

STGWT30HP65FB

Datasheet

Trench gate field-stop 650 V, 30 A high speed HB series IGBT

Features

- Maximum junction temperature: T_J = 175 °C
- High speed switching series
- Minimized tail current
- Low saturation voltage: V_{CE(sat)} = 1.6 V (typ.) @ I_C = 40 A
- Tight parameter distribution
- Safe paralleling
- Positive V_{CE(sat)} temperature coefficient
- Low thermal resistance
- Very fast soft recovery antiparallel diode

Applications

Power factor corrector (PFC)

Description

lectronics sales office

NG1E3C2T

This device is an IGBT developed using an advanced proprietary trench gate fieldstop structure. The device is part of the new HB series of IGBTs, which represents an optimum compromise between conduction and switching loss to maximize the efficiency of any frequency converter. Furthermore, the slightly positive V_{CE(sat)} temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Product status link STGWT30HP65FB

Product summary			
Order code	STGWT30HP65FB		
Marking	GWT30HP65FB		
Package	TO-3P		
Packing	Tube		

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0 V)	650	V
Ι _C	Continuous collector current at T_C = 25 °C	60	A
IC	Continuous collector current at T_C = 100 °C	30	A
I _{CP} ⁽¹⁾	Pulsed collector current	120	А
V _{GE}	Gate-emitter voltage	±20	V
V GE	Transient gate-emitter voltage ($t_p \le 10 \ \mu s$)	±30	V
IF ⁽²⁾	Continuous forward current at T_C = 25 °C	5	A
IF (=/	Continuous forward current at T_C = 100 °C	5	— A
I _{FP} ⁽³⁾	Pulsed forward current	10	А
P _{TOT}	Total power dissipation at T_C = 25 °C	260	W
T _{STG}	Storage temperature range	-55 to 150	
TJ	Operating junction temperature range	-55 to 175	U U

Table 1. Absolute maximum ratings

1. Pulse width limited by maximum junction temperature.

2. Limited by wires.

3. Pulsed forward current.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case IGBT	0.58	
R _{thJC}	Thermal resistance junction-case diode	5	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	

2 Electrical characteristics

 T_C = 25 °C unless otherwise specified

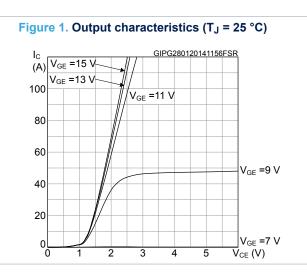
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	V_{GE} = 0 V, I _C = 2 mA	650			V
V _{CE(sat)}		V _{GE} = 15 V, I _C = 30 A		1.55	2.0	
	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 30 A, T _J = 125 °C		1.65		V
		V_{GE} = 15 V, I _C = 30 A, T _J = 175 °C		1.75		
V _F	Forward on-voltage	I _F = 5 A		2.0		
		I _F = 5 A, T _J = 125 °C		1.85		V
		I _F = 5 A, T _J = 175 °C		1.75		
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$	5	6	7	V
I _{CES}	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 650 V			25	μA
I _{GES}	Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = ±20 V			±250	nA

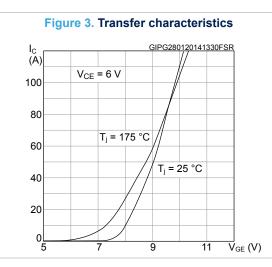
Table 3. Static characteristics

Table 4. Dynamic characteristics

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	3659	-	
C _{oes}	Output capacitance	V_{CE} = 25 V, f = 1 MHz, V_{GE} = 0 V	-	101	-	pF
C _{res}	Reverse transfer capacitance		-	76	-	
Qg	Total gate charge	V_{CC} = 520 V, I_C = 30 A, V_{GE} = 0 to 15 V (see Figure 28. Gate charge test circuit)	-	149	-	
Q _{ge}	Gate-emitter charge		-	25	-	nC
Q _{gc}	Gate-collector charge	- (See Figure 20. Gate charge test circuit)	-	62	-	

Table 5. IGBT switching characteristics (inductive load)

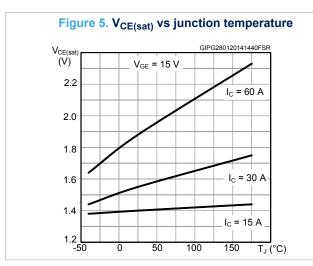
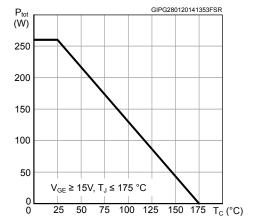

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off-delay time	V_{CE} = 400 V, I_{C} = 30 A, V_{GE} = 15 V,	-	146	-	ns
t _f	Current fall time	R _G = 10 Ω	-	23	-	ns
E _{off} ⁽¹⁾	Turn-off switching energy	(see Figure 27. Test circuit for inductive load switching)	-	293	-	μJ
t _{d(off)}	Turn-off-delay time	V_{CE} = 400 V, I _C = 30 A, V _{GE} = 15 V,	-	158	-	ns
t _f	Current fall time	R _G = 10 Ω, T _J = 175 °C	-	65	-	ns
E _{off}	Turn-off switching energy	(see Figure 27. Test circuit for inductive load switching)	-	572	-	μJ

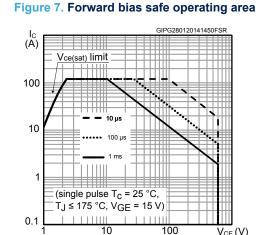

1. Including the tail of the collector current.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		-	140	-	ns
Q _{rr}	Reverse recovery charge	I_F = 5 A, V_R = 400 V, V_{GE} = 15 V,	-	21	-	nC
I _{rrm}	Reverse recovery current	di/dt = 1000 A/µs	-	6.6	-	Α
dI _{rr} /dt	Peak rate of fall of reverse recovery current during t_{b}	(see Figure 27. Test circuit for inductive load switching)	-	430	-	A/µs
Err	Reverse recovery energy		-	1.6	-	μJ
t _{rr}	Reverse recovery time		-	200	-	ns
Q _{rr}	Reverse recovery charge	I_F = 5 A, V_R = 400 V, V_{GE} = 15 V,	-	47.3	-	nC
Irrm	Reverse recovery current	di/dt = 1000 A/µs, T _J = 175 °C	-	9.6	-	Α
dI _{rr} /dt	Peak rate of fall of reverse recovery current during t_{b}	(see Figure 27. Test circuit for inductive load switching)	-	428	-	A/µs
Err	Reverse recovery energy		-	3.2	-	μJ

Table 6. Diode switching characteristics (inductive load)

2.1 Electrical characteristics (curves)


Figure 2. Output characteristics (T_J = 175 °C) PG280120141206FSR I_C (A) V_{GE} =15 V V_{GE} =13 \ 100 V_{GE} =11 V 80 60 V_{GE} =9 V 40 20 V_{GE} =7 V oL O 2 3 4 5 V_{CE} (V)

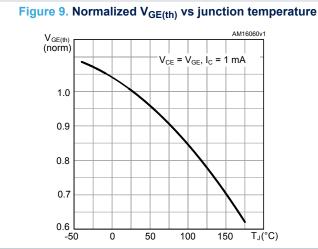

Figure 4. Collector current vs case temperature $\int_{(A)}^{l_c} 0$ $\int_{(A)}^{(A)} 0$

Figure 6. Total power dissipation vs case temperature

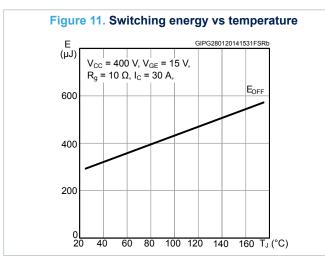
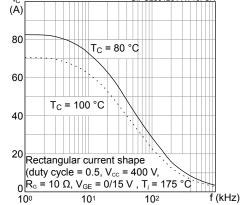
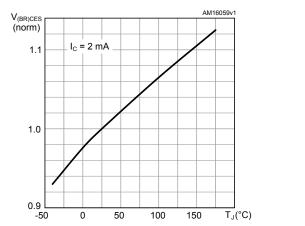
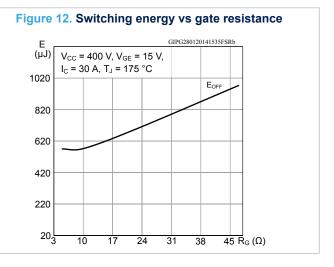
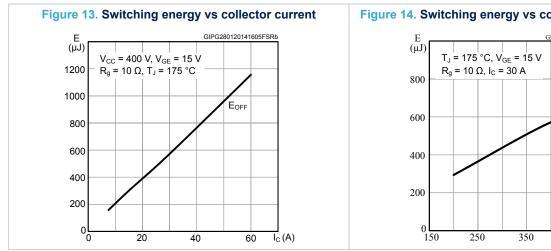
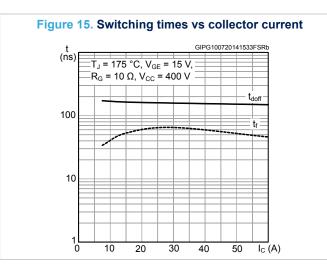
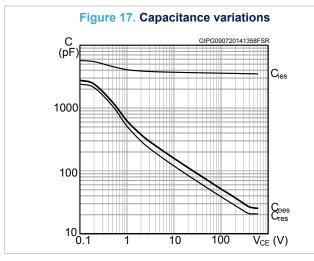
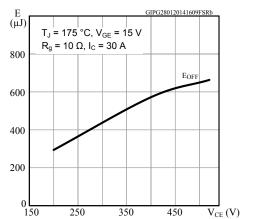
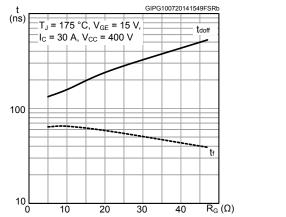
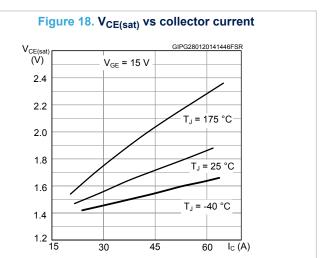


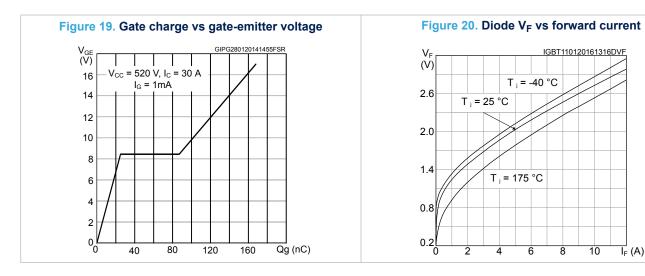
Figure 8. Collector current vs switching frequency

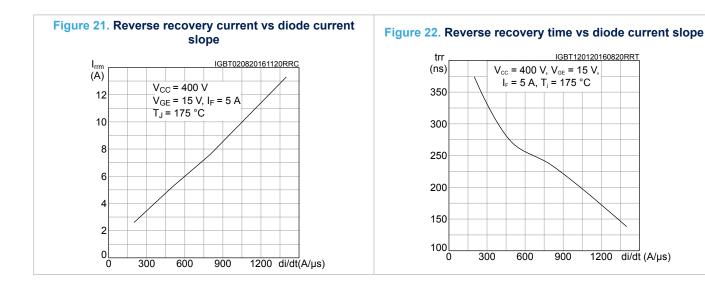





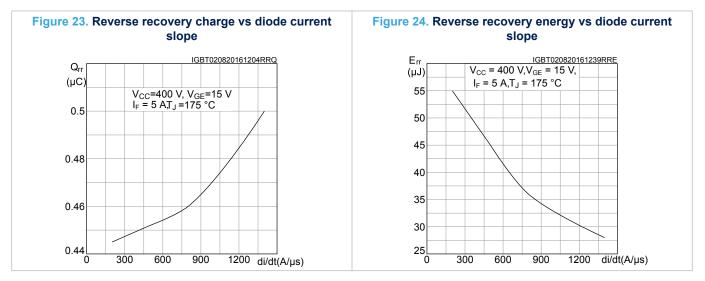

Figure 10. Normalized V_{(BR)CES} vs junction temperature

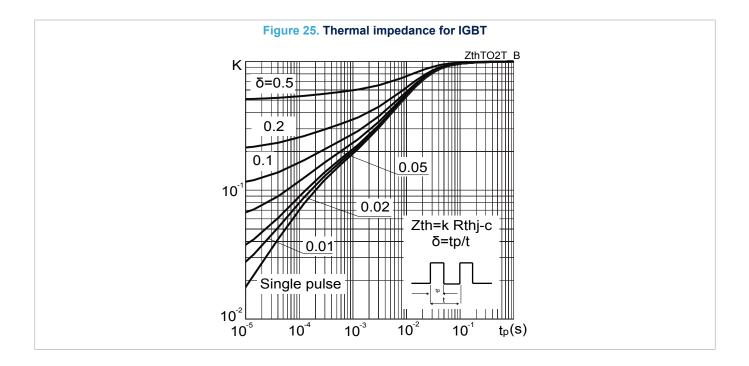
9. Normalized V_{GE(th)} vs junction temperature $V_{CE} = V_{GE, I_C} = 1 \text{ mA}$

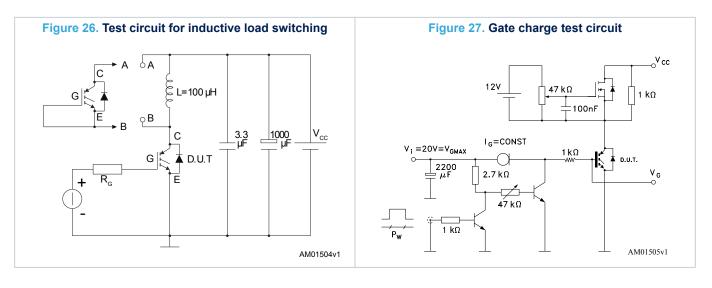





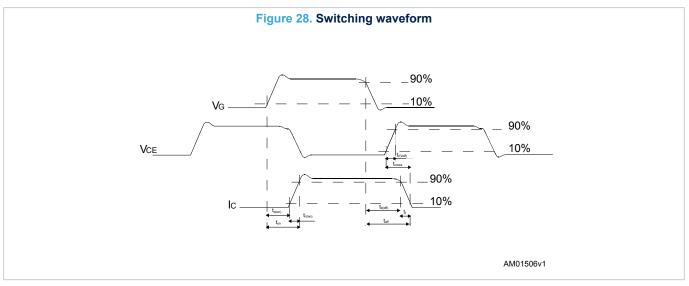

Figure 14. Switching energy vs collector emitter voltage



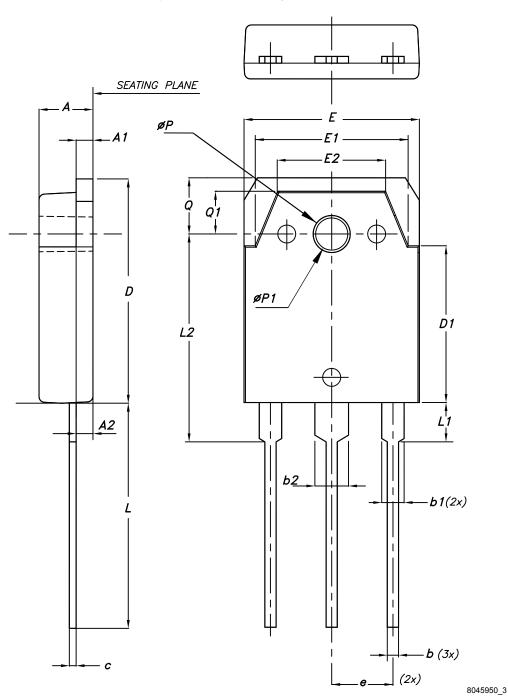







57/

3 Test circuits



4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 TO-3P package information

Figure 29. TO-3P package outline

Dim	mm		
Dim.	Min.	Тур.	Max.
A	4.60	4.80	5.00
A1	1.45	1.50	1.65
A2	1.20	1.40	1.60
b	0.80	1.00	1.20
b1	1.80	2.00	2.20
b2	2.80	3.00	3.20
С	0.55	0.60	0.75
D	19.70	19.90	20.10
D1	13.70	13.90	14.10
E	15.40	15.60	15.80
E1	13.40	13.60	13.80
E2	9.40	9.60	9.90
e	5.15	5.45	5.75
L	19.80	20.00	20.20
L1	3.30	3.50	3.70
L2	18.20	18.40	18.60
ØP	3.30	3.40	3.50
ØP1	3.10	3.20	3.30
Q	4.80	5.00	5.20
Q1	3.60	3.80	4.00

Table 7. TO-3P package mechanical data

Revision history

Table 8. Document revision history

Date	Revision	Changes
11-Nov-2015	1	First release
		Datasheet status promoted from preliminary to production data.
20-Jan-2017	2	Updated Features on cover page.
20-Jan-2017		Updated Section 1: "Electrical ratings" and Section 2: "Electrical characteristics".
		Minor text changes.
		Updated Table 1. Absolute maximum ratings.
09-Jul-2019	3	Updated Section 4 Package information.
		Minor text changes.

Contents

1	Elect	Electrical ratings				
2	Elect	rical characteristics	3			
	2.1	Electrical characteristics (curves)	5			
3	Test	circuits	.10			
4 Package information						
	4.1	TO-3P package information	. 11			
Rev	ision h	nistory	.13			

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved