TS921

Rail-to-rail high output current single operational amplifier

Datasheet -production data

Features

- Rail-to-rail input and output

■ Low noise: $9 \mathrm{nV} / \mathrm{VHz}$
■ Low distortion
■ High output current: 80 mA (able to drive 32Ω loads)

■ High-speed: $4 \mathrm{MHz}, 1 \mathrm{~V} / \mu \mathrm{s}$
■ Operating from 2.7 V to 12 V
■ ESD internal protection: 1.5 kV
■ Latch-up immunity

- Macromodel included in this specification

Applications

- Headphone amplifier
- Piezoelectric speaker driver

■ Sound cards, multimedia systems

- Line driver, actuator driver
- Servo amplifier
- Mobile phone and portable communication sets
- Instrumentation with low noise as key factor

Table 1. Device summary

Order code	Temperature range	Package	Packing	Marking
TS921IN	$-40^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	DIP8	Tube	TS921IN
TS921ID/IDT		SO-8	Tube or tape and reel	921I
TS921IPT		TSSOP8 (thin shrink outline package)	Tape and reel	

1
 Description

The TS921 device is a rail-to-rail single BiCMOS operational amplifier optimized and fully specified for 3 V and 5 V operation.
Its high output current allows low load impedances to be driven.
The TS921 device exhibits very low noise, low distortion and low offset. It has a high output current capability which makes this device an excellent choice for high quality, low voltage or battery operated audio systems.
The device is stable for capacitive loads up to 500 pF .

2 Absolute maximum ratings

Table 2. Key parameters and their absolute maximum ratings

Symbol	Parameter	Condition	Value	Unit
V_{CC}	Supply voltage ${ }^{(1)}$		14	V
$V_{\text {id }}$	Differential input voltage ${ }^{(2)}$		± 1	V
V_{i}	Input voltage		$\mathrm{V}_{\mathrm{DD}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{T}_{\text {stg }}$	Storage temperature		-65 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum junction temperature		150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {thja }}$	Thermal resistance junction-to-ambient	$\begin{aligned} & \hline \text { SO-8 } \\ & \text { TSSOP8 } \\ & \text { DIP8 } \end{aligned}$	$\begin{gathered} \hline 125 \\ 120 \\ 85 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thic }}$	Thermal resistance junction-to-case	$\begin{aligned} & \text { SO-8 } \\ & \text { TSSOP8 } \\ & \text { DIP8 } \end{aligned}$	$\begin{aligned} & 40 \\ & 37 \\ & 41 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic discharge	HBM Human body model ${ }^{(3)}$	1.5	kV
		MM Machine model ${ }^{(4)}$	100	V
		CDM Charged device model	1.5	kV
	Output short-circuit duration		See ${ }^{(5)}$	
	Latch-up immunity		200	mA
	Soldering temperature	$\begin{aligned} & 10 \text { sec., } \\ & \text { standard package } \end{aligned}$	250	${ }^{\circ} \mathrm{C}$
		$\begin{aligned} & 10 \mathrm{sec} ., \\ & \text { lead-free package } \end{aligned}$	260	

1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. If $\mathrm{V}_{\text {id }}> \pm 1 \mathrm{~V}$, the maximum input current must not exceed $\pm 1 \mathrm{~mA}$. In this case ($\mathrm{V}_{\text {id }}> \pm 1 \mathrm{~V}$) an input serie resistor must be added to limit input current.
3. Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor into pin of device.
4. Machine model ESD, a 200 pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor $<5 \Omega$), into pin to pin of device.
5. There is no short-circuit protection inside the device: short-circuits from the output to V_{CC} can cause excessive heating. The maximum output current is approximately 80 mA , independent of the magnitude of V_{Cc}. Destructive dissipation can result from simultaneous short-circuits on all amplifiers.

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	2.7 to 12	V
$\mathrm{~V}_{\mathrm{icm}}$	Common mode input voltage range	$\mathrm{V}_{\mathrm{DD}}-0.2$ to $\mathrm{V}_{\mathrm{CC}}+0.2$	V
$\mathrm{~T}_{\text {oper }}$	Operating free air temperature range	-40 to +125	${ }^{\circ} \mathrm{C}$

3 Electrical characteristics

Table 4. Electrical characteristics for $\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=\mathrm{V}_{\mathrm{Cc}} / 2, \mathrm{R}_{\mathrm{L}}$ connected to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {io }}$	Input offset voltage	at $T_{\text {min }} \leq T_{\text {amb }} \leq T_{\max }$				

Table 5. Electrical characteristics for $\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=\mathrm{V}_{\mathrm{Cc}} / 2$, R_{L} connected to $\mathrm{V}_{\mathrm{Cc}} / 2$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {io }}$	Input offset voltage	at $\mathrm{T}_{\text {min. }} \leq \mathrm{T}_{\text {amb }} \leq \mathrm{T}_{\text {max }}$			$\begin{aligned} & 3 \\ & 5 \end{aligned}$	mV
$\Delta \mathrm{V}_{\text {io }}$	Input offset voltage drift			2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{i}	Input offset current	$\mathrm{V}_{\text {out }}=1.5 \mathrm{~V}$		1	30	nA
$\mathrm{l}_{\text {ib }}$	Input bias current	$\mathrm{V}_{\text {out }}=1.5 \mathrm{~V}$		15	100	nA
V_{OH}	High level output voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega \end{aligned}$	4.85	4.4		V
$\mathrm{V}_{\text {OL }}$	Low level output voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega \end{aligned}$		300	120	mV
A_{vd}	Large signal voltage gain	$\begin{aligned} & \mathrm{V}_{\text {out }}=2 \mathrm{~V}_{\text {pk-pk }} \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega \end{aligned}$		$\begin{aligned} & 35 \\ & 16 \end{aligned}$		V / mV
GBP	Gain bandwidth product	$\mathrm{R}_{\mathrm{L}}=600 \Omega$		4		MHz
I_{CC}	Supply current	No load, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}} / 2$		1	1.5	mA
CMR	Common mode rejection ratio		60	80		dB
SVR	Supply voltage rejection ratio	$\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V	60	80		dB
I_{0}	Output short-circuit current		50	80		mA
SR	Slew rate		0.7	1.3		V/ $\mu \mathrm{s}$
Pm	Phase margin at unit gain	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		68		Degrees
GM	Gain margin	$\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		12		dB
e_{n}	Equivalent input noise voltage	$\mathrm{f}=1 \mathrm{kHz}$		9		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$
THD	Total harmonic distortion	$\begin{aligned} & V_{\text {out }}=2 V_{\text {pk-pk }}, f=1 \mathrm{kHz}, \\ & A_{v}=1, R_{L}=600 \Omega \end{aligned}$		0.005		\%

Figure 1. Output short-circuit vs. output voltage $\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$

Figure 2. Voltage gain and phase vs.
frequency $\left(R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}\right)$

Figure 3. Output short-circuit vs. output voltage $\left(\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=0 \mathrm{~V}\right)$

Figure 4. Equivalent input noise voltage vs. frequency $\left(\mathrm{V}_{\mathrm{CC}}= \pm 1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega\right)$

Figure 5. Output supply current vs. supply voltage

Figure 6. $\quad \mathrm{THD}+$ noise vs. frequency $\left(\mathrm{R}_{\mathrm{L}}=\mathbf{2 k} \Omega\right.$ $\mathrm{V}_{\mathrm{o}}=10 \mathrm{Vpp}, \mathrm{V}_{\mathrm{CC}}= \pm 6 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1$)

Figure 7. THD + noise vs. frequency $\left(R_{L}=32 \Omega \quad V_{0}=4 \mathrm{Vpp}\right.$, $\mathrm{V}_{\mathrm{CC}}= \pm 2.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{v}}=1$)

Figure 8. THD + noise vs. output voltage
$\left(R_{L}=600 \Omega, f=1 \mathrm{kHz}\right.$,
$V_{C C}=0 / 3 V, A_{v}=-1$)

Figure 9. THD + noise vs. frequency
($\mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{~V}_{\mathrm{o}}=2 \mathrm{Vpp}$,
$\mathrm{V}_{\mathrm{CC}}= \pm 1.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=10$)

Figure 10. THD + noise vs. output voltage
($\mathrm{R}_{\mathrm{L}}=32 \Omega \mathrm{f}=\mathbf{1} \mathrm{kHz}$,
$\mathrm{V}_{\mathrm{CC}}= \pm 1.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{v}}=-1$)

Figure 12. Open loop gain and phase vs. frequency $\left(C_{L}=500 \mathrm{pF}\right)$
$\left(R_{L}=2 \mathrm{k} \Omega \mathrm{f}=\mathbf{1} \mathrm{kHz}\right.$, $\mathrm{V}_{\mathrm{CC}}= \pm 1.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1$)

4 Macromodel

4.1 Important note concerning this macromodel

Please consider following remarks before using this macromodel:

- All models are a trade-off between accuracy and complexity (i.e. simulation time).
- Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values.
- A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product.
- Data issued from macromodels used outside of its specified conditions
(V_{CC}, temperature, etc.) or even worse: outside of the device operating conditions $\left(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{icm}}\right.$, etc.) are not reliable in any way.
In Section 4.3, the electrical characteristics resulting from the use of these macromodels are presented.

4.2 Electrical characteristics from macromodelization

Table 6. Electrical characteristics resulting from macromodel simulation at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$, $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}, \mathrm{C}_{\mathrm{L}}$ connected to $\mathrm{V}_{\mathrm{CC} / 2}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Conditions	Value	Unit
V_{io}		0	mV
A_{vd}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	200	$\mathrm{~V} / \mathrm{mV}$
I_{CC}	No load, per operator	1.2	mA
$\mathrm{~V}_{\mathrm{icm}}$		-0.2 to 3.2	V
$\mathrm{~V}_{\mathrm{OH}}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	2.95	V
$\mathrm{~V}_{\mathrm{OL}}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	25	mV
$\mathrm{I}_{\text {sink }}$	$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$	80	mA
$\mathrm{I}_{\text {source }}$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	80	mA
GBP	$\mathrm{R}_{\mathrm{L}}=600 \mathrm{k} \Omega$	4	MHz
SR	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	1.3	$\mathrm{~V} / \mu \mathrm{s}$
$\phi \mathrm{m}$	$\mathrm{R}_{\mathrm{L}}=600 \mathrm{k} \Omega$	68	Degrees

4.3 Macromodel code

** Standard Linear Ics Macromodels, 1996.
** CONNECTIONS:

* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
. SUBCKT TS921 13245 (analog)
*** . MODEL MDTH D IS $=1 \mathrm{E}-8 \mathrm{KF}=2.664234 \mathrm{E}-16 \mathrm{CJO}=10 \mathrm{~F}$
* INPUT STAGE

CIP 25 1.000000E-12
CIN $151.000000 \mathrm{E}-12$
EIP $10 \quad 5 \quad 2 \quad 51$
EIN $16 \begin{array}{llll}16 & 5 & 5 & 1\end{array}$
RIP $10118.125000 \mathrm{E}+00$
RIN $1516 \quad 8.125000 \mathrm{E}+00$
RIS 1115 2.238465E+02
DIP 1112 MDTH 400E-12
DIN 1514 MDTH 400E-12
VOFP 1213 DC 153.5u
VOFN 1314 DC 0
IPOL $1353.200000 \mathrm{E}-05$
CPS 1115 1e-9
DINN 1713 MDTH 400E-12
VIN $175-0.100000 \mathrm{e}+00$
DINR 1518 MDTH 400E-12
VIP $4180.400000 \mathrm{E}+00$
FCP 45 VOFP 1.865000E+02
FCN 54 VOFN 1.865000E+02
FIBP 25 VOFP 6.250000E-03
FIBN 51 VOFN 6.250000E-03

* GM1 STAGE ***************

FGM1P 1195 VOFP 1.1
FGM1N 1195 VOFN 1.1
RAP $11942.6 E+06$
RAN $11952.6 \mathrm{E}+06$

* GM2 STAGE ***************

G2P $19511951.92 \mathrm{E}-02$
G2N $19511941.92 \mathrm{E}-02$
R2P 194 1E+07
R2N 195 1E+07

VINT1 50005

GCONVP $500501119419.38!$ send ds VP, $I(V P)=(V 119-V 4) / 2 / U t$ VP 50100
GCONVN $500502119519.38!s e n d ~ d s ~ V N, ~ I(V N)=(V 119-V 5) / 2 / U t$ VN 50200
********* orientation isink isource *******
VINT2 50305
FCOPY 503504 VOUT 1
DCOPYP 504505 MDTH 400E-9
VCOPYP 50500
DCOPYN 506504 MDTH 400E-9
VCOPYN 05060

F2PP 195 poly(2) VCOPYP VP $00000.5!m u l t i p l y ~ I(v o u t) * I(V P)=I o u t *(V 119-$ V4) / 2 /Ut

F2PN 195 poly(2) VCOPYP VN 00000.5 !multiply 0 (vout)*I(VN)=Iout*(V119V5) / 2 /Ut

F2NP 195 poly(2) VCOPYN VP 00001.75 !multiply I(vout)*I(VP)=Iout*(V119V4) / 2 /Ut
F2NN 195 poly(2) VCOPYN VN 00001.75 ! multiply I(vout)*I(VN)=Iout*(V119V5) / 2 /Ut

* COMPENSATION

CC 19119 25p

* OUTPUT***********

DOPM 1922 MDTH 400E-12
DONM 2119 MDTH 400E-12
HOPM 2228 VOUT 6.250000E+02
VIPM $2845.000000 \mathrm{E}+01$
HONM 2127 VOUT 6.250000E+02
VINM 527 5.000000E+01
VOUT 3230
ROUT $2319 \quad 6$
COUT $351.300000 \mathrm{E}-10$
DOP 1925 MDTH 400E-12
VOP 4251.052
DON 2419 MDTH 400E-12
VON 2451.052
. ENDS

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 13. DIP8 package outline

Table 7. DIP8 package mechanical data

Symbol	Dimensions					
	mm				Max.	Min.
	Min.	Typ.	Typ.	Max.		
A		3.3			0.130	
a1	0.7			0.028		
B	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
E		8.8			0.346	
e		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			7.1			0.280
I			4.8			0.189
L		3.3		1.6	0.017	
Z	0.44				0.130	

Figure 14. SO-8 package outline

0016023/C

Table 8. SO-8 package mechanical data

Symbol	Dimensions					
	mm			inch		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A	1.35		1.75	0.053		0.069
A1	0.10		0.25	0.04		0.010
A2	1.10		1.65	0.043		0.065
B	0.33		0.51	0.013		0.020
C	0.19		0.25	0.007		0.010
D	4.80		5.00	0.189		0.197
E	3.80		4.00	0.150		0.157
e		1.27			0.050	
H	5.80		6.20	0.228		0.244
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
k	8° (max.)					
ddd			0.1			0.04

Figure 15. TSSOP8 package outline

Table 9. TSSOP8 package mechanical data

Symbol	Dimensions					
	mm			inch		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.2			0.047
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
c	0.09		0.20	0.004		0.008
D	2.90	3.00	3.10	0.114	0.118	0.122
E	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
e		0.65			0.0256	
K	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1			0.039	

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
Feb. 2001	1	Initial release - Product in full production.
Dec. 2004	2	Modifications on AMR table page 2 (explanation of $\mathrm{V}_{\text {id }}$ and V_{i} limits, ESD, MM and CDM values added, Rthja added)
Nov. 2005	3	The following changes were made in this revision: PPAP references inserted in the datasheet see Table 1. Data in tables Electrical characteristics on page 4 reformatted for easier use. Thermal Resistance Junction to Case added in Table 2 on page 3.
19-Sep-2012	4	Updated Figure on page 1(replaced VCC Updated (renamed) Table 1, removed TS921IYD/IYDT devices from Table 1. Moved Description to page 2. Updated Figure 1 to Figure 4, Figure 6 to Figure 12 (added conditions to titles). Updated ECOPACK text and reformatted Section 5 (added Table 7to Table 9, reversed order of figures and tables). Minor corrections throughout document.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

