
STPM32, STPM33, STPM34

ASSP for metering application with up to 4 independent 24-bit 2nd order sigma-delta ADC and 2 embedded PGLNA

Data brief

Features

- Active power accuracy:
 - < 0.1% error over 5000:1 dynamic range</p>
 - < 0.5% error over 10000:1 dynamic range</p>
- Reactive power accuracy:
 - < 0.1% error over 2000:1 dynamic range</p>
- Exceeds 50 60 Hz EN 50470-x, IEC 62053-2x, ANSI12.2x standards requirements for AC watt meters
- Fundamental and wide band energy
- Dual mode apparent energy
- Instantaneous and average power
- RMS and instantaneous voltage and current
- Overvoltage and undervoltage detection
- Overcurrent detection with programmable threshold
- Alternate UART and SPI serial interface with programmable CRC polynomial verification
- Programmable LED and interrupt outputs
- Four independent 24-bit 2nd order $\Delta\Sigma$ ADC
- Two programmable gain chopper stabilized low-noise and low offset amplifiers
- 3.6 kHz at -3 dB bandwidth
- $3.3 \text{ V} \pm 10\% \text{ V}_{\text{CC}}$ supply voltage
- 4 mA typ. I_{CC} supply current (STPM33)
- 16 MHz input clock frequency, Xtal or external source
- 1.23 V Twin precision voltage reference with independent programmable TC, 30 ppm/°C typ.

October 2013

DocID025358 Rev 1

1/15

For further information contact your local STMicroelectronics sales office.

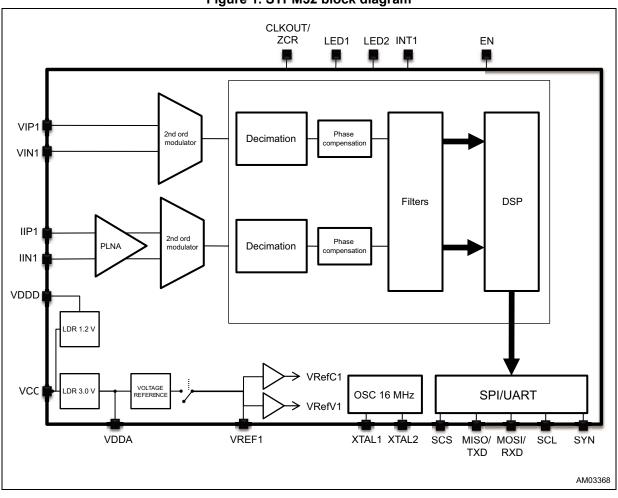
Downloaded from Arrow.com.

• 3 V and 1.2 V (typ.) internal low drop regulators

- STPM32 package: QFN24
- STPM33/34 package: QFN32
- Operating temperature: -40 °C up to +85 °C

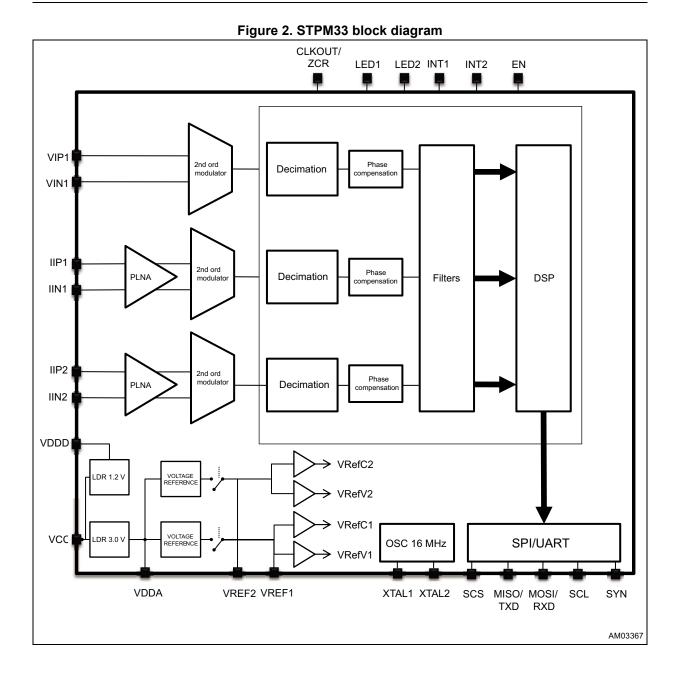
Description

The STPM3x is an ASSP family designed for high accuracy measurement of power and energies in power line systems using the Rogowski coil, current transformer or shunt current sensors.


It is a mixed signal IC family with an analog and a digital section. The analog section consists of up to two programmable gain low-noise low offset amplifiers and up to four 2nd order 24-bit $\Delta\Sigma$ ADC, two independent BandGap voltage references with temperature compensation, a low drop voltage regulator and DC buffers. The digital section consists of a digital filtering stage, a hardwired DSP, a DFE to the input modulators, and a serial communication interface (UART or SPI).

The devices are able to calculate instantaneous and RMS voltage and currents, active, reactive and apparent power and energies. They are fully configurable and allow a fast digital calibration in a single point over the entire current dynamic range.

Tab	ble	1.	Devi	ice	su	mma	ary	

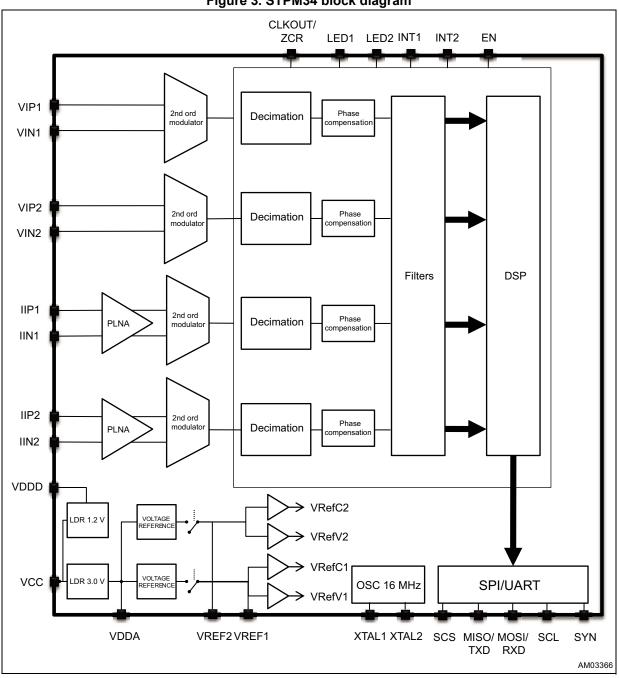
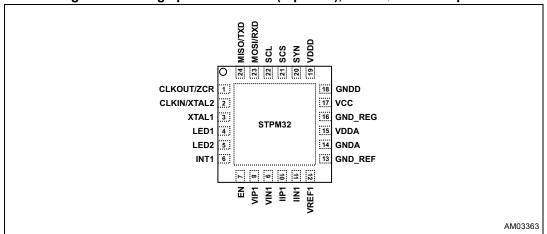
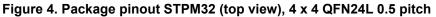

Order codes	Package	Packaging
STPM32	QFN24	Tube
STPM32TR	QFN24	Tape and reel
STPM33	QFN32	Tube
STPM33TR	QFN32	Tape and reel
STPM34	QFN32	Tube
STPM34TR	QFN32	Tape and reel

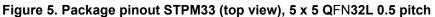
1 Block diagrams

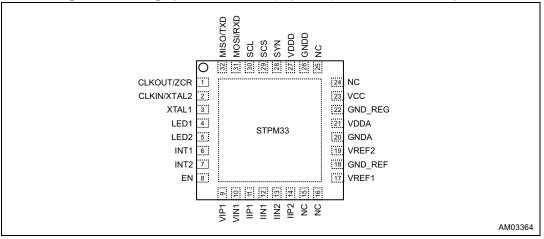
Figure 1. STPM32 block diagram

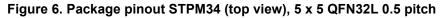
DocID025358 Rev 1

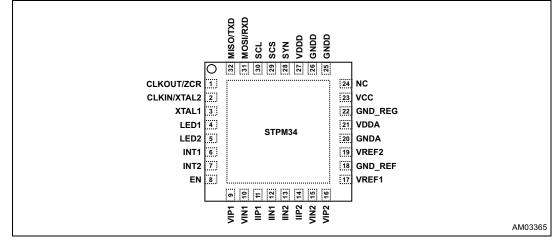
3/15


Figure 3. STPM34 block diagram




2 Pin configuration



DocID025358 Rev 1

	Table 2. Pin description STPM34, STPM33, STPM32				
STPM34	STPM33	STPM32	Name	Voltage range	Functional section
1	1	1	CLKOUT/ZCR	From 0 to V_{CC}	Multifunctional
2	2	2	CLKIN/XTAL2	From 0 to V _{CC}	Oscillator
3	3	3	XTAL1	From 0 to V _{CC}	Oscillator
4	4	4	LED1	From 0 to V _{CC}	Multifunctional
5	5	-	LED2	From 0 to V _{CC}	Multifunctional
6	6	5	INT1	From 0 to V _{CC}	Multifunctional
7	7	-	INT2	From 0 to V _{CC}	Multifunctional
8	8	6	EN	From 0 to V _{CC}	Signal
9	9	7	VIP1	From -0.3 V to 0.3 V	Signal
10	10	8	VIN1	From -0.3 V to 0.3 V	Signal
11	11	9	IIP1	From -0.3 V to 0.3 V	Signal
12	12	10	liN1	From -0.3 V to 0.3 V	Signal
13	13	-	IIN2	From -0.3 V to 0.3 V	Signal
14	14	-	IIP2	From -0.3 V to 0.3 V	Signal
15	-	-	VIN2	From -0.3 V to 0.3 V	Signal
16	-	-	VIP2	From -0.3 V to 0.3 V	Signal
17	17	12	VREF1	About 1.2 V	Power
18	18	13	GND_REF		Power
19	19	-	VREF2	About 1.2 V	Power
20	20	14	GNDA		Power
21	21	15	VDDA	3.0 V	Power
22	22	16	GND_REG		Power
23	23	17	VCC	From 3.0 V to 3.6 V	Power
24	15, 16, 24, 25	11	N.C.		
25, 26	26	18	GNDD		Power
27	27	19	VDDD	1.2 V	
28	28	20	SYN	From 0 to V _{CC}	SPI
29	29	21	SCS	From 0 to V _{CC}	SPI/UART
30	30	22	SCL	From 0 to V _{CC}	SPI
31	31	23	MOSI/RXD	From 0 to V _{CC}	SPI/UART
32	32	24	MISO/TXD	From 0 to V _{CC}	SPI/UART

Table 2. Pin description STPM34, STPM33, STPM32

3 Electrical characteristics

Absolute maximum ratings

Symbol	Parameter	Value	Unit		
V _{CC}	DC input voltage	-0.3 to 4.2	V		
I _{PIN}	Current on any pin (sink/source)	±150	mA		
V _{ID}	Input voltage at any pin	-0.3 to V _{CC} + 0.3	V		
V _{IA}	Input voltage at analog pins (VIP, VIN, IIP, IIN)	-0.7 to 0.7	V		
ESD	Human body model (all pins)	±2	kV		
TOP	Operating ambient temperature	-40 to 85	°C		
Τ _J	Junction temperature	-40 to 150	°C		
T _{STG}	Storage temperature range	-55 to 150	°C		

Table 3. Absolute maximum ratings⁽¹⁾

1. Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4. Thermal data

Symbol	Parameter	Package	Value	Unit
R _{thJA}	Thermal resistance junction-ambient	QFN24	TBD	°C/W
R _{thJA}	Thermal resistance junction-ambient	QFN32	TBD	°C/W

4 Functions

Pin programmability

Name	Multiplexed function	Functional description	
CLKOUT/ZCR	System clock out signals	Output CLK pin (DClock, CIC clock, modulator clock, main clock)	
	Zero crossing	Line voltage/current zero crossing	
		Primary channel energies (A, AF, R, S)	
LED1	Programmable pulse out 1	Secondary channel energies (A, AF, R, S)	
		Primary ± secondary channels energies (A, AF, R, S)	
	SD out current (DATI1)	Sigma-delta bitstream of primary current channel	
		Primary channel energies (A, AF, R, S)	
LED2	Programmable pulse out 2	Secondary channel energies (A, AF, R, S)	
		Primary ± secondary channels energies (A, AF, R, S)	
	SD out current (DATI2)	Sigma-delta bitstream of secondary current channel	
INT1		Programmable interrupt 1	
	SD out voltage (DATV1)	Sigma-delta bitstream of primary voltage	
INT2	Interrupt	Programmable interrupt 2	
11112	SD out voltage (DATV2)	Sigma-delta bitstream of secondary voltage	
SCS	SPI/UART select	Serial port selection at power-up	
303	Chip select	SPI/UART chip select	
MOSI/RXD	SPI master OUT slave IN	SPI	
MOSI/RAD	UART Rx	UART	
	SPI master IN slave OUT	SPI	
MISO/TXD	UART Tx	UART	

Table 5. Programmable pin functions

5 Theory of operation

General operation description

The STPM3x product family is able to measure up to two line voltages and up to two line currents to perform active, reactive and apparent power and energy, RMS and instantaneous values, and line frequency information measurement of a single, split or polyphase metering system.

The STPM3x platform generates up to two independent train pulse output signals proportional to the active, reactive, apparent or cumulative power. It also generates up to two programmable interrupts output signals.

The internal register map and the configuration registers can be accessed by means of an SPI or UART interface.

Up to four independent input channels can be converted in parallel via the delta-sigma ($\Delta\Sigma$) analog-to-digital converters into a binary stream with appropriate non-overlap control signal generator.

This technique is specifically suitable to measure electrical line parameters (voltage and current) starting from analog signals transduced by voltage and current sensors (inductive Rogowski coil, current transformer or shunt resistors). The current channel inputs are connected, through external anti-aliasing RC filter, to a Rogowski coil or a current transformer (CT) or a shunt current sensor, which converts line current into a voltage signal. Each current channel includes a low-noise voltage preamplifier with a programmable gain and has a fully differential input. The converted $\Delta\Sigma$ signals are fed to the internal decimation filter stages which decimate the 4 MHz bit-streams by a 512 factor, allowing a 3.6 kHz bandwidth at -3 dB. The 24-bit format voltages and currents data are then fed to the internal configurable filtering blocks and then to the hardwired DSP which performs the final computation of metrology quantities.

The product family embeds also two programmable temperature compensated BandGap reference voltage generators and a low drop supply voltage regulator. All reference voltages are properly designed to eliminate channels cross talking.

The operation mode and all the configuration parameters can be setup through dedicated configuration registers.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

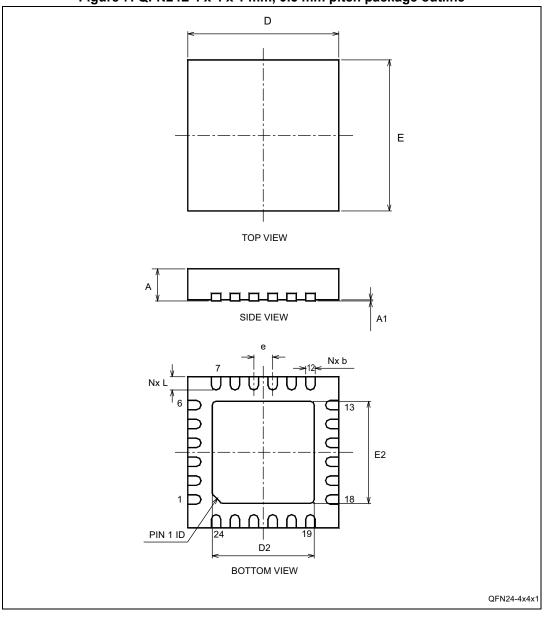


Figure 7. QFN24L 4 x 4 x 1 mm, 0.5 mm pitch package outline

O. maked	Dimensions (mm)			
Symbol	Min.	Тур.	Max.	
А	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
b	0.18	0.25	0.30	
D	3.90	4.00	4.10	
D2	2.55	2.70	2.80	
E	3.90	4.00	4.10	
E2	2.55	2.70	2.80	
е	0.45	0.50	0.55	
К	0.20	-	-	
L	0.25	0.35	0.45	

Table 6. QFN24L 4 x 4 x 1 mm, 0.5 mm pitch package mechanical data

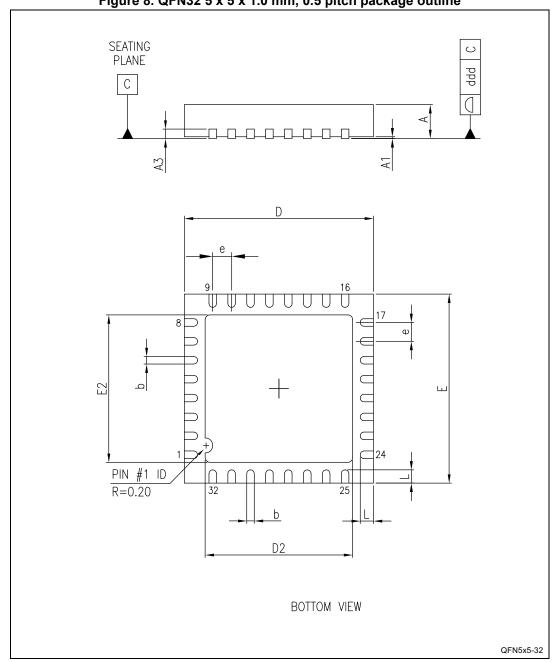


Figure 8. QFN32 5 x 5 x 1.0 mm, 0.5 pitch package outline

DocID025358 Rev 1

Symbol –	Dimensions (mm)			Nata
	Min.	Тур.	Max.	Note
А	0.80	0.90	1.00	(1)
A1	0	0.02	0.05	N/A
A3		0.20		N/A
b	0.18	0.25	0.30	
D	4.85	5.00	5.15	
D2	3.40	3.45	3.50	
E	4.85	5.00	5.15	
E2	3.40	3.45	3.50	
е	0.45	0.50	0.55	
L	0.30	0.40	0.50	
ddd			0.08	

Table 7. QFN325 x 5 x 1.0 mm, 0.5 pitch package mechanical data

 VFQFPN stands for "Thermally Enhanced Very thin profile Fine pitch Quad Flat Package No lead". Very thin: 0.80 < A = 1.00 mm.

Note: This databrief contains technical information of a device under development, thus it may be incomplete and inaccurate in some parts. Specifications are still partially defined and many data shown may be significantly modified in subsequent issues. Please contact STMicroelectronics to receive the latest updated information.

7 Revision history

Date	Revision	Changes
09-Oct-2013	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID025358 Rev 1