dat	Data setup time	250	-	100	-	μs
Th, sta	Hold time for start condition	4	-	0.6	-	μs
Ts, sto	Setup time for stop condition	4	-	0.6	-	μs

DocID14860 Rev 9

32/43

5.6.1 Host micro I²C interface (I2C1)

I2C1 is used to connect the STA680 to the host microcontroller to transmit commands, diagnostic information, and data.

The I2C1 interface is a standard bi-directional I²C interface.

The I2C1 interface supports 7-bit addressing and 8-bit data. It can run in both standard mode (serial clock frequency up to 100 kHz) and fast mode (up to 400 kHz). The I²C device addresses are reported in *Table 15*.

An additional control line called IIC1_DA is provided as an extension of the I²C standard. This line is used as a flag to show the host controller that data is available and it can be polled by the host micro in either master or slave modes.

Table 15. I2C1 interface device address

I2C1	Primary address	Secondary address
Read Address	00101111b (0x2F)	00101101b (0x2D)
Write Address	00101110b (0x2E)	00101100b (0x2C)

5.7 SDRAM interface

The SDRAM interface supports up to 32M x 16 SDRAM; both standard and mobile protocols are accepted. For the relevant pin description see *Table 16*

Table 16. SDRAM Interface pin description

Pin Name	Designation	Туре	Drive
SDR_D[0:15]	SDRAM interface data bus	I/O	4 mA
SDR_A[0:12]	SDRAM interface address bus	0	4 mA
SDR_BA[0:1]	Bank address	0	4 mA
SDR_CAS_N	Active-low column address strobe	0	8 mA
SDR_RAS_N	Active-low row address strobe	0	8 mA
SDR_WE_N	Active-low write enable	0	8 mA
SDR_CS_N	Active-low chip select	0	8 mA
SDR_DQM0	low-byte data input/output mask	0	4 mA
SDR_DQM1	high-byte data input/output mask	0	4 mA
SDR_CKE	Clock enable	0	4 mA
SDR_CLK_RAM3V3	Clock to SDRAM for 3.3 V interface	0	8 mA
SDR_FEED_CLK	Feedback clock from SDRAM	I	8 mA

The minimum required SDRAM size for single channel application is 64 Mbit while for a dual channel application at least 128 Mbit are needed.

Figure 13 shows the timing diagrams and waveform for the SDRAM interface.

SDR_CLK_RAM

SDR_CLK_CS

SDR_CAS

SDR_WE_N

SDR_BA

SDR_BA

SDR_A

Table 17 reports the timing values for the SDRAM interface

57/

Table 17. SDRAM interface timing values

Symbol	Parameter	Condition	Software application	Min.	Max.	Unit
Tck		Core in normal	Full rate	7.35	-	
	COL plant named	drive	Half rate	12.05	-	
	SCL clock period	Core in	Full rate	6.25	-	ns
		overdrive	Half rate	12.05	-	
Tch	CLK high level width	-	-	2.5	-	ns
Tcl	CLK low level width	-	-	2.5	-	ns
Toh	Data out hold time	-	-	0.9	-	ns
Tos	Data out setup time	-	-	1.5	-	ns
Tis	Data In setup time	-	-	0.8	-	ns
Tih	Data In hold time	-	-	1.6	-	ns
Tt	Transition time	-	-	-	1.2	ns

For power saving and reduced interference on the board, the SDRAM speed is programmed to work at half speed with respect to the internal data processing:

- Full Rate SW application: the SDRAM interface works at the same frequency as the internal data processing;
- Half Rate SW application: the SDRAM interface works at half frequency with respect to the internal data processing

6 Electrical specifications

6.1 Absolute maximum ratings

Table 18. Absolute maximum ratings

Symbol	Parameter	Test condition	Min Typ Max			Units	
VDD	Core supply voltage	-	-	- 1.47 -			
VDD_GEN_IO	Generic IO supply voltage	-	-	3.6	V		
VDD_FSH_IO	Flash IO supply voltage	-	-	3.6	V		
VDD_RAM_IO	SDRAM IO supply voltage	-	-	3.6	-	V	
VDD_OSC	Osc 1V8 supply voltage	-	-	1.95	-	V	
VDD_PLL_ANA	PLL analog supply voltage	-	-	2.75	-	V	
VDD_PLL_DIG	PLL digital supply voltage	-	-	1.47	-	V	
VDD_SAF	SAF core supply voltage	-	-	1.47	-	V	
V _i	Voltage on input pin	-	-0.5	-	VDDIO+0.5	V	
V _o	Voltage on output pin	-	-0.5	-	VDDIO+0.5	V	
		R = 1.5 kΩ; C = 1.5 pF Human Body Model, BGA package		> ±1000			
V _{ESD}	ESD absolute minimum withstand voltage	Charged device mode, BGA package					
		R = 1.5 kΩ; C = 1.5 pF Human Body Model, LQFP package		> ±1000			
		Charged device mode, LQFP package	> ±450				

6.2 Thermal data

Table 19. Thermal data

Symbol	Parameter	Test condition	Value	Unit			
D	Thermal registance junction to embient	LQFP package, JEDEC 2s2p PCB, free air	42	°C/W			
R _{th j-amb}	Thermal resistance junction-to-ambient	BGA package, JEDEC 2s2p PCB, free air	44				
T _{stg}	Storage temperature	-	-55 to 150	°C			
T _{amb}	Operating ambient temperature	-	-40 to 85	°C			
T _{i, max}	Maximum junction temperature	-	125	°C			

6.3 Operating conditions

Table 20. DC electrical characteristics

Symbol	Parameter	Test condition			Min.	Тур.	Max.	Unit
1/1212		Normal drive		1.14	1.2	1.26	V	
VDD	Core supply voltage	Over drive		1.33	1.4	1.47	V	
VDD_GEN_IO	Generic IO supply voltage	-			3.14	3.3	3.46	V
VDD_FSH_IO	Flash IO supply voltage	-			3.14	3.3	3.46	V
VDD_RAM_IO	SDRAM IO supply voltage	-			3.14	3.3	3.46	V
VDD_RAM_IO_ 1V8	Supply for the SDRAM clock at 1.8V	-			1.71	1.8	1.89	V
VDD_OSC	Oscillator analog supply voltage	-	-			1.8	1.89	V
VDD_PLL_ANA	PLL analog supply voltage	-	-			1.8	1.89	V
VDD_PLL_DIG	PLL digital supply	Normal drive		1.14	1.2	1.26	V	
VDD_PLL_DIG	voltage	Over drive	Over drive		1.33	1.4	1.47	V
VDD_SAF	SAE supply voltage	supply voltage		1.14	1.2	1.26	V	
VDD_SAF	SAF supply voltage			1.33	1.4	1.47	V	
	Current from 1.2 V supply	HD 1.0 ⁽¹⁾	T _{amb} =25°C	VDD=1.20V	-	90	-	mA
1			T _{amb} = 85°C	VDD=1.26V	-	-	149	mA
I _{1V2}		HD 1.5 ⁽²⁾	T _{amb} =25°C	VDD=1.20V	-	110	-	mA
			T _{amb} = 85°C	VDD=1.26V	-	-	180	mA
	Current from 3.3 V supply	HD 1.0	T _{amb} = 25°C	VDD_IO ⁽³⁾ =3.3V	-	32	-	mA
I			T _{amb} = 85°C	VDD_IO= 3.46V	-	-	41	mA
l _{3V3}		HD 1.5	T _{amb} = 25°C	VDD_IO = 3.3V	-	50	-	mA
			T _{amb} = 85°C	VDD_IO= 3.46V	-	-	70	mA
		HD 1.0	T _{amb} = 25°C	typical supply	-	214	-	mW
Pd	Power dissipation		T _{amb} = 85°C	max supply	-	-	330	mW
		UD 1 F	T _{amb} = 25°C	typical supply	-	297	-	mW
		HD 1.5	T _{amb} = 85°C max suppl	max supply	-	-	469	mW
lil	Low level input leakage current ⁽⁴⁾	Vi = 0V			-	-	1.9	μA
lih	High level input leakage current ⁽⁴⁾	Vi = VDD_GEN_IO ⁽⁵⁾			-	-	1.9	μA

Table 20. DC electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
llpu	High level input leakage current on pull up ⁽⁶⁾	Vi = VDD_GEN_IO ⁽⁵⁾	-	-	2.9	μΑ	
llpd	Low level input leakage current on pull-down ⁽⁷⁾	Vi = 0V	-	-	10	μΑ	
Dou	Equivalent pull-up	1.8 supply mode V _i = 0.1V	104	-	360	kΩ	
Rpu	resistance ⁽⁸⁾	3.3 supply mode V _i = 0.1V	52	-	180		
Dl	Equivalent pull-	1.8 supply mode V _i = 1.7V	104	-	360	10	
Rpd	down resistance ⁽⁹⁾	3.3 supply mode V _i = 3.5V	52	-	180	kΩ	
Vil	Vil Low level input voltage	1.8 supply mode	-0.3	-	0.35 · VDD_IO _GEN	V	
		3.3 supply mode	-0.3	-	0.7	٧	
) (il-	High level input	1.8 supply mode	0.65 · VDD_ GEN_IO	-	VDD_ GEN_IO +0.3	V	
Vih	voltage	3.3 supply mode	2.0	-	VDD_ GEN_IO +0.3	٧	
Vhyst	Input hysteresis voltage	3.3 supply mode	50	-	-	mV	
Voh	Output high voltage	Ioh =XmA ⁽¹⁰⁾	VDD_G EN_IO- 0.4V	-	-	٧	
Vol	Output low voltage	IoI =XmA ⁽¹⁰⁾	-	-	0.3	V	
llatchup	Injection current	Maximum operating junction temperature 105 °C	100	-	-	mA	
lil_ram	Low level input leakage current ⁽⁴⁾	Vi = 0V	-	-	4	μΑ	
lih_ram	High level input leakage current ⁽⁴⁾	Vi = VDD_RAM_IO	-	-	4	μΑ	
llpu_ram	High level input leakage current on pull up ⁽⁶⁾	Vi = VDD_RAM_IO	-	-	4	μΑ	
llpd_ram	Low level input leakage current on pull-down ⁽⁷⁾	Vi = 0V	-	-	-	μA	
lpu_ram	Pull-up current	Vi = 0.1V	40		150	μΑ	
Rpu_ram	Equivalent pull-up resistance ⁽⁸⁾	Vi = 0.1V	23	-	87	kΩ	

Table 20. DC electrical characteristics (continued)

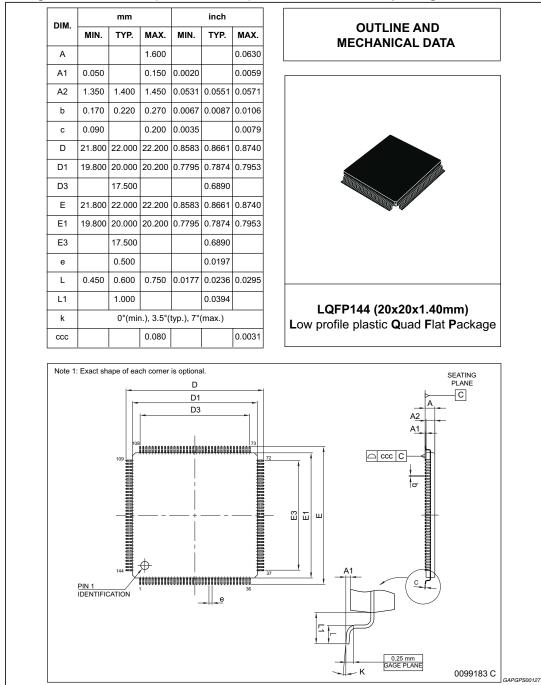
ameter Test condition Mi

Symbol	Parameter	Test condition		Min.	Тур.	Max.	Unit
Vil_ram	Low level input voltage	-		0.8	-	-	٧
Vih_ram	High level input voltage	-		-	-	2	٧
Vhyst_ram	Schmitt trigger hysteresis	-		300	-	800	mV
Voh_ram	High level output voltage	loh = -XmA ⁽¹⁰⁾		VDD_R AM_IO -0.4	-	-	V
Vol_ram	Low level output voltage	IoI =XmA ⁽¹⁰⁾		-	-	0.3	V
ldc	3V3 to 1V8 DC regulator output current	-		-	-	100	mA
_	Output load for triple voltage pads (1.8V and 3.3V)	1.8 V supply mode for 4mA buffer	40 MHz	-	-	30	pF
C_L		3.3 V supply mode (for both 4mA and 8mA)	60 MHz	-	-	30	pF
			75 MHz	-	-	20	pF
C _{L,3V3}	Output load for 3.3V pads	4 mA buffer	140MHz	-	-	10	pF
		8 mA buffer	140MHz	-	-	20	pF
C _{L, DC}	DC regulator output load ⁽¹¹⁾	-		2.2	-	4.7	μF

Current consumption and power dissipation measured for single channel software application (HD 1.0) running at 127MHz on core and 65 MHz on SDRAM interface with FW version STA680-51001569-0D000003-C0004.000.

- 3. VDD_IO generally refers to the supply of the VDD_GEN_IO, VDD_FSH_IO and VDD_RAM_IO groups.
- 4. Performed on all the input pins excluded the pull-down and pull-up ones.
- 5. VDD_GEN_IO may be VDD_FHS_IO or VDD_GEN_IO depending on interface considered.
- 6. Performed only on the Input pins with pull up.
- 7. Performed only on the Input pins with pull down.
- 8. Guaranteed by Ipu measurements.
- 9. Guaranteed by Ipd measurements.
- 10. XmA = 4mA for a BD4, 8mA for BD8 pad type.
- 11. Dielectric=X7R ESRmax=100ohm, 2.2μF +-5% or any above 3μF+-10% but less than 4.7μF+-10%. It is also recommended to distribute the 2.2μF capacitance on the board by placing equivalent number of smaller capacitance value (for example, 470nF) near each VDD_REG1V8 supply pad.

Current consumption and power dissipation measured for dual channel software application (HD 1.5) running at 127MHz on core and 130 MHz on SDRAM interface with FW version STA680-51001569-0D000033-C0004.000.


Package information STA680

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

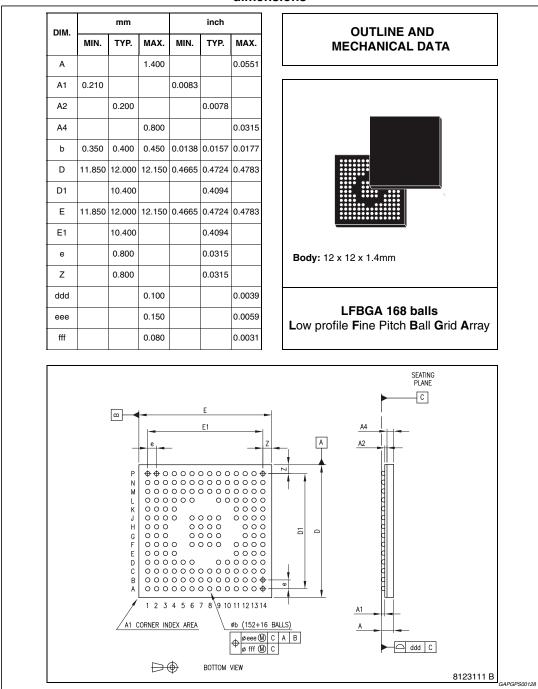

 $\mathsf{ECOPACK}^{\mathbb{B}}$ is an ST trademark.

Figure 14. LQFP144 (20x20x1.4 mm) mechanical data and package dimensions

STA680 Package information

Figure 15. LFBGA 168 balls (12x12x1.4 mm) mechanical data and package dimensions

Revision history STA680

8 Revision history

Table 21. Document revision history

Date	Revision	Changes
25-Jul-2008	1	Initial release.
19-Dec-2008	2	Update ECOPACK [®] information in Section 7 on page 40.
31-Jul-2009	3	Added Section 2: HD Radio™ system on page 7. Changed Table 2, 4, 7, 12, 13, 13, 17 and 20. Changed Figure 14, 15, 6, 3, 8 and 11. Add Figure 10: Crystal characteristics on page 26.
09-Nov-2010	4	Document status promoted from preliminary data to datasheet. Modified Features. and Description on page 1. Modified the flow of the sections. Modified Section 1: Block diagram and pin description. Add Section 2: General description. Changed Figure 7: Power on timing and updated Table 4: Power on timing parameters. Modified Section 5.5: Serial peripheral interfaces (SPI). Updated Section 6: Electrical specifications.
01-Feb-2011	5	Updated Table 20: DC electrical characteristics.
23-Mar-2012	6	Modified Section 2.1: Receiver system overview on page 17. Modified Section 2.3: Dual channel HD 1.5 Radio processing on page 18. Modified Figure 7: Power on timing on page 22. Modified Section 4.1: Oscillator setting time on page 23. Modified Table 6: Baseband interfaces pin list on page 26. Modified Table 11: Host micro SPI pin list on page 31. Modified Section 5.6: I ² C interfaces on page 32. Modified Table 15: I2C1 interface device address on page 33.
26-Nov-2012	7	Modified Table 18: Absolute maximum ratings on page 36. Modified Table 19: Thermal data on page 36. Modified Table 20: DC electrical characteristics on page 37.
17-Sep-2013	8	Updated disclaimer.
18-Dec-2013	9	Updated Table 1: Device summary on page 1.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID14860 Rev 9 43/43