

5 V, 16 kbit (2 Kb x 8) ZEROPOWER® SRAM

Datasheet - production data

Features

- Integrated, ultra low power SRAM and powerfail control circuit
- Unlimited WRITE cycles
- READ cycle time equals WRITE cycle time
- Automatic power-fail chip deselect and WRITE protection
- WRITE protect voltages
 - (V_{PFD} = power-fail deselect voltage):
 - M48Z02: V_{CC} = 4.75 to 5.5 V; 4.5 V \leq V_{PFD} \leq 4.75 V
 - M48Z12: $V_{CC} = 4.5 \text{ to } 5.5 \text{ V}$; $4.2 \text{ V} \le V_{PED} \le 4.5 \text{ V}$
- Self-contained battery in the CAPHAT™ DIP package
- Pin and function compatible with JEDEC standard 2 K x 8 SRAMs
- RoHS compliant
 - Lead-free second level interconnect

Description

The M48Z02/12 ZEROPOWER® RAM is a 2 K x 8 non-volatile static RAM which is pin and function compatible with the DS1220.

A special 24-pin, 600 mil DIP CAPHAT™ package houses the M48Z02/12 silicon with a long-life lithium button cell to form a highly integrated battery-backed memory solution.

The M48Z02/12 button cell has sufficient capacity and storage life to maintain data functionality for an accumulated time period of at least 10 years in the absence of power over commercial operating temperature range.

The M48Z02/12 is a non-volatile pin and function equivalent to any JEDEC standard 2 K x 8 SRAM. It also easily fits into many ROM, EPROM, and EEPROM sockets, providing the non-volatility of PROMs without any requirement for special WRITE timing or limitations on the number of WRITEs that can be performed.

Contents M48Z02, M48Z12

Contents

1	Diagram	3
2	Pin setting	4
3	Operation modes	5
	3.1 READ mode	5
	3.2 WRITE mode	6
	3.3 Data retention mode	8
	3.4 V _{CC} noise and negative going transients	0
4	Maximum ratings	1
5	DC and AC parameters	2
6	Package mechanical data1	5
7	Part numbering1	7
8	Environmental information	8
9	Revision history 1	9

M48Z02, M48Z12 Diagram

1 Diagram

Figure 1. Logic diagram

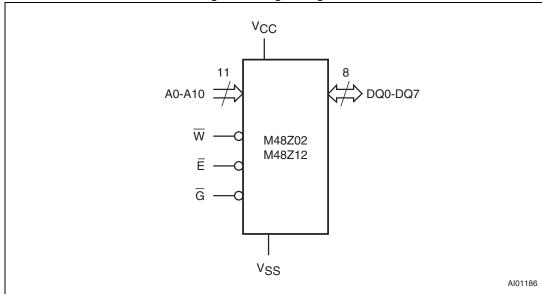


Table 1. Signal names

A0-A10	Address inputs
DQ0-DQ7	Data inputs / outputs
Ē	Chip enable
G	Output enable
W	WRITE enable
V _{CC}	Supply voltage
V _{SS}	Ground

Pin setting M48Z02, M48Z12

2 Pin setting

Figure 2. DIP connections

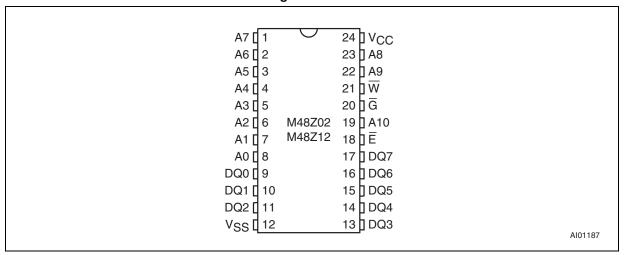
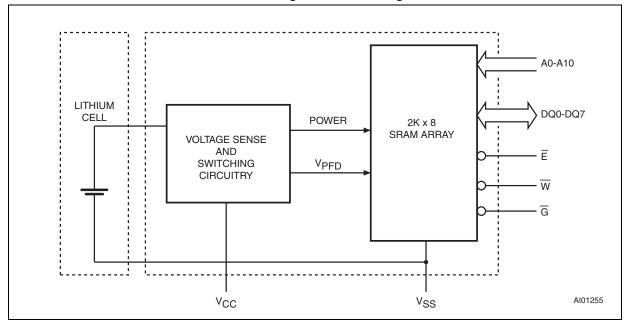



Figure 3. Block diagram

577

M48Z02, M48Z12 Operation modes

3 Operation modes

The M48Z02/12 also has its own power-fail detect circuit. The control circuitry constantly monitors the single 5 V supply for an out of tolerance condition. When V_{CC} is out of tolerance, the circuit write protects the SRAM, providing a high degree of data security in the midst of unpredictable system operation brought on by low V_{CC} . As V_{CC} falls below approximately 3 V, the control circuitry connects the battery which maintains data operation until valid power returns.

Table 2. Operating modes									
Mode	V _{cc}	ш	G	W	DQ0- DQ7	Power			
Deselect	4.75 to 5.5 V	V_{IH}	Х	Х	High Z	Standby			
WRITE		V _{IL}	Х	V _{IL}	D _{IN}	Active			
READ	or 4.5 to 5.5 V	V_{IL}	V _{IL}	V _{IH}	D _{OUT}	Active			
READ		V _{IL}	V _{IH}	V _{IH}	High Z	Active			
Deselect	V _{SO} to V _{PFD} (min) ⁽¹⁾	Х	Х	Х	High Z	CMOS standby			

Χ

Χ

High Z

Battery backup mode

Χ

Table 2. Operating modes

Note: $X = V_{IH}$ or V_{IL} ; V_{SO} = battery backup switchover voltage.

 $\leq V_{SO}^{(1)}$

3.1 READ mode

Deselect

The M48Z02/12 is in the READ mode whenever \overline{W} (WRITE enable) is high and \overline{E} (chip enable) is low. The device architecture allows ripple-through access of data from eight of 16,384 locations in the static storage array. Thus, the unique address specified by the 11 Address Inputs defines which one of the 2,048 bytes of data is to be accessed. Valid data will be available at the data I/O pins within address access time (t_{AVQV}) after the last address input signal is stable, providing that the \overline{E} and \overline{G} access times are also satisfied. If the \overline{E} and \overline{G} access times are not met, valid data will be available after the latter of the chip enable access time (t_{ELQV}) or output enable access time (t_{GLQV}).

The state of the eight three-state data I/O signals is controlled by E and \overline{G} . If the outputs are activated before t_{AVQV} , the data lines will be driven to an indeterminate state until t_{AVQV} . If the address inputs are changed while \overline{E} and \overline{G} remain active, output data will remain valid for output data hold time (t_{AXQX}) but will go indeterminate until the next address access.

^{1.} See Table 10 for details.

Operation modes M48Z02, M48Z12

tAVAV A0-A10 **VALID** tAVQV tAXQX tELQV tEHQZ Ē tELQX tGLQV tGHQZ G tGLQX VALID DQ0-DQ7 AI01330

Figure 4. READ mode AC waveforms

Note: $WRITE \ enable \ (\overline{W}) = high.$

Table 3. READ mode AC characteristics

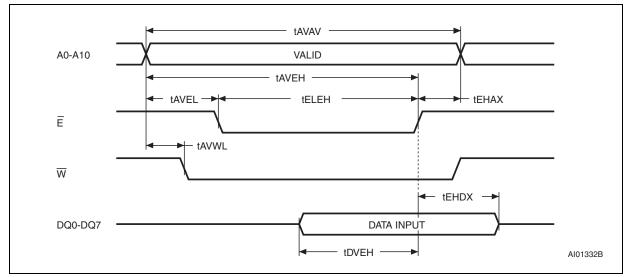
	Parameter ⁽¹⁾		M48Z02/M48Z12						
Symbol			-70		50	-200		Unit	
			Max	Min	Max	Min	Max		
t _{AVAV}	READ cycle time	70		150		200		ns	
t _{AVQV}	Address valid to output valid		70		150		200	ns	
t _{ELQV}	Chip enable low to output valid		70		150		200	ns	
t _{GLQV}	Output enable low to output valid		35		75		80	ns	
t _{ELQX}	Chip enable low to output transition	5		10		10		ns	
t _{GLQX}	Output enable low to output transition	5		5		5		ns	
t _{EHQZ}	Chip enable high to output Hi-Z		25		35		40	ns	
t _{GHQZ}	Output enable high to output Hi-Z		25		35		40	ns	
t _{AXQX}	Address transition to output transition	10		5		5		ns	

Valid for ambient operating temperature: T_A = 0 to 70 °C or -40 to 85 °C; V_{CC} = 4.75 to 5.5 V or 4.5 to 5.5 V (except where noted).

3.2 WRITE mode

The M48Z02/12 is in the WRITE mode whenever \overline{W} and \overline{E} are active. The start of a WRITE is referenced from the latter occurring falling edge of \overline{W} or \overline{E} . A WRITE is terminated by the earlier rising edge of \overline{W} or \overline{E} . The addresses must be held valid throughout the cycle. \overline{E} or \overline{W} must return high for a minimum of t_{EHAX} from chip enable or t_{WHAX} from WRITE enable prior to the initiation of another READ or WRITE cycle. Data-in must be valid t_{DVWH} prior to the end of WRITE and remain valid for t_{WHDX} afterward. \overline{G} should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on \overline{E} and \overline{G} , a low on \overline{W} will disable the outputs t_{WLQZ} after \overline{W} falls.

6/20 DocID02420 Rev 10



M48Z02, M48Z12 Operation modes

tAVAV VALID A0-A10 tAVWH tAVEL tWHAX Ē tWLWH tAVWL $\overline{\mathsf{W}}$ - tWLQZ tWHQX tWHDX -DQ0-DQ7 DATA INPUT tDVWH -AI01331

Figure 5. WRITE enable controlled, WRITE AC waveform

Operation modes M48Z02, M48Z12

	Parameter ⁽¹⁾		M48Z02/M48Z12					
Symbol			-70		-150		-200	
		Min	Max	Min	Max	Min	Max	
t _{AVAV}	WRITE cycle time	70		150		200		ns
t _{AVWL}	Address valid to WRITE enable low	0		0		0		ns
t _{AVEL}	Address valid to chip enable 1 low	0		0		0		ns
t _{WLWH}	WRITE enable pulse width	50		90		120		ns
t _{ELEH}	Chip enable low to chip enable 1 high	55		90		120		ns
t _{WHAX}	WRITE enable high to address transition	0		10		10		ns
t _{EHAX}	Chip enable high to address transition	0		10		10		ns
t _{DVWH}	Input valid to WRITE enable high	30		40		60		ns
t _{DVEH}	Input valid to chip enable high	30		40		60		ns
t _{WHDX}	WRITE enable high to input transition	5		5		5		ns
t _{EHDX}	Chip enable high to input transition	5		5		5		ns
t _{WLQZ}	WRITE enable low to output Hi-Z		25		50		60	ns
t _{AVWH}	Address valid to WRITE enable high	60		120		140		ns
t _{AVEH}	Address valid to chip enable high	60		120		140		ns
t _{WHQX}	WRITE enable high to output transition	5		10		10		ns

Table 4. WRITE mode AC characteristics

3.3 Data retention mode

With valid V_{CC} applied, the M48Z02/12 operates as a conventional BYTEWIDE™ static RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself when V_{CC} falls within the V_{PFD} (max), V_{PFD} (min) window. All outputs become high impedance, and all inputs are treated as "don't care."

Note:

A power failure during a WRITE cycle may corrupt data at the currently addressed location, but does not jeopardize the rest of the RAM's content. At voltages below V_{PFD} (min), the user can be assured the memory will be in a write protected state, provided the V_{CC} fall time is not less than t_F The M48Z02/12 may respond to transient noise spikes on V_{CC} that reach into the deselect window during the time the device is sampling V_{CC} . Therefore, decoupling of the power supply lines is recommended.

The power switching circuit connects external V_{CC} to the RAM and disconnects the battery when V_{CC} rises above V_{SO} . As V_{CC} rises, the battery voltage is checked. If the voltage is too low, an internal Battery Not OK (BOK) flag will be set. The \overline{BOK} flag can be checked after power up. If the \overline{BOK} flag is set, the first WRITE attempted will be blocked. The flag is automatically cleared after the first WRITE, and normal RAM operation resumes. Figure 7 illustrates how a \overline{BOK} check routine could be structured.

For more information on a battery storage life refer to the application note AN1012.

8/20 DocID02420 Rev 10

^{1.} Valid for ambient operating temperature: T_A = 0 to 70 °C or -40 to 85 °C; V_{CC} = 4.75 to 5.5 V or 4.5 to 5.5 V (except where noted).

M48Z02, M48Z12 Operation modes

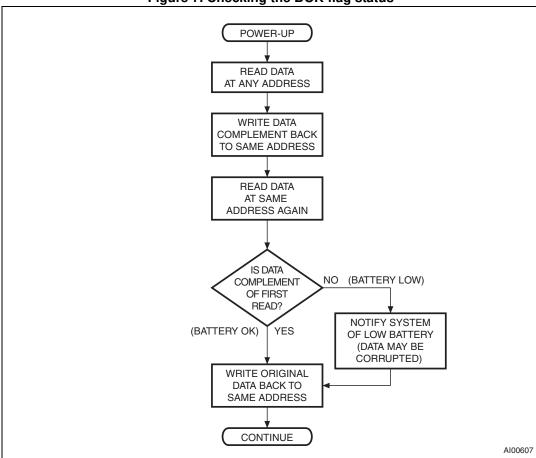


Figure 7. Checking the BOK flag status

Operation modes M48Z02, M48Z12

3.4 V_{CC} noise and negative going transients

 I_{CC} transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the V_{CC} bus. These transients can be reduced if capacitors are used to store energy which stabilizes the V_{CC} bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1 μ F (as shown in *Figure 8*) is recommended in order to provide the needed filtering.

In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on V_{CC} that drive it to values below V_{SS} by as much as one volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, STMicroelectronics recommends connecting a Schottky diode from V_{CC} to V_{SS} (cathode connected to V_{CC} , anode to V_{SS}). Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount.

VCC
VCC
DEVICE
VSS
AI02169

Figure 8. Supply voltage protection

M48Z02, M48Z12 Maximum ratings

4 Maximum ratings

Stressing the device above the rating listed in the absolute maximum ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 5. Absolute maximum ratings

Symbol	Parameter	Value	Unit		
T _A	Ambient operating temperature	0 to 70	°C		
T _{STG}	Storage temperature (V _{CC} off, oscillator off)	-40 to 85	°C		
T _{SLD} ⁽¹⁾	Lead solder temperature for 10 seconds	260	°C		
V _{IO}	Input or output voltages	-0.3 to 7	V		
V _{CC}	Supply voltage	Supply voltage			
Io	Output current		20	mA	
P _D	Power dissipation		1	W	

Soldering temperature of the IC leads is to not exceed 260 °C for 10 seconds. Furthermore, the devices shall not be exposed to IR reflow nor preheat cycles (as performed as part of wave soldering). ST recommends the devices be hand-soldered or placed in sockets to avoid heat damage to the batteries.

Caution: Negative undershoots below –0.3 V are not allowed on any pin while in the battery backup mode.

5 DC and AC parameters

This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC characteristic tables are derived from tests performed under the measurement conditions listed in Table 6. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters.

Table 6. Operating and AC measurement conditions

Parameter	M48Z02	M48Z12	Unit	
Supply voltage (V _{CC})		4.75 to 5.5	4.5 to 5.5	V
Ambient operating temperature (T _A)	Grade 1	0 to 70	0 to 70	°C
Load capacitance (C _L)		100	100	pF
Input rise and fall times		≤ 5	≤ 5	ns
Input pulse voltages		0 to 3	0 to 3	V
Input and output timing ref. voltages		1.5	1.5	V

Note: Output Hi-Z is defined as the point where data is no longer driven.

Figure 9. AC testing load circuit

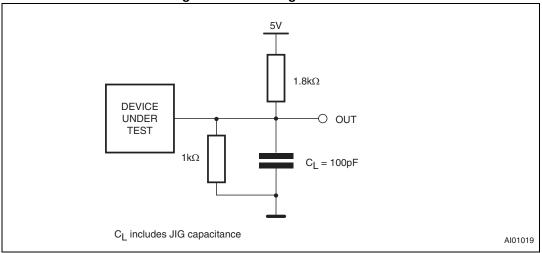


Table 7. Capacitance

Symbol	Parameter ⁽¹⁾⁽²⁾	Min	Max	Unit
C _{IN}	Input capacitance	-	10	pF
C _{IO} (3)	Input / output capacitance	-	10	pF

- 1. Effective capacitance measured with power supply at 5 V. Sampled only, not 100% tested.
- 2. At 25°C, f = 1 MHz.
- 3. Outputs deselected.

12/20 DocID02420 Rev 10

Symbol	Parameter	Test condition ⁽¹⁾ Min		Max	Unit
I _{LI}	Input leakage current	$0V \le V_{IN} \le V_{CC}$		±1	μΑ
I _{LO} ⁽²⁾	Output leakage current	$0V \le V_{OUT} \le V_{CC}$		±1	μΑ
I _{CC}	Supply current	Outputs open		80	mA
I _{CC1}	Supply current (standby) TTL	$\overline{E} = V_IH$		3	mA
I _{CC2}	Supply current (standby) CMOS	$\overline{E} = V_{CC} - 0.2 \text{ V}$		3	mA
V _{IL}	Input low voltage		-0.3	0.8	V
V _{IH}	Input high voltage		2.2	V _{CC} + 0.3	V
V _{OL}	Output low voltage	I _{OL} = 2.1 mA		0.4	V
V _{OH}	Output high voltage	I _{OH} = -1 mA	2.4		V

Table 8. DC characteristics

- 1. Valid for ambient operating temperature: $T_A = 0$ to 70 °C; $V_{CC} = 4.75$ to 5.5 V or 4.5 to 5.5 V (except where noted).
- 2. Outputs deselected.

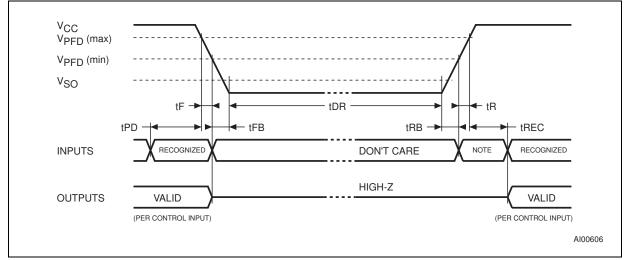


Figure 10. Power down/up mode AC waveforms

Note:

Inputs may or may not be recognized at this time. Caution should be taken to keep \overline{E} high as V_{CC} rises past V_{PFD} (min). Some systems may perform inadvertent WRITE cycles after V_{CC} rises above V_{PFD} (min) but before normal system operations begin. Even though a power on reset is being applied to the processor, a reset condition may not occur until after the system is running.

Table 9. Power down/up AC characteristics

Symbol	Parameter ⁽¹⁾	Min.	Max.	Unit
t _{PD}	E or W at V _{IH} before power down	0	-	μs
t _F ⁽²⁾	V _{PFD} (max) to V _{PFD} (min) V _{CC} fall time	300	-	μs
t _{FB} ⁽³⁾	V _{PFD} (min) to V _{SS} V _{CC} fall time	10	-	μs
t _R	V _{PFD} (min) to V _{PFD} (max) V _{CC} rise time	0	-	μs
t _{RB}	t _{RB} V _{SS} to V _{PFD} (min) V _{CC} rise time		-	μs
t _{REC}	E or W at V _{IH} after power up	2	-	ms

^{1.} Valid for ambient operating temperature: $T_A = 0$ to 70 °C; $V_{CC} = 4.75$ to 5.5 V or 4.5 to 5.5 V (except where noted).

Table 10. Power down/up trip points DC characteristics

Symbol	Parameter ⁽¹⁾⁽²⁾	Min.	Тур.	Max.	Unit	
W	Power fail decelest voltage	M48Z02	4.5	4.6	4.75	V
V _{PFD}	Power-fail deselect voltage M48Z12		4.2	4.3	4.5	V
V _{SO}	Battery backup switchover voltag		3.0		V	
t _{DR} ⁽³⁾	Expected data retention time		10			YEARS

^{1.} All voltages referenced to V_{SS}.

^{2.} V_{PFD} (max) to V_{PFD} (min) fall time of less than t_F may result in deselection/write protection not occurring until 200 μs after V_{CC} passes V_{PFD} (min).

^{3.} V_{PFD} (min) to V_{SS} fall time of less than t_{FB} may cause corruption of RAM data.

^{2.} Valid for ambient operating temperature: $T_A = 0$ to 70 °C; $V_{CC} = 4.75$ to 5.5 V or 4.5 to 5.5 V (except where noted).

^{3.} At 25 °C, $V_{CC} = 0 \text{ V}$.

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

A2 A

A1 L

B1 B B E

B B E

PCDIP

Figure 11. PDIP24.7 – 24-pin plastic DIP, battery CAPHAT™, package outline

Note: Drawing is not to scale.

Table 11. PDIP 24.7 – 24-pin plastic DIP, battery CAPHAT™, package mechanical data

Symb		mm			inches		
	Тур.	Min.	Max.	Тур.	Min.	Max.	
Α		8.89	9.65		0.350	0.380	
A1		0.38	0.76		0.015	0.030	
A2		8.38	8.89		0.330	0.350	
В		0.38	0.53		0.015	0.021	
B1		1.14	1.78		0.045	0.070	
С		0.20	0.31		0.008	0.012	
D		34.29	34.80		1.350	1.370	
E		17.83	18.34		0.702	0.722	
e1		2.29	2.79		0.090	0.110	
e3	27.94			1.1			
eA		15.24	16.00		0.600	0.630	
L		3.05	3.81		0.120	0.150	
N		24		24			

Ø.125 HOLE THRU (4X) - 1.000 -0.30 WALL TYP. 0.300 -0.400 -0.300 -0.660 0.400 0.890 0.800 - STMICROELECTRONICS ANTISTA - STMICROE 0.400 PRINT ←.023 MAX. REF. (2X) - 21.000 - 1011292_E

Figure 12. Shipping tube dimensions for PDIP 24.7 package

Note: All dimensions are in inches.

577

M48Z02, M48Z12 Part numbering

7 Part numbering

Table 12. Ordering information

Order code	Package	Temperature range	Speed	Supply voltage
M48Z02-150PC1	- PDIP 24.7	0 to 70 °C	-150	V _{CC} = 4.75 to 5.5 V; V _{PFD} = 4.5 to 4.75 V
M48Z02-70PC1			-70	
M48Z12-150PC1			-150	V _{CC} = 4.5 to 5.5 V; V _{PFD} = 4.2 to 4.5 V
M48Z12-70PC1			-70	

8 Environmental information

Figure 13. Recycling symbols

This product contains a non-rechargeable lithium (lithium carbon monofluoride chemistry) button cell battery fully encapsulated in the final product.

Recycle or dispose of batteries in accordance with the battery manufacturer's instructions and local/national disposal and recycling regulations.

577

M48Z02, M48Z12 Revision history

9 Revision history

Table 13. Document revision history

Date	Revision	Changes	
May-1999	1	First issue	
09-Jul-2001	2	Reformatted; temperature information added to tables (Table 5, 6, 7, 8, 3, 4, 9, 10); Figure updated (Figure 10)	
17-Dec-2001	2.1	Remove references to "clock" in document.	
20-May-2002	2.2	Updated V _{CC} noise and negative going transients text	
01-Apr-2003	3	v2.2 template applied; test condition updated (Table 10)	
22-Apr-2003	3.1	Fix error in ordering information (Table 12)	
12-Dec-2005	4	Update template, Lead-free text, and remove references to 'crystal' and footnote (Table 8, 12)	
02-Nov-2007	5	Reformatted document; added lead-free second level interconnect information to cover page and Section 5: Package mechanical data; updated Table 5, 6, 8, 9, 10, 12.	
03-Dec-2008	6	Added Section 7: Environmental information; minor formatting changes	
27-May-2010	7	Updated Section 3, Table 11, text in Section 5; reformatted document.	
21-Jan-2011	8	Updated Table 12: Ordering information scheme for 200 ns version of devices; updated Section 7; added Figure 12; minor textual updates	
07-Jun-2011	9	Updated footnote of Table 5: Absolute maximum ratings.	
14-Sep-2020	10	Added <i>Table 12: Ordering information</i> . Updated package name.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

57

20/20