
High-voltage high and low side driver

Features

- High voltage rail up to 600 V
- dV/dt immunity ± 50 V/nsec in full temperature range
- Driver current capability:
 - 290 mA source
 - 430 mA sink
- Switching times 75/35 nsec rise/fall with 1 nF load
- 3.3 V, 5 V TTL/CMOS inputs with hysteresis
- Integrated bootstrap diode
- Operational amplifier for advanced current sensing
- Adjustable dead-time
- Interlocking function
- Compact and simplified layout
- Bill of material reduction
- Flexible, easy and fast design

Applications

- Motor driver for home appliances, factory automation, industrial drives.
- HID ballasts, power supply units.

Description

The L6392 is a high-voltage device manufactured with the BCD "OFF-LINE" technology. It is a single chip half-bridge gate driver for N-channel Power MOSFET or IGBT.

The high side (floating) section is designed to stand a voltage rail up to 600 V. The logic inputs are CMOS/TTL compatible down to 3.3 V for easy interfacing microcontroller/DSP

The IC embeds an operational amplifier suitable for advanced current sensing in applications such as field oriented motor control.

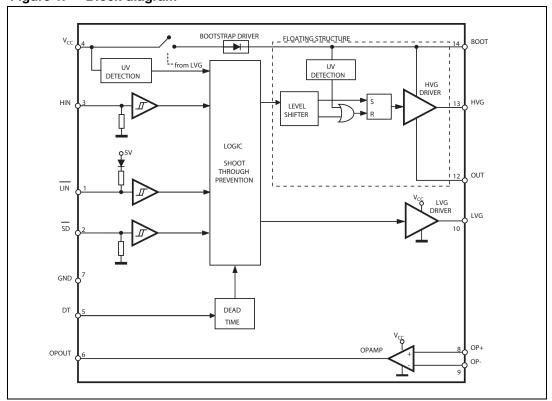
Table 1. Device summary

Order codes	Package	Packaging
L6392N	DIP-14	Tube
L6392D	SO-14	Tube
L6392DTR	SO-14	Tape and reel

August 2010 Doc ID 14494 Rev 5 1/20

Contents L6392

Contents


1	Bloc	k diagram	3
2	Pin d	connection	4
3	Truth	n table	5
4	Elec	trical data	6
	4.1	Absolute maximum ratings	6
	4.2	Thermal data	6
	4.3	Recommended operating conditions	7
5	Elec	trical characteristics	8
	5.1	AC operation	8
	5.2	DC operation 1	10
6	Wave	eforms definitions1	13
7	Туріс	cal application diagram	14
8	Boot	tstrap driver	15
	8.1	CBOOT selection and charging	15
9	Pack	age mechanical data	17
10	Revi	sion history 1	19

L6392 Block diagram

1 Block diagram

Figure 1. Block diagram

Pin connection L6392

2 Pin connection

Figure 2. Pins connection (top view)

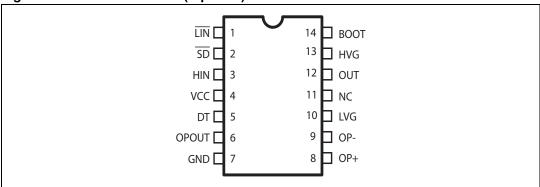


Table 2. Pin description

Pin N#	Pin name	Туре	Function			
1	LIN	I	Low side driver logic input (active low)			
2	SD (1)	I	Shut down logic input (active low)			
3	HIN	I	High side driver logic input (active high)			
4	VCC	Р	Lower section supply voltage			
5	DT	I	Dead time setting			
6	OPOUT	0	Opamp output			
7	GND	Р	Ground			
8	OP+	I	Opamp non inverting input			
9	OP-	I	Opamp inverting input			
10	LVG ⁽¹⁾	0	Low side driver output			
11	NC		Not connected			
12	OUT	Р	High side (floating) common voltage			
13	HVG ⁽¹⁾	0	High side driver output			
14	воот	Р	Bootstrapped supply voltage			

The circuit provides less than 1 V on the LVG and HVG pins (@ Isink = 10 mA), with V_{CC} > 3 V. This allows
to omitting the "bleeder" resistor connected between the gate and the source of the external MOSFET
normally used to hold the pin low; the gate driver assures low impedance also in SD condition.

L6392 Truth table

3 Truth table

Table 3. Truth table

	Inputs	Out	puts	
SD	LIN	HIN	LVG	HVG
L	Х	Х	L	L
Н	L	L	Н	L
Н	L	Н	L	L
Н	Н	L	L	L
Н	Н	Н	L	Н

Note: X: don't care

Electrical data L6392

4 Electrical data

4.1 Absolute maximum ratings

Table 4. Absolute maximum rating

Cymhal	Dovometor	Va	lue	Linit
Symbol	Parameter	Min	Max	Unit
V _{CC}	Supply voltage	- 0.3	+ 21	V
V _{out}	Output voltage	V _{boot} -21	V _{boot} +0.3	V
V _{boot}	Bootstrap voltage	- 0.3	620	V
V_{hvg}	High side gate output voltage	V _{out} - 0.3	V _{boot} + 0.3	V
V _{Ivg}	Low side gate output voltage	-0.3	V _{CC} + 0.3	V
V _{op+}	Opamp non-inverting input	-0.3	V _{CC} + 0.3	V
V _{op-}	Opamp inverting input	-0.3	V _{CC} + 0.3	V
V _i	Logic input voltage	-0.3	15	V
dV _{out} /dt	Allowed output slew rate		50	V/ns
P _{tot}	Total power dissipation (T _A = 25 °C)		800	mW
T _J	Junction temperature		150	°C
T _{stg}	Storage temperature	-50	150	°C

Note: ESD immunity for pins 12, 13 and 14 is guaranteed up to 1 kV (Human body model)

4.2 Thermal data

Table 5. Thermal data

Symbol	Parameter	SO-14	DIP-14	Unit
R _{th(JA)}	Thermal resistance junction to ambient	165	100	°C/W

L6392 Electrical data

4.3 Recommended operating conditions

 Table 6.
 Recommended operating conditions

Symbol	Pin	Parameter	Test condition	Min	Max	Unit
V _{CC}	4	Supply voltage		12.5	20	V
V _{BO} (1)	14-12	Floating supply voltage		12.4	20	V
V _{out}	12	DC output voltage		-9 ⁽²⁾	580	٧
f _{sw}		Switching frequency	HVG, LVG load C _L = 1nF		800	kHz
T _J		Junction temperature		-40	125	°C

^{1.} $V_{BO} = V_{boot} - V_{out}$

^{2.} LVG off. V_{CC} = 12.5 V. Logic is operational if $V_{boot} > 5$ V.

Electrical characteristics L6392

5 Electrical characteristics

5.1 AC operation

Table 7. AC operation electrical characteristics ($V_{CC} = 15 \text{ V}; T_J = +25 ^{\circ}\text{C}$)

Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
t _{on}	1 vs 10	High/low side driver turn- on propagation delay	V _{out} = 0 V	50	125	200	ns
t _{off}	3 vs 13	High/low side driver turn- off propagation delay	$V_{boot} = V_{cc}$ $C_L = 1 \text{ nF}$ $V_i = 0 \text{ to } 3.3 \text{ V}$	50	125	200	ns
t _{sd}	2 vs 10, 13	Shut down to high/low side propagation delay	See Figure 3	50	125	200	ns
MT		Delay matching, HS and LS turn-on/off				30	ns
			$R_{DT} = 0$; $C_L = 1$ nF; $C_{DT} = 100$ nF	0.1	0.18	0.25	
DT	5	Dead time setting range	$R_{DT} = 37 \text{ k}\Omega; C_L = 1 \text{ nF}; C_{DT} = 100 \text{ nF}$	0.48	0.6	0.72	μS
		(1)	$R_{DT} = 136 \text{ k}\Omega; C_L = 1 \text{ nF}; C_{DT} = 100 \text{ nF}$	1.35	1.6	1.85	μο
			$R_{DT} = 260 \text{ k}\Omega; C_L = 1 \text{ nF}; C_{DT} = 100 \text{ nF}$	2.6	3.0	3.4	
			$R_{DT} = 0 \Omega$; $C_L=1 nF$; $C_{DT} = 100 nF$			80	
MDT		Matching dead time ⁽²⁾	$R_{DT} = 37 \text{ k}\Omega; C_L = 1 \text{ nF}; C_{DT} = 100 \text{ nF}$			120	ns
IVIDT		watering dead time	$R_{DT} = 136 \text{ k}\Omega; C_L = 1 \text{ nF}; C_{DT} = 100 \text{ nF}$			250	115
			R_{DT} = 260 kΩ; C_L =1 nF; C_{DT} =100 nF			400	
t _r	10, 13	Rise time	C _L = 1 nF		75	120	ns
t _f	10, 13	Fall time	C _L = 1 nF		35	70	ns

^{1.} See Figure 4 on page 9

^{2.} MDT = $|DT_{LH} - DT_{HL}|$ see Figure 5 on page 13

Figure 3. Timing characteristics

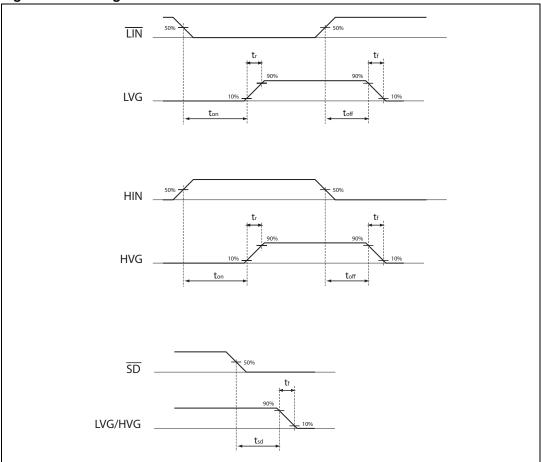
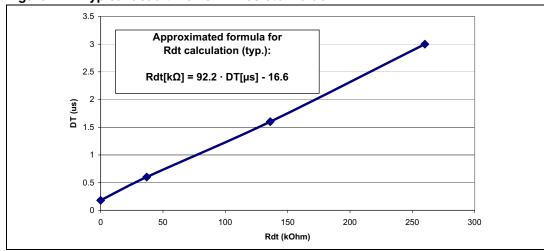



Figure 4. Typical dead time vs. DT resistor value

Electrical characteristics L6392

5.2 DC operation

Table 8. DC operation electrical characteristics ($V_{CC} = 15 \text{ V}; T_J = +25 ^{\circ}\text{C}$)

Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
Low supply	voltage	section					
V _{cc_hys}		V _{cc} UV hysteresis		1200	1500	1800	mV
V _{cc_thON}		V _{cc} UV turn ON threshold		11.5	12	12.5	V
V _{cc_thOFF}		V _{cc} UV turn OFF threshold		10	10.5	11	V
I _{qccu}	4	Undervoltage quiescent supply current	$V_{CC} = 10 \text{ V}$ $\overline{SD} = 5 \text{ V}; \overline{\text{LIN}} = 5 \text{ V};$ $HIN = GND;$ $R_{DT} = 0 \Omega;$ $OP + = GND; OP - = 5 \text{ V}$		120	150	μА
I _{qcc}		Quiescent current	$V_{CC} = 15 \text{ V}$ $\overline{SD} = 5 \text{ V}; \overline{\text{LIN}} = 5 \text{ V};$ $HIN = GND;$ $R_{DT} = 0 \Omega;$ $OP + = GND; OP - = 5 \text{ V}$		680	1000	μА
Bootstrapp	ed supp	ly voltage section ⁽¹⁾					
V _{BO_hys}		V _{BO} UV hysteresis		1200	1500	1800	mV
V _{BO_thON}		V _{BO} UV turn ON threshold		10.6	11.5	12.4	V
V _{BO_thOFF}		V _{BO} UV turn OFF threshold		9.1	10	10.9	V
I _{QBOU}	14	Undervoltage V _{BO} quiescent current	$V_{BO} = 9 \text{ V}$ $\overline{\text{SD}} = 5 \text{ V}; \overline{\text{LIN}} \text{ and HIN} = 5 \text{ V};$ $R_{DT} = 0 \Omega;$ OP + = GND; OP - = 5 V		70	110	μА
I _{QBO}		V _{BO} quiescent current	V_{BO} = 15 V \overline{SD} = 5 V; \overline{LIN} and HIN = 5 V; R_{DT} = 0 Ω ; OP + = GND; OP - = 5 V		150	210	μА
I _{LK}		High voltage leakage current	V _{hvg} = V _{out} = V _{boot} = 600 V			10	μА
R _{DS(on)}		Bootstrap driver on resistance (2)	LVG ON		120		Ω

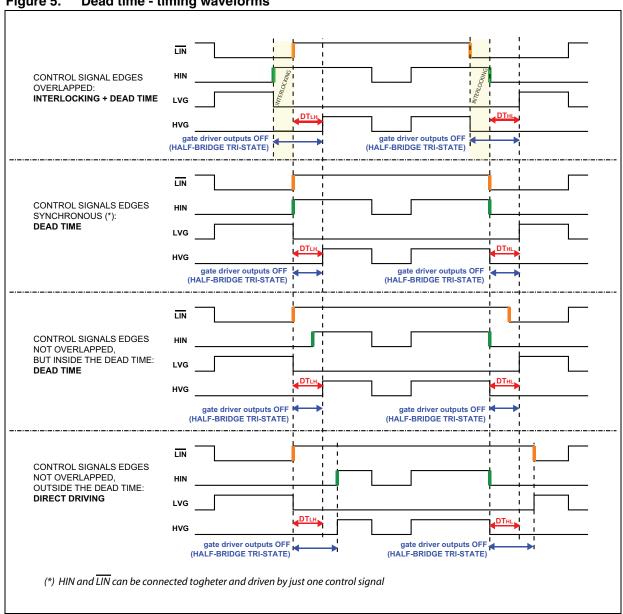
DC operation electrical characteristics (V_{CC} = 15 V; T_J = +25 °C) (continued) Table 8.

Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
Driving buf	fers sect	ion					
I _{so}	10, 13	High/low side source short circuit current	$V_i = V_{ih} (t_p < 10 \text{ ms})$	200	290		mA
I _{si}	10, 13	High/low side sink short circuit current	$V_i = V_{il} (t_p < 10 \text{ ms})$	250	430		mA
Logic input	ts						
V _{il}	1, 2, 3	Low logic level voltage				0.8	V
V _{ih}	1, 2, 3	High logic level voltage		2.25			V
V _{il_S}	1, 3	Single input voltage	LIN and HIN connected together and floating			0.8	٧
I _{HINh}	3	HIN logic "1" input bias current	HIN = 15 V	110	175	260	μА
I _{HINI}	3	HIN logic "0" input bias current	HIN = 0 V			1	μΑ
I _{LINI}	4	LIN logic "0" input bias current	LIN = 0 V	3	6	20	μА
I _{LINh}	1	LIN logic "1" input bias current	LIN = 15 V			1	μА
I _{SDh}	2	SD logic "1" input bias current	<u>SD</u> = 15 V	10	30	100	μА
I _{SDI}	4	SD logic "0" input bias current	<u>SD</u> = 0 V			1	μА

V_{BO} = V_{boot} - V_{out}
 R_{DSon} is tested in the following way: R_{DSon} = [(V_{CC} - V_{CBOOT1}) - (V_{CC} - V_{CBOOT2})] / [I₁(V_{CC}, V_{CBOOT1}) - I₂(V_{CC}, V_{CBOOT2})] where I₁ is pin 14 current when V_{CBOOT} = V_{CBOOT1}, I₂ when V_{CBOOT} = V_{CBOOT2}

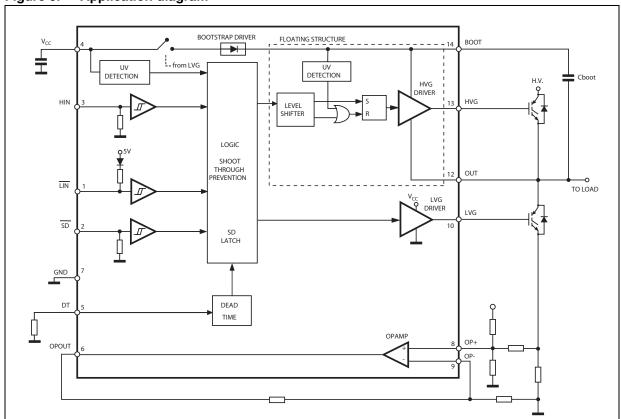
Electrical characteristics L6392

Table 9. OPAMP characteristics ($V_{CC} = 15 \text{ V}, T_J = +25 ^{\circ}\text{C}$)


Symbol	Pin	Parameter	Test condition	Min	Тур	Max	Unit
V _{io}		Input offset voltage	$V_{ic} = 0 \text{ V}, V_o = 7.5 \text{ V}$			6	mV
I _{io}		Input offset current	V 0VV 75V		4	40	nA
I _{ib}	8, 9	Input bias current (1)	$V_{ic} = 0 \text{ V}, V_o = 7.5 \text{ V}$		100	200	nA
V _{icm}		Input common mode voltage range		0		V _{CC} -4	V
V _{OL}		Low level output voltage	R_L = 10 kΩ to V_{CC}		75	150	mV
V _{OH}		High level output voltage	R_L = 10 kΩ to GND	14	14.7		V
	6	Output abort airquit aurrant	Source, V _{id} = + 1 V; V _o = 0 V	16	30		mA
I _o		Output short circuit current		50	80		mA
SR		Slew rate	V _i = 1÷4; C _L = 100 pF; unity gain	2.5	3.8		V/μs
GBWP		Gain bandwidth product	V _o = 7.5 V	8	12		MHz
A _{vd}		Large signal voltage gain	$R_L = 2 k\Omega$	70	85		dB
SRV		Power supply rejection ratio	vs V _{cc}	60	75		dB
CMRR		Common mode rejection ratio		55	70		dB

^{1.} The direction of input current is out of the IC.

L6392 **Waveforms definitions**


Waveforms definitions 6

7 Typical application diagram

Figure 6. Application diagram

L6392 Bootstrap driver

8 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (*Figure 7* a). In the L6392 a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low side driver (LVG), with diode in series, as shown in *Figure 7* b.

An internal charge pump (*Figure 7* b) provides the DMOS driving voltage.

8.1 C_{BOOT} selection and charging

To choose the proper C_{BOOT} value the external MOS can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOS total gate charge:

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}}$$

The ratio between the capacitors C_{EXT} and C_{BOOT} is proportional to the cyclical voltage loss. It has to be:

e.g.: if Q_{gate} is 30 nC and V_{gate} is 10 V, C_{EXT} is 3 nF. With C_{BOOT} = 100 nF the drop would be 300 mV.

If HVG has to be supplied for a long time, the C_{BOOT} selection has to take into account also the leakage and quiescent losses.

e.g.: HVG steady state consumption is lower than 200 μ A, so if HVG T_{ON} is 5 ms, C_{BOOT} has to supply 1 μ C to C_{EXT}. This charge on a 1 μ F capacitor means a voltage drop of 1 V.

The internal bootstrap driver gives a great advantage: the external fast recovery diode can be avoided (it usually has great leakage current).

This structure can work only if V_{OUT} is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (T_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the DMOS R_{DSON} (typical value: 120 Ω). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account.

The following equation is useful to compute the drop on the bootstrap DMOS:

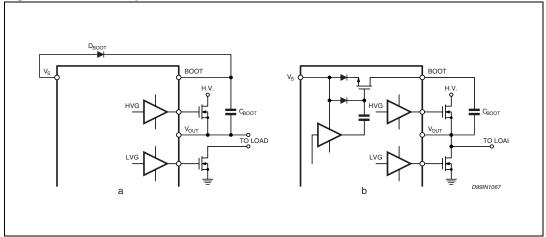
$$V_{drop} = I_{charge}R_{dson} \rightarrow V_{drop} = \frac{Q_{gate}}{T_{charge}}R_{dson}$$

where Q_{gate} is the gate charge of the external power MOS, R_{dson} is the on resistance of the bootstrap DMOS, and T_{charge} is the charging time of the bootstrap capacitor.

57

Doc ID 14494 Rev 5

15/20

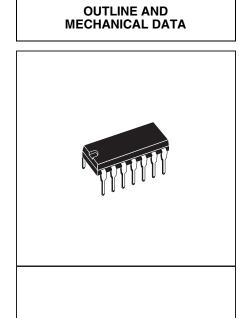

Bootstrap driver L6392

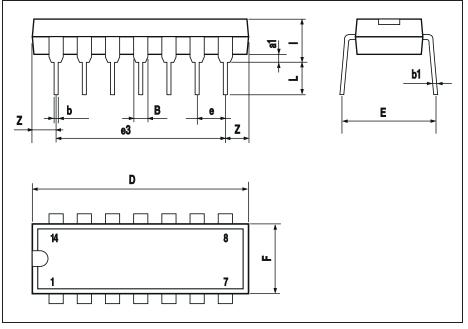
For example: using a power MOS with a total gate charge of 30 nC the drop on the bootstrap DMOS is about 1 V, if the T_{charge} is 5 μs . In fact:

$$V_{drop} \,=\, \frac{30nC}{5\mu s} \cdot 120\Omega \sim 0.7 V$$

 V_{drop} has to be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

Figure 7. Bootstrap driver




9 Package mechanical data

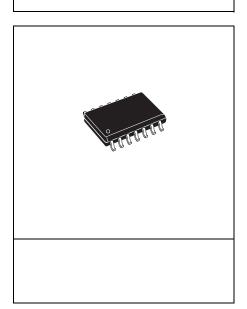
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

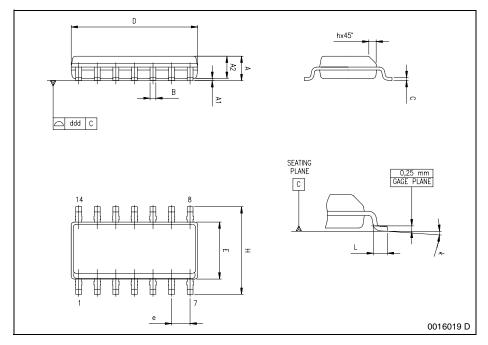
Figure 8. DIP-14 mechanical data and package dimensions

DIM.		mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	1.39		1.65	0.055		0.065	
b		0.5			0.020		
b1		0.25			0.010		
D			20			0.787	
Е		8.5			0.335		
е		2.54			0.100		
e3		15.24			0.600		
F			7.1			0.280	
ı			5.1			0.201	
L		3.3			0.130		
Z	1.27		2.54	0.050		0.100	
	•						

577

Doc ID 14494 Rev 5


17/20


Figure 9. SO-14 mechanical data and package dimensions

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	1.35		1.75	0.053		0.069
A1	0.10		0.30	0.004		0.012
A2	1.10		1.65	0.043		0.065
В	0.33		0.51	0.013		0.020
С	0.19		0.25	0.007		0.01
D ⁽¹⁾	8.55		8.75	0.337		0.344
Е	3.80		4.0	0.150		0.157
е		1.27			0.050	
Н	5.8		6.20	0.228		0.244
h	0.25		0.50	0.01		0.02
L	0.40		1.27	0.016		0.050
k	0° (min.), 8° (max.)					
ddd			0.10			0.004
(1) "D" dimension does not include mold flash, protusions or gate						

 [&]quot;D" dimension does not include mold flash, protusions or gate burrs. Mold flash, protusions or gate burrs shall not exceed 0.15mm per side.

OUTLINE AND MECHANICAL DATA

18/20 Doc ID 14494 Rev 5

L6392 Revision history

10 Revision history

Table 10. Document revision history

Date	Revision	Changes	
29-Feb-2008	1	Initial release	
18-Mar-2008	2	Cover page updated	
17-Sep-2008	3	Updated Table 4 on page 6, Table 4 on page 6, Table 9 on page 12	
17-Feb-2009	4	Updated <i>Table 7 on page 8, Table 8 on page 10, Table 9 on page</i> Added <i>Table 4 on page 9</i>	
11-Aug-2010	5	Updated cover page, <i>Table 1 on page 1</i> , <i>Table 7 on page 8</i> , <i>Table on page 12</i>	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

20/20 Doc ID 14494 Rev 5

