

STGB30V60DF, STGP30V60DF, STGW30V60DF, STGWT30V60DF

Trench gate field-stop IGBT, V series 600 V, 30 A very high speed

Datasheet - production data

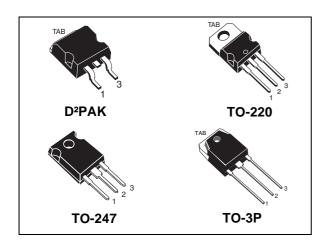
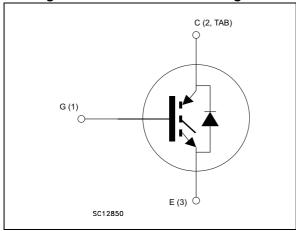



Figure 1. Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- Tail-less switching off
- V_{CE(sat)} = 1.85 V (typ.) @ I_C = 30 A
- Tight parameters distribution
- Safe paralleling
- Low thermal resistance
- Very fast soft recovery antiparallel diode

Applications

- Photovoltaic inverters
- Uninterruptible power supply
- Welding
- Power factor correction
- · Very high frequency converters

Description

This device is an IGBT developed using an advanced proprietary trench gate field stop structure. The device is part of the V series of IGBTs, which represent an optimum compromise between conduction and switching losses to maximize the efficiency of very high frequency converters. Furthermore, a positive $V_{\text{CE}(\text{sat})}$ temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STGB30V60DF	GB30V60DF	D²PAK	Tape and reel
STGP30V60DF	GP30V60DF	TO-220	Tube
STGW30V60DF	GW30V60DF	TO-247	Tube
STGWT30V60DF	GWT30V60DF	TO-3P	Tube

October 2013 DocID024361 Rev 4 1/22

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	600	V
Ic	Continuous collector current at T _C = 25 °C	60	Α
Ic	Continuous collector current at T _C = 100 °C	30	Α
I _{CP} ⁽¹⁾	Pulsed collector current	120	Α
V _{GE}	Gate-emitter voltage	±20	٧
I _F	Continuous forward current at T _C = 25 °C	60	Α
I _F	Continuous forward current at T _C = 100 °C	30	Α
I _{FP} ⁽¹⁾	Pulsed forward current	120	Α
P _{TOT}	Total dissipation at T _C = 25 °C	258	W
T _{STG}	Storage temperature range	- 55 to 150	°C
T _J	Operating junction temperature	- 55 to 175	°C

^{1.} Pulse width limited by maximum junction temperature.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case IGBT	0.58	°C/W
R _{thJC}	Thermal resistance junction-case diode	2.08	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	°C/W

2 Electrical characteristics

 $T_J = 25$ °C unless otherwise specified.

Table 4. Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 2 mA	600			٧
		V _{GE} = 15 V, I _C = 30 A		1.85	2.3	
V _{CE(sat)}	V _{CE(sat)} Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A T _J = 125 °C		2.15		V
	voluage	V _{GE} = 15 V, I _C = 30 A T _J = 175 °C		2.35		
		I _F = 30 A		2	2.6	V
V _F	Forward on-voltage	I _F = 30 A, T _J = 125 °C		1.7		V
		I _F = 30 A, T _J = 175 °C		1.6		V
V _{GE(th)}	Gate threshold voltage	V _{CE} = V _{GE} , I _C = 1 mA	5	6	7	V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 600 V			25	μΑ
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ± 20 V			250	nA

Table 5. Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	3750	-	pF
C _{oes}	Output capacitance	V _{CE} = 25 V, f = 1 MHz,	-	120	-	pF
C _{res}	Reverse transfer capacitance	$V_{GE} = 0$	-	77	-	pF
Q_g	Total gate charge		-	163	-	nC
Q _{ge}	Gate-emitter charge	$V_{CC} = 480 \text{ V}, I_{C} = 30 \text{ A}, V_{GE} = 15 \text{ V}, \text{ see } Figure 29$	-	28	-	nC
Q _{gc}	Gate-collector charge	GL 1,11011gma =0	-	72	-	nC

Symbol Parameter Test conditions Min. Тур. Max. Unit Turn-on delay time 45 ns t_{d(on)} Current rise time ns t_{r} (di/dt)_{on} Turn-on current slope 1500 A/μs $V_{CE} = 400 \text{ V}, I_{C} = 30 \text{ A},$ Turn-off delay time 189 ns $t_{d(off)}$ $R_G = 10 \Omega$, $V_{GE} = 15 V$, Current fall time 19 ns t_f see Figure 28 $\overline{E_{on}^{(1)}}$ Turn-on switching losses 383 μ J $\mathsf{E}_{\mathsf{off}}^{(2)}$ Turn-off switching losses 233 μ J μ J Total switching losses 616 E_{ts} _ Turn-on delay time 42 ns $t_{d(on)}$ t_{r} Current rise time 17 ns (di/dt)_{on} 1337 A/μs Turn-on current slope $V_{CE} = 400 \text{ V}, I_{C} = 30 \text{ A},$ Turn-off delay time $t_{d(off)}$ 193 ns

Table 6. IGBT switching characteristics (inductive load)

Turn-on switching losses

Turn-off switching losses

Total switching losses

Current fall time

 t_f

 $E_{on}^{(1)}$

 $E_{off}^{(2)}$

 E_{ts}

Table 7. Diode switching characteristics (inductive load)

 R_G = 10 Ω , V_{GE} = 15 V, T_J = 175 °C, see *Figure 28*

32

794

378

1172

_

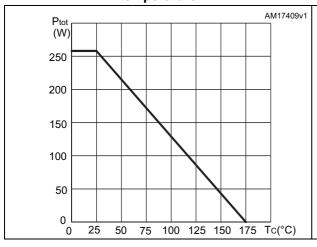
ns

 μ J

 μ J

 μ J

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		-	53	-	ns
Q _{rr}	Reverse recovery charge	$I_F = 30 \text{ A}, V_B = 400 \text{ V},$	-	384	1	nC
I _{rrm}	Reverse recovery current	di/dt=1000 Å/μs,	-	14.5	-	Α
dI _{rr/} /dt	Peak rate of fall of reverse recovery current during t _b	V _{GE} = 15 V, (see <i>Figure 28</i>)	-	788	-	A/μs
E _{rr}	Reverse recovery energy		-	104	-	μ J
t _{rr}	Reverse recovery time			104	-	ns
Q _{rr}	Reverse recovery charge	$I_{E} = 30 \text{ A}, V_{B} = 400 \text{ V},$	-	1352	-	nC
I _{rrm}	Reverse recovery current di/dt=1000 A/µs,		-	26	-	Α
dI _{rr/} /dt	Peak rate of fall of reverse recovery current during t _b	V _{GE} = 15 V, T _J = 175 °C, (see <i>Figure 28</i>)	-	310	-	A/μs
E _{rr}	Reverse recovery energy		-	407	-	μJ


^{1.} Energy losses include reverse recovery of the diode.

^{2.} Turn-off losses include also the tail of the collector current.

2.1 Electrical characteristics (curves)

Figure 2. Power dissipation vs. case temperature

Figure 3. Collector current vs. case temperature

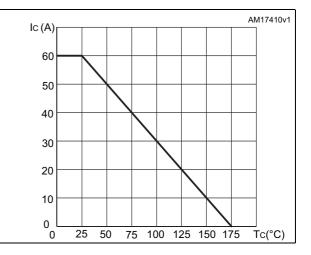
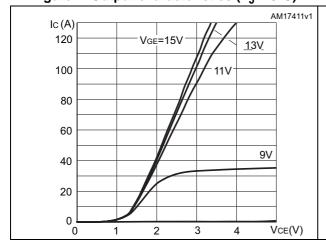



Figure 4. Output characteristics (T_J=25°C)

Figure 5. Output characteristics (T_J=175°C)

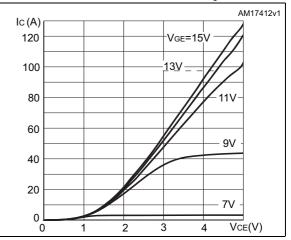
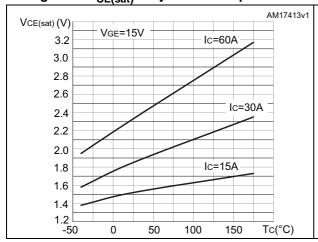
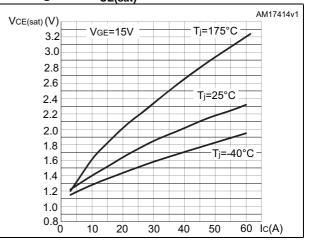




Figure 6. V_{CE(sat)} vs. junction temperature

Figure 7. V_{CE(sat)} vs. collector current


47/

DocID024361 Rev 4

5/22

Figure 8. Collector current vs. switching frequency

Figure 9. Forward bias safe operating area

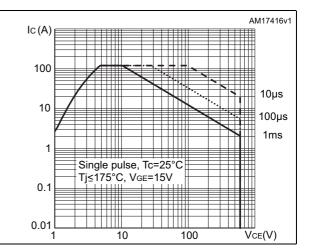
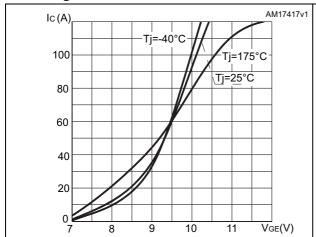



Figure 10. Transfer characteristics

Figure 11. Diode V_F vs. forward current

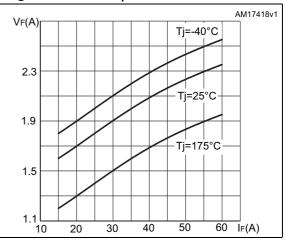


Figure 12. Normalized $V_{GE(th)}$ vs junction temperature

Figure 13. Normalized $V_{(BR)CES}$ vs. junction temperature

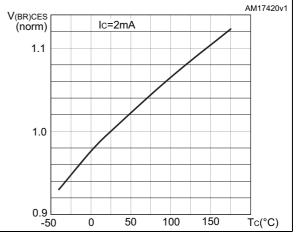
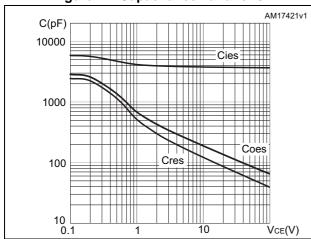



Figure 14. Capacitance variations

Figure 15. Gate charge vs. gate-emitter voltage

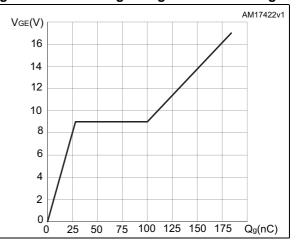
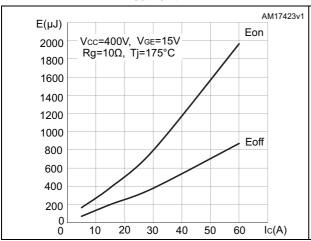



Figure 16. Switching losses vs. collector current

Figure 17. Switching losses vs. gate resistance

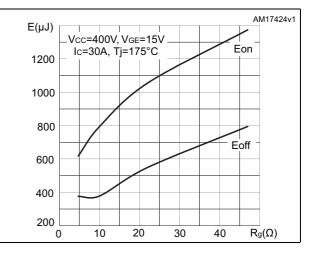
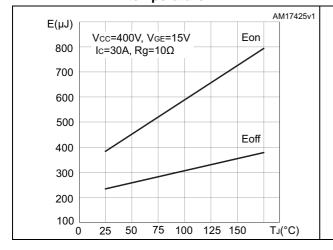



Figure 18. Switching losses vs. junction temperature

Figure 19. Switching losses vs. collector emitter voltage

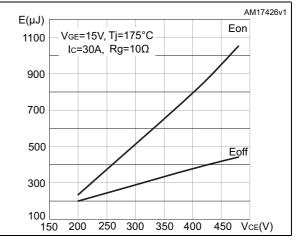


Figure 20. Switching times vs. collector current Figure 21. Switching times vs. gate resistance

Figure 22. Reverse recovery current vs. diode current slope

Figure 23. Reverse recovery time vs. diode current slope

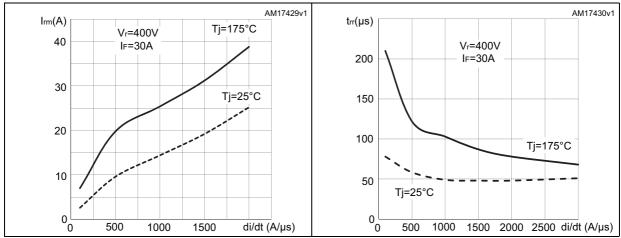
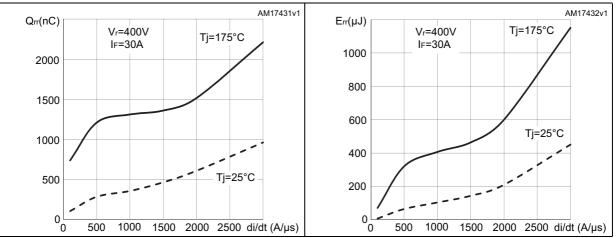



Figure 24. Reverse recovery charge vs. diode current slope

Figure 25. Reverse recovery energy vs. diode current slope

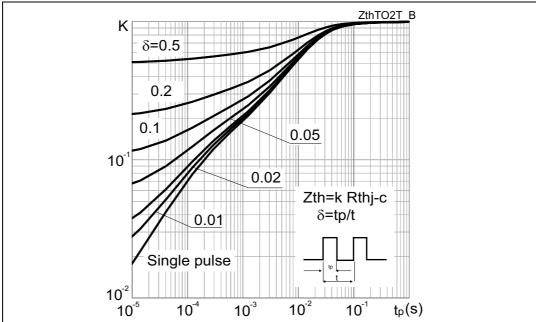
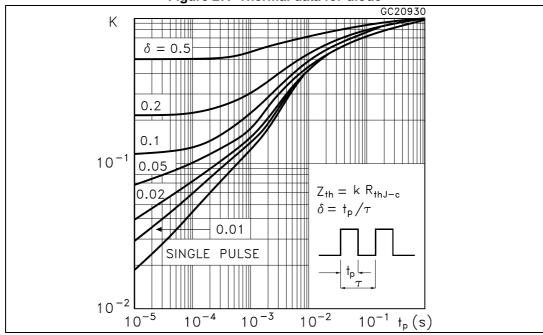



Figure 26. Thermal data for IGBT

3 Test circuits

Figure 28. Test circuit for inductive load switching

Figure 29. Gate charge test circuit

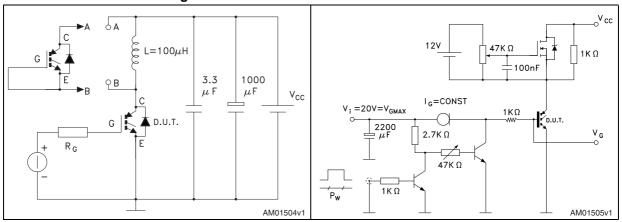
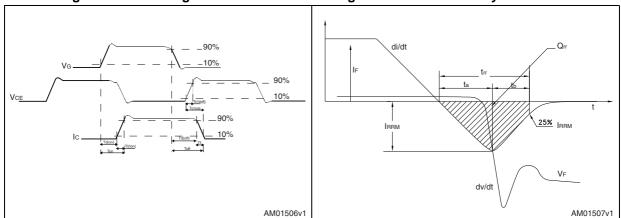



Figure 30. Switching waveform

Figure 31. Diode recovery time waveform

47/

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

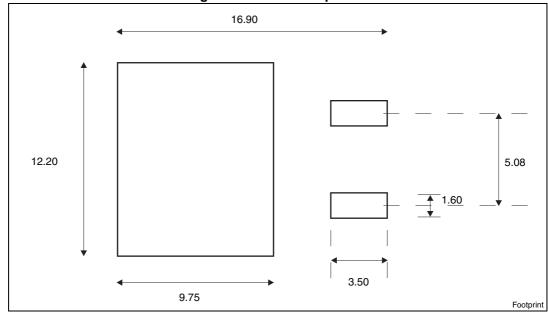
Table 8. D²PAK (TO-263) mechanical data

Dim.		mm				
Dim.	Min.	Тур.	Max.			
Α	4.40		4.60			
A1	0.03		0.23			
b	0.70		0.93			
b2	1.14		1.70			
С	0.45		0.60			
c2	1.23		1.36			
D	8.95		9.35			
D1	7.50					
E	10		10.40			
E1	8.50					
е		2.54				
e1	4.88		5.28			
Н	15		15.85			
J1	2.49		2.69			
L	2.29		2.79			
L1	1.27		1.40			
L2	1.30		1.75			
R		0.4				
V2	0°		8°			

THERMAL PAD

SEATING PLANE

COPLANARITY A1


AUGE PLANE

V2

0079457_T

Figure 32. D²PAK (TO-263) drawing

a. All dimensions are in millimeters

Table 9. TO-220 type A mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

b1(X3) — b (X3)

0015988_hypeA_Rev_S

Figure 34. TO-220 type A drawing

Table 10. TO-247 mechanical data

Table 16. 10 247 mediamodi data			
Dim.		mm.	
Diiii.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

HEAT-SINK PLANE

BACK VIEW 0075325, G

Figure 35. TO-247 drawing

Ay/

Table 11. TO-3P mechanical data

		mm	
Dim.	Min.	Тур.	Max.
Α	4.60		5
A1	1.45	1.50	1.65
A2	1.20	1.40	1.60
b	0.80	1	1.20
b1	1.80		2.20
b2	2.80		3.20
С	0.55	0.60	0.75
D	19.70	19.90	20.10
D1		13.90	
E	15.40		15.80
E1		13.60	
E2		9.60	
е	5.15	5.45	5.75
L	19.50	20	20.50
L1		3.50	
L2	18.20	18.40	18.60
øΡ	3.10		3.30
Q		5	
Q1		3.80	

ш SEATING PLANE øP. Ε **-** A1 E2 -Q1 Q D D1 L2 L'1 *A2* - **b1**(2x) -**b** (3х) $\int (2x)$ 8045950_A

Figure 36. TO-3P drawing

5 Packaging mechanical data

Table 12. D²PAK (TO-263) tape and reel mechanical data

	Таре			Reel	
		ım	Dim	mm	
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	10.5	10.7	Α		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
Е	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1		Base qty	1000
P2	1.9	2.1		Bulk qty	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Figure 37. Tape

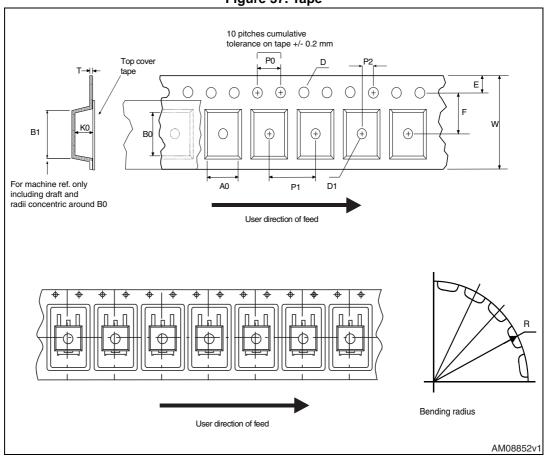
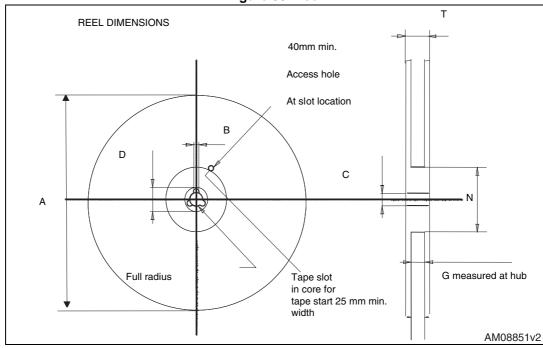



Figure 38. Reel

47/

6 Revision history

Table 13. Document revision history

		•
Date	Revision	Changes
14-Mar-2013	1	Initial release.
03-May-2013	2	Added: Section 2.1: Electrical characteristics (curves)
04-Jun-2013	3	Added minimum and maximum values for V _{GE(th)} in <i>Table 4: Static characteristics</i> .
08-Oct-2013	4	Updated title, features and description in cover page.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

