iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope

Datasheet - production data

LGA-14L
$(2.5 \times 3 \times 0.83 \mathrm{~mm})$ typ.

Features

- Power consumption: 0.9 mA in combo normal mode and 1.25 mA in combo high-performance mode up to 1.6 kHz .
- "Always-on" experience with low power consumption for both accelerometer and gyroscope
- Smart FIFO up to 8 kbyte based on features set
- Compliant with Android K and L
- Hard, soft ironing for external magnetic sensor corrections
- $\pm 2 / \pm 4 / \pm 8 / \pm 16 \mathrm{~g}$ full scale
- $\pm 125 / \pm 250 / \pm 500 / \pm 1000 / \pm 2000$ dps full scale
- Analog supply voltage: 1.71 V to 3.6 V
- Independent IOs supply (1.62 V)
- Compact footprint, $2.5 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.83 \mathrm{~mm}$
- SPI/I ${ }^{2} \mathrm{C}$ serial interface with main processor data synchronization feature
- Embedded temperature sensor
- ECOPACK ${ }^{\circledR}$, RoHS and "Green" compliant

Applications

- Pedometer, step detector and step counter
- Significant motion and tilt functions
- Indoor navigation
- Tap and double-tap detection
- IoT and connected devices
- Intelligent power saving for handheld devices
- Vibration monitoring and compensation
- Free-fall detection
- 6D orientation detection

Description

The LSM6DS3 is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope performing at 1.25 mA (up to 1.6 kHz ODR) in highperformance mode and enabling always-on low-power features for an optimal motion experience for the consumer.

The LSM6DS3 supports main OS requirements, offering real, virtual and batch sensors with 8 kbyte for dynamic data batching

ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.
The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DS3 has a full-scale acceleration range of $\pm 2 / \pm 4 / \pm 8 / \pm 16 \mathrm{~g}$ and an angular rate range of $\pm 125 / \pm 250 / \pm 500 / \pm 1000 / \pm 2000 \mathrm{dps}$.

High robustness to mechanical shock makes the LSM6DS3 the preferred choice of system designers for the creation and manufacturing of reliable products.

The LSM6DS3 is available in a plastic land grid array (LGA) package.

Table 1. Device summary

Part number	Temperature range $\left[{ }^{\circ} \mathrm{C}\right]$	Package	Packing
LSM6DS3	-40 to +85	LGA-14L	Tray
	 $(2.5 \times 3 \times 0.83 \mathrm{~mm})$ Reel		

Contents

1 Overview 15
2 Embedded low-power features 16
2.1 Tilt detection 16
3 Pin description 17
3.1 Pin connections 18
4 Module specifications 20
4.1 Mechanical characteristics 20
4.2 Electrical characteristics 23
4.3 Temperature sensor characteristics 24
4.4 Communication interface characteristics 25
4.4.1 SPI - serial peripheral interface 25
4.4.2 $\quad I^{2} \mathrm{C}$ - inter-IC control interface 26
4.5 Absolute maximum ratings 27
4.6 Terminology 28
4.6.1 Sensitivity 28
4.6.2 Zero-g and zero-rate level 28
$5 \quad$ Functionality 29
5.1 Operating modes 29
5.2 Gyroscope power modes 29
5.3 Accelerometer power modes 29
5.4 FIFO 30
5.4.1 Bypass mode 31
5.4.2 FIFO mode 31
5.4.3 Continuous mode 31
5.4.4 Continuous-to-FIFO mode 31
5.4.5 Bypass-to-Continuous mode 32
5.4.6 FIFO reading procedure 32
5.4.7 Filter block diagrams 32
6 Digital interfaces 34
$6.1 \quad 1^{2} \mathrm{C}$ serial interface 34
6.1.1 $I^{2} \mathrm{C}$ operation 35
6.2 SPI bus interface 37
6.2.1 SPI read 38
6.2.2 SPI write 39
6.2.3 SPI read in 3-wire mode 40
7 Application hints 41
7.1 LSM6DS3 electrical connections in Mode 1 41
7.2 LSM6DS3 electrical connections in Mode 2 42
8 Register mapping 43
9 Register description 47
9.1 FUNC_CFG_ACCESS (01h) 47
9.2 SENSOR_SYNC_TIME_FRAME (04h) 47
9.3 FIFO_CTRL1 (06h) 47
9.4 FIFO_CTRL2 (07h) 48
9.5 FIFO_CTRL3 (08h) 48
9.6 FIFO_CTRL4 (09h) 49
9.7 FIFO_CTRL5 (0Ah) 50
9.8 ORIENT_CFG_G (OBh) 51
9.9 INT1_CTRL (ODh) 52
9.10 INT2_CTRL (OEh) 53
9.11 WHO_AM_I (OFh) 53
9.12 CTRL1_XL (10h) 53
9.13 CTRL2_G (11h) 55
9.14 CTRL3_C (12h) 56
9.15 CTRL4_C (13h) 57
9.16 CTRL5_C (14h) 57
9.17 CTRL6_C (15h) 59
9.18 CTRL7_G (16h) 59
9.19 CTRL8_XL (17h) 60
9.20 CTRL9_XL (18h) 61
9.21 CTRL10_C (19h) 61
9.22 MASTER_CONFIG (1Ah) 62
9.23 WAKE_UP_SRC (1Bh) 62
9.24 TAP_SRC (1Ch) 63
9.25 D6D_SRC (1Dh) 64
9.26 STATUS_REG (1Eh) 64
9.27 OUT_TEMP_L (20h), OUT_TEMP(21h) 65
9.28 OUTX_L_G (22h) 65
9.29 OUTX_H_G (23h) 65
9.30 OUTY_L_G (24h) 65
9.31 OUTY_H_G (25h) 66
9.32 OUTZ_L_G (26h) 66
9.33 OUTZ_H_G (27h) 66
9.34 OUTX_L_XL (28h) 66
9.35 OUTX_H_XL (29h) 67
9.36 OUTY_L_XL (2Ah) 67
9.37 OUTY_H_XL (2Bh) 67
9.38 OUTZ_L_XL (2Ch) 67
9.39 OUTZ_H_XL (2Dh) 68
9.40 SENSORHUB1_REG (2Eh) 68
9.41 SENSORHUB2_REG (2Fh) 68
9.42 SENSORHUB3_REG (30h) 68
9.43 SENSORHUB4_REG (31h) 69
9.44 SENSORHUB5_REG (32h) 69
9.45 SENSORHUB6_REG (33h) 69
9.46 SENSORHUB7_REG (34h) 69
9.47 SENSORHUB8_REG(35h) 70
9.48 SENSORHUB9_REG (36h) 70
9.49 SENSORHUB10_REG (37h) 70
9.50 SENSORHUB11_REG (38h) 70
9.51 SENSORHUB12_REG(39h) 71
9.52 FIFO_STATUS1 (3Ah) 71
9.53 FIFO_STATUS2 (3Bh) 71
9.54 FIFO_STATUS3 (3Ch) 72
9.55 FIFO_STATUS4 (3Dh) 72
9.56 FIFO_DATA_OUT_L (3Eh) 72
9.57 FIFO_DATA_OUT_H (3Fh) 73
9.58 TIMESTAMPO_REG (40h) 73
9.59 TIMESTAMP1_REG (41h) 73
9.60 TIMESTAMP2_REG (42h) 73
9.61 STEP_TIMESTAMP_L (49h) 74
9.62 STEP_TIMESTAMP_H (4Ah) 74
9.63 STEP_COUNTER_L (4Bh) 74
9.64 STEP_COUNTER_H (4Ch) 74
9.65 SENSORHUB13_REG (4Dh) 75
9.66 SENSORHUB14_REG (4Eh) 75
9.67 SENSORHUB15_REG (4Fh) 75
9.68 SENSORHUB16_REG (50h) 75
9.69 SENSORHUB17_REG (51h) 76
9.70 SENSORHUB18_REG (52h) 76
9.71 FUNC_SRC (53h) 76
9.72 TAP_CFG (58h) 77
9.73 TAP_THS_6D (59h) 77
9.74 INT_DUR2 (5Ah) 78
9.75 WAKE_UP_THS (5Bh) 79
9.76 WAKE_UP_DUR (5Ch) 79
9.77 FREE_FALL (5Dh) 80
9.78 MD1_CFG (5Eh) 80
9.79 MD2_CFG (5Fh) 81
9.80 OUT_MAG_RAW_X_L (66h) 82
9.81 OUT_MAG_RAW_X_H (67h) 82
9.82 OUT_MAG_RAW_Y_L (68h) 82
9.83 OUT_MAG_RAW_Y_H (69h) 82
9.84 OUT_MAG_RAW_Z_L (6Ah) 83
9.85 OUT_MAG_RAW_Z_H (6Bh) 83
10 Embedded functions register mapping 84
11 Embedded functions registers description 86
11.1 SLVO_ADD (02h) 86
11.2 SLVO_SUBADD (03h) 86
11.3 SLAVEO_CONFIG (04h) 86
11.4 SLV1_ADD (05h) 87
11.5 SLV1_SUBADD (06h) 87
11.6 SLAVE1_CONFIG (07h) 88
11.7 SLV2_ADD (08h) 88
11.8 SLV2_SUBADD (09h) 88
11.9 SLAVE2_CONFIG (OAh) 89
11.10 SLV3_ADD (OBh) 89
11.11 SLV3_SUBADD (0Ch) 89
11.12 SLAVE3_CONFIG (ODh) 90
11.13 DATAWRITE_SRC_MODE_SUB_SLVO (0Eh) 90
11.14 PEDO_THS_REG (OFh) 91
11.15 SM_THS (13h) 91
11.16 PEDO_DEB_REG (14h) 91
11.17 STEP_COUNT_DELTA (15h) 92
11.18 MAG_SI_XX (24h) 92
11.19 MAG_SI_XY (25h) 92
11.20 MAG_SI_XZ (26h) 92
11.21 MAG_SI_YX (27h) 93
11.22 MAG_SI_YY (28h) 93
11.23 MAG_SI_YZ (29h) 93
11.24 MAG_SI_ZX (2Ah) 93
11.25 MAG_SI_ZY (2Bh) 94
11.26 MAG_SI_ZZ (2Ch) 94
11.27 MAG_OFFX_L (2Dh) 94
11.28 MAG_OFFX_H (2Eh) 94
11.29 MAG_OFFY_L (2Fh) 95
11.30 MAG_OFFY_H (30h) 95
11.31 MAG_OFFZ_L (31h) 95
11.32 MAG_OFFZ_H (32h) 95
12 Soldering information 96
13 Package information 97
13.1 LGA-14 package information 97
13.2 LGA-14 packing information 98
14 Revision history 100

List of tables

Table 1. Device summary 1
Table 2. Pin description 19
Table 3. Mechanical characteristics 20
Table 4. Electrical characteristics 23
Table 5. Temperature sensor characteristics 24
Table 6. SPI slave timing values (in mode 3) 25
Table 7. $\quad \mathrm{I}^{2} \mathrm{C}$ slave timing values 26
Table 8. Absolute maximum ratings 27
Table 9. Serial interface pin description 34
Table 10. $\mathrm{I}^{2} \mathrm{C}$ terminology 34
Table 11. SAD+Read/Write patterns 35
Table 12. Transfer when master is writing one byte to slave 35
Table 13. Transfer when master is writing multiple bytes to slave 35
Table 14. Transfer when master is receiving (reading) one byte of data from slave 36
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave 36
Table 16. Registers address map 43
Table 17. FUNC_CFG_ACCESS register. 47
Table 18. FUNC_CFG_ACCESS register description 47
Table 19. SENSOR_SYNC_TIME_FRAME register. 47
Table 20. SENSOR_SYNC_TIME_FRAME register description 47
Table 21. FIFO_CTRL1 register 47
Table 22. FIFO_CTRL1 register description 47
Table 23. FIFO_CTRL2 register 48
Table 24. FIFO_CTRL2 register description 48
Table 25. FIFO_CTRL3 register 48
Table 26. FIFO_CTRL3 register description 48
Table 27. Gyro FIFO decimation setting 49
Table 28. Accelerometer FIFO decimation setting 49
Table 29. FIFO_CTRL4 register 49
Table 30. FIFO_CTRL4 register description 49
Table 31. Fourth FIFO data set decimation setting 50
Table 32. Third FIFO data set decimation setting 50
Table 33. FIFO_CTRL5 register 50
Table 34. FIFO_CTRL5 register description 50
Table 35. FIFO ODR selection 51
Table 36. FIFO mode selection. 51
Table 37. ORIENT_CFG_G register 51
Table 38. ORIENT_CFG_G register description. 52
Table 39. Settings for orientation of axes 52
Table 40. INT1_CTRL register 52
Table 41. INT1_CTRL register description 52
Table 42. INT2_CTRL register 53
Table 43. INT2_CTRL register description 53
Table 44. WHO_AM_I register 53
Table 45. CTRL1_XL register. 53
Table 46. CTRL1_XL register description. 54
Table 47. Accelerometer ODR register setting 54
Table 48. BW and ODR (high-performance mode) 54
Table 49. CTRL2_G register 55
Table 50. CTRL2_G register description 55
Table 51. Gyroscope ODR configuration setting 55
Table 52. CTRL3_C register 56
Table 53. CTRL3_C register description 56
Table 54. CTRL4_C register 57
Table 55. CTRL4_C register description 57
Table 56. CTRL5_C register 57
Table 57. CTRL5_C register description 58
Table 58. Output registers rounding pattern 58
Table 59. Angular rate sensor self-test mode selection 58
Table 60. Linear acceleration sensor self-test mode selection 58
Table 61. CTRL6_C register 59
Table 62. CTRL6 ${ }^{-}$register description 59
Table 63. CTRL7_G register. 59
Table 64. CTRL7_G register description 59
Table 65. Gyroscope high-pass filter mode configuration 60
Table 66. CTRL8_XL register 60
Table 67. CTRL8_XL register description 60
Table 68. Accelerometer slope and high-pass filter selection and cutoff frequency 60
Table 69. Accelerometer LPF2 cutoff frequency 60
Table 70. CTRL9_XL register 61
Table 71. CTRL9_XL register description 61
Table 72. CTRL10_C register 61
Table 73. CTRL10_C register description 61
Table 74. MASTER_CONFIG register 62
Table 75. MASTER_CONFIG register description 62
Table 76. WAKE_UP_SRC register 62
Table 77. WAKE_UP_SRC register description 63
Table 78. TAP_SRC register 63
Table 79. TAP SRC register description 63
Table 80. D6D_SRC register 64
Table 81. D6D_SRC register description 64
Table 82. STATUS_REG register 64
Table 83. STATUS_REG register description. 64
Table 84. OUT_TEMP_L register 65
Table 85. OUT_TEMP_H register 65
Table 86. OUT_TEMP register description. 65
Table 87. OUTX_L_G register 65
Table 88. OUTX_L_G register description 65
Table 89. OUTX_H_G register 65
Table 90. OUTX_H_G register description 65
Table 91. OUTY_L_G register 65
Table 92. OUTY_L_G register description 65
Table 93. OUTY_H_G register 66
Table 94. OUTY_H_G register description 66
Table 95. OUTZ_L_G register 66
Table 96. OUTZ_L_G register description 66
Table 97. OUTZ_H_G register 66
Table 98. OUTZ_H_G register description 66
Table 99. OUTX_L_XL register 66
Table 100. OUTX_L_XL register description 66
Table 101. OUTX_H_XL register 67
Table 102. OUTX_H_XL register description 67
Table 103. OUTY_L_XL register. 67
Table 104. OUTY_L_XL register description 67
Table 105. OUTY_H_G register 67
Table 106. OUTY_H_G register description 67
Table 107. OUTZ_L_XL register. 67
Table 108. OUTZ_L_XL register description 67
Table 109. OUTZ_H_XL register 68
Table 110. OUTZ_H_XL register description 68
Table 111. SENSORHUB1_REG register 68
Table 112. SENSORHUB1_REG register description 68
Table 113. SENSORHUB2_REG register 68
Table 114. SENSORHUB2_REG register description 68
Table 115. SENSORHUB3_REG register 68
Table 116. SENSORHUB3_REG register description 68
Table 117. SENSORHUB4_REG register 69
Table 118. SENSORHUB4_REG register description 69
Table 119. SENSORHUB5_REG register 69
Table 120. SENSORHUB5_REG register description 69
Table 121. SENSORHUB6_REG register 69
Table 122. SENSORHUB6_REG register description 69
Table 123. SENSORHUB7_REG register 69
Table 124. SENSORHUB7_REG register description 69
Table 125. SENSORHUB8_REG register 70
Table 126. SENSORHUB8_REG register description 70
Table 127. SENSORHUB9_REG register 70
Table 128. SENSORHUB9_REG register description 70
Table 129. SENSORHUB10_REG register 70
Table 130. SENSORHUB10_REG register description 70
Table 131. SENSORHUB11_REG register 70
Table 132. SENSORHUB11_REG register description 70
Table 133. SENSORHUB12_REG register 71
Table 134. SENSORHUB12_REG register description 71
Table 135. FIFO_STATUS1 register 71
Table 136. FIFO_STATUS1 register description 71
Table 137. FIFO_STATUS2 register 71
Table 138. FIFO_STATUS2 register description 71
Table 139. FIFO_STATUS3 register 72
Table 140. FIFO_STATUS3 register description 72
Table 141. FIFO_STATUS4 register 72
Table 142. FIFO_STATUS4 register description 72
Table 143. FIFO_DATA_OUT_L register 72
Table 144. FIFO_DATA_OUT_L register description 72
Table 145. FIFO_DATA_OUT_H register 73
Table 146. FIFO_DATA_OUT_H register description. 73
Table 147. TIMESTAMP0_REG register 73
Table 148. TIMESTAMPO_REG register description 73
Table 149. TIMESTAMP1_REG register 73
Table 150. TIMESTAMP1_REG register description 73
Table 151. TIMESTAMP2_REG register 73
Table 152. TIMESTAMP2_REG register description 73
Table 153. STEP_TIMESTAMP_L register 74
Table 154. STEP_TIMESTAMP_L register description 74
Table 155. STEP_TIMESTAMP_H register 74
Table 156. STEP_TIMESTAMP_H register description 74
Table 157. STEP_COUNTER_L register 74
Table 158. STEP_COUNTER_L register description 74
Table 159. STEP_COUNTER_H register 74
Table 160. STEP_COUNTER_H register description 74
Table 161. SENSORHUB13_REG register 75
Table 162. SENSORHUB13_REG register description 75
Table 163. SENSORHUB14_REG register 75
Table 164. SENSORHUB14_REG register description 75
Table 165. SENSORHUB15_REG register 75
Table 166. SENSORHUB15_REG register description 75
Table 167. SENSORHUB16_REG register 75
Table 168. SENSORHUB16_REG register description 75
Table 169. SENSORHUB17_REG register 76
Table 170. SENSORHUB17_REG register description 76
Table 171. SENSORHUB18_REG register 76
Table 172. SENSORHUB18_REG register description 76
Table 173. FUNC_SRC register 76
Table 174. FUNC_SRC register description. 76
Table 175. TAP_CFG register 77
Table 176. TAP_CFG register description 77
Table 177. TAP_THS_6D register 77
Table 179. Threshold for D4D/D6D function. 78
Table 178. TAP_THS_6D register description 78
Table 180. INT_DUR2 register 78
Table 181. INT_DUR2 register description 78
Table 182. WAKE_UP_THS register 79
Table 183. WAKE_UP_THS register description 79
Table 184. WAKE_UP_DUR register 79
Table 185. WAKE_UP_DUR register description 79
Table 186. FREE_FALL register 80
Table 187. FREE_FALL register description 80
Table 188. Threshold for free-fall function 80
Table 189. MD1_CFG register 80
Table 190. MD1_CFG register description 80
Table 191. MD2_CFG register 81
Table 192. MD2_CFG register description 81
Table 193. OUT_MAG_RAW_X_L register 82
Table 194. OUT_MAG_RAW_X_L register description 82
Table 195. OUT_MAG_RAW_X_H register 82
Table 196. OUT_MAG_RAW_X_H register description 82
Table 197. OUT_MAG_RAW_Y_L register 82
Table 198. OUT_MAG_RAW_Y_L register description 82
Table 199. OUT_MAG_RAW_Y_H register 82
Table 200. OUT_MAG_RAW_Y_H register description 82
Table 201. OUT_MAG_RAW_Z_L register 83
Table 202. OUT_MAG_RAW_Z_L register description 83
Table 203. OUT_MAG_RAW_Z_H register 83
Table 204. OUT_MAG_RAW_Z_H register description 83
Table 205. Registers address map - embedded functions 84
Table 206. SLV0_ADD register. 86
Table 207. SLVO_ADD register description 86
Table 208. SLVO_SUBADD register 86
Table 209. SLVO_SUBADD register description. 86
Table 210. SLAVE0_CONFIG register 86
Table 211. SLAVEO_CONFIG register description 87
Table 212. SLV1_ADD register. 87
Table 213. SLV1_ADD register description 87
Table 214. SLV1_SUBADD register 87
Table 215. SLV1_SUBADD register description. 87
Table 216. SLAVE1_CONFIG register 88
Table 217. SLAVE1_CONFIG register description 88
Table 218. SLV2_ADD register. 88
Table 219. SLV2_ADD register description 88
Table 220. SLV2_SUBADD register 88
Table 221. SLV2_SUBADD register description 88
Table 222. SLAVE2_CONFIG register 89
Table 223. SLAVE2_CONFIG register description 89
Table 224. SLV3_ADD register. 89
Table 225. SLV3_ADD register description 89
Table 226. SLV3_SUBADD register 89
Table 227. SLV3_SUBADD register description. 89
Table 228. SLAVE3_CONFIG register 90
Table 229. SLAVE3_CONFIG register description 90
Table 230. DATAWRITE_SRC_MODE_SUB_SLV0 register 90
Table 231. DATAWRITE_SRC_MODE_SUB_SLV0 register description. 90
Table 232. PEDO_THS_REG register default values. 91
Table 233. PEDO_THS_REG register description 91
Table 234. SM_THS register 91
Table 235. SM_THS register description 91
Table 236. PEDO_DEB_REG register default values 91
Table 237. PEDO_DEB_REG register description 91
Table 238. STEP_COUNT_DELTA register 92
Table 239. STEP_COUNT_DELTA register description 92
Table 240. MAG_SI_XX register. 92
Table 241. MAG_SI_XX register description 92
Table 242. MAG_SI_XY register. 92
Table 243. MAG_SI_XY register description 92
Table 244. MAG_SI_XZ register. 92
Table 245. MAG_SI_XZ register description 92
Table 246. MAG_SI_YX register. 93
Table 247. MAG_SI_YX register description 93
Table 248. MAG_SI_YY register. 93
Table 249. MAG_SI_YY register description 93
Table 250. MAG_SI_YZ register. 93
Table 251. MAG_SI_YZ register description 93
Table 252. MAG_SI_ZX register 93
Table 253. MAG_SI_ZX register description 93
Table 254. MAG_SI_ZY register. 94
Table 255. MAG_SI_ZY register description 94
Table 256. MAG_SI_ZZ register 94
Table 257. MAG_SI_ZZ register description. 94
Table 258. MAG_OFFX_L register 94
Table 259. MAG_OFFX_L register description. 94
Table 260. MAG_OFFX_H register 94
Table 261. MAG_OFFX_L register description. 94
Table 262. MAG_OFFY_L register 95
Table 263. MAG_OFFY_L register description. 95
Table 264. MAG_OFFY_H register 95
Table 265. MAG_OFFY_L register description. 95
Table 266. MAG_OFFZ_L register 95
Table 267. MAG_OFFZ_L register description 95
Table 268. MAG_OFFZ_H register. 95
Table 269. MAG_OFFX_L register description. 95
Table 270. Reel dimensions for carrier tape of LGA-14 package 99
Table 271. Document revision history. 100

List of figures

Figure 1. Pin connections 17
Figure 2. LSM6DS3 connection modes 18
Figure 3. SPI slave timing diagram (in mode 3). 25
Figure 4. $\mathrm{I}^{2} \mathrm{C}$ slave timing diagram 26
Figure 5. Accelerometer chain 32
Figure 6. Accelerometer composite filter 33
Figure 7. Gyroscope chain 33
Figure 8. Read and write protocol (in mode 3) 37
Figure 9. SPI read protocol (in mode 3). 38
Figure 10. Multiple byte SPI read protocol (2-byte example) (in mode 3) 38
Figure 11. SPI write protocol (in mode 3) 39
Figure 12. Multiple byte SPI write protocol (2-byte example) (in mode 3) 39
Figure 13. SPI read protocol in 3 -wire mode (in mode 3) 40
Figure 14. LSM6DS3 electrical connections in Mode 1 41
Figure 15. LSM6DS3 electrical connections in Mode 2 42
Figure 16. LGA-14 $2.5 \times 3 \times 0.86 \mathrm{~mm} 14 \mathrm{~L}$ package outline and mechanical data. 97
Figure 17. Carrier tape information for LGA-14 package 98
Figure 18. LGA-14 package orientation in carrier tape 98
Figure 19. Reel information for carrier tape of LGA-14 package 99

1 Overview

The LSM6DS3 is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.
The integrated power-efficient modes are able to reduce the power consumption down to 1.25 mA in high-performance mode, combining always-on low-power features with superior sensing precision for an optimal motion experience for the consumer thanks to ultra-low noise performance for both the gyroscope and accelerometer.

The LSM6DS3 delivers best-in-class motion sensing that can detect orientation and gestures in order to empower application developers and consumers with features and capabilities that are more sophisticated than simply orienting their devices to portrait and landscape mode.

The event-detection interrupts enable efficient and reliable motion tracking and contextual awareness, implementing hardware recognition of free-fall events, 6D orientation, tap and double-tap sensing, activity or inactivity, and wakeup events.

The LSM6DS3 supports main OS requirements, offering real, virtual and batch mode sensors. In addition, the LSM6DS3 can efficiently run the sensor-related features specified in Android, saving power and enabling faster reaction time. In particular, the LSM6DS3 has been designed to implement hardware features such as significant motion, tilt, pedometer functions, timestamping and to support the data acquisition of an external magnetometer with ironing correction (hard, soft).

The LSM6DS3 offers hardware flexibility to connect the pins with different mode connections to external sensors to expand functionalities such as adding a sensor hub, etc.
Up to 8 kbyte of FIFO with dynamic allocation of significant data (i.e. external sensors, timestamp, etc.) allows overall power saving of the system.

Like the entire portfolio of MEMS sensor modules, the LSM6DS3 leverages on the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DS3 is available in a small plastic land grid array (LGA) package of $2.5 \times 3.0 \times 0.83 \mathrm{~mm}$ to address ultra-compact solutions.

2 Embedded low-power features

The LSM6DS3 has been designed to be fully compliant with Android, featuring the following on-chip functions:

- 8 kbyte data buffering
- 100\% efficiency with flexible configurations and partitioning
- possibility to store timestamp
- Event-detection interrupts (fully configurable):
- free-fall
- wakeup
- 6D orientation
- tap and double-tap sensing
- activity / inactivity recognition
- Specific IP blocks with negligible power consumption and high-performance:
- pedometer functions: step detector and step counters
- tilt (Android compliant, refer to Section 2.1: Tilt detection for additional info
- significant motion (Android compliant)
- Sensor hub
- up to 6 total sensors: 2 internal (accelerometer and gyroscope) and 4 external sensors
- Data rate synchronization with external trigger for reduced sensor access and enhanced fusion

2.1 Tilt detection

The tilt function helps to detect activity change and has been implemented in hardware using only the accelerometer to achieve both the targets of ultra-low power consumption and robustness during the short duration of dynamic accelerations.

It is based on a trigger of an event each time the device's tilt changes by an angle greater than 35 degrees from the start position.

The tilt function can be used with different scenarios, for example:
a) Trigger when phone is in a front pants pocket and the user goes from sitting to standing or standing to sitting;
b) Doesn't trigger when phone is in a front pants pocket and the user is walking, running or going upstairs.

3 Pin description

Figure 1. Pin connections

1. Leave pin electrically unconnected and soldered to PCB.

3.1 Pin connections

The LSM6DS3 ${ }^{(a)}$ offers the flexibility to connect the pins in order to have two different mode connections and functionalities. In detail:

- Mode 1: $I^{2} \mathrm{C}$ slave interface or SPI (3- and 4-wire) serial interface is available;
- Mode 2: $I^{2} \mathrm{C}$ slave interface or SPI (3- and 4-wire) serial interface and $I^{2} \mathrm{C}$ interface master for external sensor connections are available;

In the following table each mode is described for the pin connection and function.
Figure 2. LSM6DS3 connection modes

[^0]Table 2. Pin description

Pin\#	Name	Mode 1 function	Mode 2 function
1	SDO/SA0	SPI 4-wire interface serial data output (SDO) $I^{2} \mathrm{C}$ least significant bit of the device address (SAO)	SPI 4-wire interface serial data output (SDO) $1^{2} \mathrm{C}$ least significant bit of the device address (SA0)
2	SDx	Connect to VDDIO or GND	$1^{2} \mathrm{C}$ serial data master (MSDA)
3	SCx	Connect to VDDIO or GND	$\mathrm{I}^{2} \mathrm{C}$ serial clock master (MSCL)
4	INT1	Programmable interrupt 1	
5	VDDIO ${ }^{(1)}$	Power supply for I/O pins	
6	GND	0 V supply	
7	GND	0 V supply	
8	VDD ${ }^{(2)}$	Power supply	
9	INT2	Programmable interrupt 2 (INT2)/ Data enable (DEN)	Programmable interrupt 2 (INT2)/ Data enable (DEN)/ $I^{2} \mathrm{C}$ master external synchronization signal (MDRDY)
10	$N C^{(3)}$	Leave unconnected	
11	$N C^{(3)}$	Leave unconnected	
12	CS	$\mathrm{I}^{2} \mathrm{C} /$ SPI mode selection (1: SPI idle mode $/ I^{2} \mathrm{C}$ communication enabled; 0: SPI communication mode $/ I^{2} \mathrm{C}$ disabled)	$1^{2} \mathrm{C} /$ SPI mode selection (1: SPI idle mode / $I^{2} \mathrm{C}$ communication enabled; 0: SPI communication mode $/ I^{2} \mathrm{C}$ disabled)
13	SCL	$1^{2} \mathrm{C}$ serial clock (SCL) SPI serial port clock (SPC)	$\begin{aligned} & \mathrm{I}^{2} \mathrm{C} \text { serial clock (SCL) } \\ & \text { SPI serial port clock (SPC) } \end{aligned}$
14	SDA	$1^{2} \mathrm{C}$ serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	$\mathrm{I}^{2} \mathrm{C}$ serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)

1. Recommended 100 nF filter capacitor.
2. Recommended 100 nF capacitor.
3. Leave pin electrically unconnected and soldered to PCB.

4 Module specifications

4.1 Mechanical characteristics

$@ \mathrm{Vdd}=1.8 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Table 3. Mechanical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
LA_FS	Linear acceleration measurement range			± 2		g
				± 4		
				± 8		
				± 16		
G_FS	Angular rate measurement range			± 125		dps
				± 250		
				± 500		
				± 1000		
				± 2000		
LA_So	Linear acceleration sensitivity	FS $= \pm 2$		0.061		mg/LSB
		FS $= \pm 4$		0.122		
		FS $= \pm 8$		0.244		
		FS $= \pm 16$		0.488		
G_So	Angular rate sensitivity	FS $= \pm 125$		4.375		mdps/LSB
		FS $= \pm 250$		8.75		
		FS $= \pm 500$		17.50		
		FS $= \pm 1000$		35		
		FS $= \pm 2000$		70		
LA_SoDr	Linear acceleration sensitivity change vs. temperature ${ }^{(2)}$	from -40° to $+85^{\circ}$ delta from $\mathrm{T}=25^{\circ}$		± 1		\%
G_SoDr	Angular rate sensitivity change vs. temperature ${ }^{(2)}$	from -40° to $+85^{\circ}$ delta from $\mathrm{T}=25^{\circ}$		± 1.5		\%
LA_TyOff	Linear acceleration typical zero- g level offset accuracy ${ }^{(3)}$			± 40		mg
G_TyOff	Angular rate typical zero-rate level ${ }^{(3)}$			± 10		dps
LA_OffDr	Linear acceleration zero- g level change vs. temperature ${ }^{(2)}$			± 0.5		$\mathrm{mg} /{ }^{\circ} \mathrm{C}$
G_OffDr	Angular rate typical zero-rate level change vs. temperature ${ }^{(2)}$			± 0.05		dps/ $/{ }^{\circ} \mathrm{C}$

Table 3. Mechanical characteristics (continued)

Symbol	Parameter	Test conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
Rn	Rate noise density in high-performance mode ${ }^{(4)}$			7		mdps/ $\sqrt{ } \mathrm{Hz}$
RnRMS	Gyroscope RMS noise in low-power mode ${ }^{(5)}$			140		mdps
An	Acceleration noise density in high-performance mode ${ }^{(6)}$	FS $= \pm 2 \mathrm{~g}$		90		$\mu \mathrm{g} / \sqrt{ } \mathrm{Hz}$
		FS $= \pm 4 \mathrm{~g}$		90		$\mu \mathrm{g} / \sqrt{ } \mathrm{Hz}$
		FS $= \pm 8 \mathrm{~g}$		110		$\mu \mathrm{g} / \sqrt{ } \mathrm{Hz}$
		$F S= \pm 16 \mathrm{~g}$		180		$\mu \mathrm{g} / \sqrt{ } \mathrm{Hz}$
RMS	Acceleration RMS noise in normal/low-power mode ${ }^{(7)}$	FS $= \pm 2 \mathrm{~g}$		1.7		mg(RMS)
		FS $= \pm 4 \mathrm{~g}$		2.0		mg(RMS)
		FS $= \pm 8 \mathrm{~g}$		2.7		mg(RMS)
		$F S= \pm 16 \mathrm{~g}$		4.4		mg(RMS)
LA_ODR	Linear acceleration output data rate			$\begin{gathered} \hline 12.5 \\ 26 \\ 52 \\ 104 \\ 208 \\ 416 \\ 833 \\ 1666 \\ 3332 \\ 6664 \end{gathered}$		Hz
G_ODR	Angular rate output data rate			$\begin{gathered} \hline 12.5 \\ 26 \\ 52 \\ 104 \\ 208 \\ 416 \\ 833 \\ 1666 \end{gathered}$		
Vst	Linear acceleration self-test output change ${ }^{(8)(9)}$	$F S=2 g$	90		1700	mg
	Angular rate self-test output change ${ }^{(10)(11)}$	$\mathrm{FS}=2000 \mathrm{dps}$	150		700	dps
Top	Operating temperature range		-40		+85	${ }^{\circ} \mathrm{C}$

1. Typical specifications are not guaranteed.
2. Measurements are performed in a uniform temperature setup.
3. Values after soldering.
4. RND (rate noise density) mode is independent of the ODR and FS setting.
5. Gyro noise RMS is independent of the ODR and FS setting.
6. Noise density in HP mode is the same for all ODRs.
7. Noise RMS in Normal/LP mode is the same for all the ODR RMS related to BW $=$ ODR $/ 2$ (for ODR $/ 9$, typ value can be calculated by Typ *0.6)
8. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in CTRL5_C (14h), Table 60 for all axes.
9. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) - OUTPUT[LSb] (self-test disabled). $1 \mathrm{LSb}=0.061 \mathrm{mg}$ at $\pm 2 \mathrm{~g}$ full scale.
10. The sign of the angular rate self-test output change is defined by the STx_G bits in CTRL5_C (14h), Table 59 for all axes.
11. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) - OUTPUT[LSb] (self-test disabled). $1 \mathrm{LSb}=70 \mathrm{mdps}$ at $\pm 2000 \mathrm{dps}$ full scale.

4.2 Electrical characteristics

$@ \mathrm{Vdd}=1.8 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
Vdd	Supply voltage		1.71	1.8	3.6	V
Vdd_IO	Power supply for I/O		1.62		$\begin{gathered} \hline \text { Vdd + } \\ 0.1 \end{gathered}$	V
IddHP	Gyroscope and accelerometer in high-performance mode	up to $\mathrm{ODR}=1.6 \mathrm{kHz}$		1.25		mA
IddNM	Gyroscope and accelerometer in normal mode	ODR $=208 \mathrm{~Hz}$		0.9		mA
IddLP	Gyroscope and accelerometer in low-power mode	$\mathrm{ODR}=12.5 \mathrm{~Hz}$		0.42		mA
LA_IddHP	Accelerometer current consumption in highperformance mode	up to $\mathrm{ODR}=1.6 \mathrm{kHz}$		240		$\mu \mathrm{A}$
LA_IddNM	Accelerometer current consumption in normal mode	ODR $=104 \mathrm{~Hz}$		70		$\mu \mathrm{A}$
LA_IddLM	Accelerometer current consumption in low-power mode	ODR $=12.5 \mathrm{~Hz}$		24		$\mu \mathrm{A}$
IddPD	Gyroscope and accelerometer in power down			6		$\mu \mathrm{A}$
V_{IH}	Digital high-level input voltage		$\begin{gathered} 0.8 * \\ \text { VDD_IO } \end{gathered}$			V
$\mathrm{V}_{\text {IL }}$	Digital low-level input voltage				$\begin{gathered} 0.2 * \\ \text { VDD_IO } \end{gathered}$	V
V_{OH}	High-level output voltage	$\mathrm{IOH}=4 \mathrm{~mA}{ }^{(2)}$	$\begin{array}{\|c} \hline \text { VDD_IO- } \\ 0.2 \end{array}$			V
V_{OL}	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}{ }^{(2)}$			0.2	V
Top	Operating temperature range		-40		+85	${ }^{\circ} \mathrm{C}$

1. Typical specifications are not guaranteed.
2. 4 mA is the maximum driving capability, i.e. the maximum DC current that can be sourced/sunk by the digital pad in order to guarantee the correct digital output voltage levels V_{OH} and V_{OL}.

For details related to the LSM6DS3 operating modes, refer to 5.2: Gyroscope power modes and 5.3: Accelerometer power modes.

4.3 Temperature sensor characteristics

$@ \mathrm{Vdd}=1.8 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Table 5. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min.	Typ. ${ }^{(1)}$	Max.	Unit
TODR	Temperature refresh rate			52		Hz
Toff	Temperature offset ${ }^{(2)}$		-15		+15	${ }^{\circ} \mathrm{C}$
TSen	Temperature sensitivity			16		$\mathrm{LSB} /{ }^{\circ} \mathrm{C}$
TST	Temperature stabilization time					
T_ADC_res	Temperature ADC resolution				500	$\mu \mathrm{~s}$
Top	Operating temperature range			12		bit

1. Typical specifications are not guaranteed.
2. The output of the temperature sensor is 0 LSB (typ.) at $25^{\circ} \mathrm{C}$.
3. Time from power ON bit to valid data based on characterization data.

4.4 Communication interface characteristics

4.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table 6. SPI slave timing values (in mode 3)

Symbol	Parameter	Value ${ }^{(1)}$		Unit
		Min	Max	
$\mathrm{t}_{\mathrm{c}(\mathrm{SPC})}$	SPI clock cycle	100		ns
$\mathrm{f}_{\mathrm{c}(\mathrm{SPC})}$	SPI clock frequency		10	MHz
$\mathrm{t}_{\text {su(CS }}$	CS setup time	5		ns
$\mathrm{t}_{\mathrm{h} \text { (CS) }}$	CS hold time	20		
$\mathrm{t}_{\text {su(SI) }}$	SDI input setup time	5		
$\mathrm{t}_{\mathrm{h}(\mathrm{SI})}$	SDI input hold time	15		
$\mathrm{t}_{\mathrm{v} \text { (SO) }}$	SDO valid output time		50	
$\mathrm{t}_{\mathrm{h} \text { (SO) }}$	SDO output hold time	5		
$\mathrm{t}_{\text {dis(SO) }}$	SDO output disable time		50	

1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

Figure 3. SPI slave timing diagram (in mode 3)

Note: \quad Measurement points are done at $0.2 \cdot \mathrm{Vdd}$ _IO and $0.8 \cdot \mathrm{Vdd}$ _IO, for both input and output ports.

4.4.2 $\quad I^{2} C$ - inter-IC control interface

Subject to general operating conditions for Vdd and Top.
Table 7. $I^{2} \mathrm{C}$ slave timing values

Symbol	Parameter	$I^{2} \mathrm{C}$ Standard mode ${ }^{(1)}$		$\mathrm{I}^{2} \mathrm{C}$ Fast mode ${ }^{(1)}$		Unit
		Min	Max	Min	Max	
$\mathrm{f}_{(S C L}$)	SCL clock frequency	0	100	0	400	kHz
$\mathrm{t}_{\mathrm{w} \text { (SCLL) }}$	SCL clock low time	4.7		1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{w} \text { (SCLH) }}$	SCL clock high time	4.0		0.6		
$\mathrm{t}_{\text {su(}}$ (SDA)	SDA setup time	250		100		ns
$t_{\text {h(SDA }}$	SDA data hold time	0	3.45	0	0.9	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{h}}(\mathrm{ST}$)	START condition hold time	4		0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {su(SR) }}$	Repeated START condition setup time	4.7		0.6		
$\mathrm{t}_{\text {su(SP) }}$	STOP condition setup time	4		0.6		
$\mathrm{t}_{\mathrm{w}(\mathrm{SP}: \mathrm{SR})}$	Bus free time between STOP and START condition	4.7		1.3		

1. Data based on standard $\mathrm{I}^{2} \mathrm{C}$ protocol requirement, not tested in production.

Figure 4. $I^{2} \mathrm{C}$ slave timing diagram

Note: \quad Measurement points are done at $0.2 \cdot \mathrm{Vdd}$ _IO and $0.8 \cdot \mathrm{Vdd}$ _IO, for both ports.

4.5 Absolute maximum ratings

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
$\mathrm{~T}_{\text {STG }}$	Storage temperature range	-40 to +125	${ }^{\circ} \mathrm{C}$
Sg	Acceleration g for 0.2 ms	10,000	9
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SAO)	-0.3 to Vdd_IO +0.3	V

Note: \quad Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, $\pm 1 \mathrm{~g}$ acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2 , leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors.

An angular rate gyroscope is device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time.

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X -axis and Y -axis, whereas the Z -axis will measure 1 g . Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero- g offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero- g level change vs. temperature" in Table 3. The zero- g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time.

5 Functionality

5.1 Operating modes

The LSM6DS3 has three operating modes available:

- only accelerometer active and gyroscope in power-down
- only gyroscope active and accelerometer in power-down
- both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo mode the ODRs are totally independent.

5.2 Gyroscope power modes

In the LSM6DS3, the gyroscope can be configured in four different operating modes: powerdown, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to ' 0 ', high-performance mode is valid for all ODRs (from 12.5 Hz up to 1.6 kHz).

To enable the low-power and normal mode, the G_HM_MODE bit has to be set to ' 1 '. Lowpower mode is available for lower $\operatorname{ODR}(12.5,26,52 \mathrm{~Hz})$ while normal mode is available for ODRs equal to 104 and 208 Hz .

5.3 Accelerometer power modes

In the LSM6DS3, the accelerometer can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in CTRL6_C (15h). If XL_HM_MODE is set to ' 0 ', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to '1'. Lowpower mode is available for lower ODRs $(12.5,26,52 \mathrm{~Hz})$ while normal mode is available for ODRs equal to 104 and 208 Hz .

5.4 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO.

LSM6DS3 embeds 8 kbytes data FIFO to store the following data:

- gyroscope
- accelerometer
- external sensors
- step counter and timestamp
- temperature

Writing data in the FIFO can be configured to be triggered by the:

- accelerometer/gyroscope data-ready signal; in which case the ODR must be lower than or equal to both the accelerometer and gyroscope ODRs;
- sensor hub data-ready signal;
- step detection signal.

In addition, each data can be stored at a decimated data rate compared to FIFO ODR and it is configurable by the user, setting the registers FIFO_CTRL3 (08h) and FIFO_CTRL4 (09h). The available decimation factors are $2,3,4,8,16,32$.

Programmable FIFO threshold can be set in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h) using the FTH [11:0] bits.

To monitor the FIFO status, dedicated registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh), FIFO_STATUS3 (3Ch), FIFO_STATUS4 (3Dh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO threshold status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pads of these status events, the configuration can be set in INT1_CTRL (ODh) and INT2_CTRL (0Eh).
FIFO buffer can be configured according to five different modes:

- Bypass mode
- FIFO mode
- Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode

Each mode is selected by the FIFO_MODE_[2:0] in FIFO_CTRL5 (OAh) register. To guarantee the correct acquisition of data during the switching into and out of FIFO mode, the first sample acquired must be discarded.

5.4.1 Bypass mode

In Bypass mode (FIFO_CTRL5 (OAh) (FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty.

Bypass mode is also used to reset the FIFO when in FIFO mode.

5.4.2 FIFO mode

In FIFO mode (FIFO_CTRL5 (OAh) (FIFO_MODE_[2:0] = 001) data from the output channels are stored $\overline{\text { in }}$ the FIFO until it is full.

To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL5 (OAh) (FIFO_MODE_[2:0]) to '000' After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0]) to '001'.

FIFO buffer memorizes up to 4096 samples of 16 bits each but the depth of the FIFO can be resized by setting the FTH [11:0] bits in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h). If the STOP_ON_FTH bit in CTRL4_C (13h) is set to '1', FIFO depth is limited up to FTH [11:0] bits in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h).

5.4.3 Continuous mode

Continuous mode (FIFO_CTRL5 (OAh) (FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

A FIFO threshold flag FIFO_STATUS2 (3Bh)(FTH) is asserted when the number of unread samples in FIFO is greater than or equal to FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)(FTH [11:0]).

It is possible to route FIFO_STATUS2 (3Bh) (FTH) to the INT1 pin by writing in register INT1_CTRL (ODh) (INT1_FTH) = '1' or to the INT2 pin by writing in register INT2_CTRL (OEh) (INT2_FTH) = ' 1 '.
A full-flag interrupt can be enabled, INT1_CTRL (ODh) (INT_FULL_FLAG) = '1', in order to indicate FIFO saturation and eventually read its content all at once.

If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the OVER_RUN flag in FIFO_STATUS2 (3Bh) is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh)
(DIFF_FIFO[11:0]).

5.4.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode (FIFO_CTRL5 (OAh) (FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt registers FUNC_SRC (53h), TAP_SRC (1Ch), WAKE_UP_SRC (1Bh) and D6D_SRC (1Dh).

When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.
When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.

5.4.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers in one of the following interrupt registers FUNC_SRC (53h), TAP_SRC (1Ch), WAKE_UP_SRC (1Bh) and D6D_SRC (1Dh) are equal to '1', otherwise FIFO content is reset (Bypass mode).

5.4.6 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers (FIFO_DATA_OUT_L (3Eh) and FIFO_DATA_OUT_H (3Fh)) and each FIFO sample is composed of 16 bits.

All FIFO status registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh), FIFO_STATUS3 (3Ch), FIFO_STATUS4 (3Dh)) can be read at the start of a reading operation, minimizing the intervention of the application processor.

Saving data in the FIFO buffer is organized in four FIFO data sets consisting of 6 bytes each:

The $1^{\text {st }}$ FIFO data set is reserved for gyroscope data;
The $2^{\text {nd }}$ FIFO data set is reserved for accelerometer data;
The $3^{\text {rd }}$ FIFO data set is reserved for the external sensor data stored in the registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h);
The $4^{\text {th }}$ FIFO data set can be alternately associated to the external sensor data stored in the registers from SENSORHUB7_REG (34h) to SENSORHUB12_REG(39h), to the step counter and timestamp info, or to the temperature sensor data.

5.4.7 Filter block diagrams

Figure 5. Accelerometer chain

Figure 6. Accelerometer composite filter

Figure 7. Gyroscope chain

6 Digital interfaces

The registers embedded inside the LSM6DS3 may be accessed through both the $\mathrm{I}^{2} \mathrm{C}$ and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The device is compatible with SPI modes 0 and 3 .
The serial interfaces are mapped onto the same pins. To select/exploit the $\mathrm{I}^{2} \mathrm{C}$ interface, the CS line must be tied high (i.e connected to Vdd_IO).

Table 9. Serial interface pin description

Pin name	Pin description
CS	SPI enable $I^{2} \mathrm{C} /$ SPI mode selection (1: SPI idle mode $/ I^{2} \mathrm{C}$ communication enabled; $0:$ SPI communication mode $/ I^{2} \mathrm{C}$ disabled)
SCL/SPC	$I^{2} \mathrm{C}$ Serial Clock (SCL) SPI Serial Port Clock (SPC)
SDA/SDI/SDO	$I^{2} \mathrm{C}$ Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO)
SDO/SAO	SPI Serial Data Output (SDO) $I^{2} \mathrm{C}$ less significant bit of the device address

6.1 $\quad I^{2} C$ serial interface

The LSM6DS3 $I^{2} \mathrm{C}$ is a bus slave. The $\mathrm{I}^{2} \mathrm{C}$ is employed to write the data to the registers, whose content can also be read back.
The relevant $I^{2} C$ terminology is provided in the table below.
Table 10. $\mathrm{I}^{2} \mathrm{C}$ terminology

Term	Description
Transmitter	The device which sends data to the bus
Receiver	The device which receives data from the bus
Master	The device which initiates a transfer, generates clock signals and terminates a transfer
Slave	The device addressed by the master

There are two signals associated with the $\mathrm{I}^{2} \mathrm{C}$ bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.
The $I^{2} \mathrm{C}$ interface is implemeted with fast mode $(400 \mathrm{kHz}) \mathrm{I}^{2} \mathrm{C}$ standards as well as with the standard mode.
In order to disable the $\mathrm{I}^{2} \mathrm{C}$ block, (I2C_disable) $=1$ must be written in CTRL4_C (13h).

6.1.1 $\quad I^{2} C$ operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the LSM6DS3 is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is ' 1 ' (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is ' 0 ' (address 1101010b). This solution permits to connect and address two different inertial modules to the same $\mathrm{I}^{2} \mathrm{C}$ bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The $I^{2} \mathrm{C}$ embedded inside the LSM6DS3 behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the CTRL3_C (12h) (IF_INC).

The slave address is completed with a Read/Write bit. If the bit is ' 1 ' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ' 0 ' (Write) the master will transmit to the slave with direction unchanged. Table 11 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Table 11. SAD+Read/Write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 12. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 13. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 14. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DAT A		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can't receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.

6.2 SPI bus interface

The LSM6DS3 SPI is a bus slave. The SPI allows writing and reading the registers of the device.

The serial interface communicates to the application using 4 wires: CS, SPC, SDI and SDO.
Figure 8. Read and write protocol (in mode 3)

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are, respectively, the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS.
bit 0 : RW bit. When 0 , the data $\mathrm{DI}(7: 0)$ is written into the device. When 1 , the data $\mathrm{DO}(7: 0)$ from the device is read. In latter case, the chip will drive SDO at the start of bit 8.
bit 1-7: address $\operatorname{AD}(6: 0)$. This is the address field of the indexed register.
bit 8-15: data $\mathrm{DI}(7: 0)$ (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data $\mathrm{DO}(7: 0)$ (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is ' 0 ', the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is ' 1 ', the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.

6.2.1 SPI read

Figure 9. SPI read protocol (in mode 3)

The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.
bit 0 : READ bit. The value is 1 .
bit 1-7: address $\operatorname{AD}(6: 0)$. This is the address field of the indexed register.
bit 8-15: data $\mathrm{DO}(7: 0)$ (read mode). This is the data that will be read from the device (MSb first).
bit 16-...: data $\mathrm{DO}(\ldots-8)$. Further data in multiple byte reads.
Figure 10. Multiple byte SPI read protocol (2-byte example) (in mode 3)

6.2.2 SPI write

Figure 11. SPI write protocol (in mode 3)

The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.
bit 0 : WRITE bit. The value is 0 .
bit 1 -7: address $A D(6: 0)$. This is the address field of the indexed register.
bit 8-15: data $\mathrm{DI}(7: 0)$ (write mode). This is the data that is written inside the device (MSb first).
bit 16-... : data $\mathrm{DI}(\ldots-8)$. Further data in multiple byte writes.
Figure 12. Multiple byte SPI write protocol (2-byte example) (in mode 3)
SDI

6.2.3 SPI read in 3-wire mode

A 3-wire mode is entered by setting the CTRL3_C (12h) (SIM) bit equal to ' 1 ' (SPI serial interface mode selection).

Figure 13. SPI read protocol in 3-wire mode (in mode 3)

The SPI read command is performed with 16 clock pulses:
bit 0 : READ bit. The value is 1 .
bit 1-7: address $\operatorname{AD}(6: 0)$. This is the address field of the indexed register.
bit 8-15: data $D O(7: 0)$ (read mode). This is the data that is read from the device (MSb first). A multiple read command is also available in 3-wire mode.

7 Application hints

7.1 LSM6DS3 electrical connections in Mode 1

Figure 14. LSM6DS3 electrical connections in Mode 1

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, $\mathrm{C} 2=100 \mathrm{nF}$ ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the $\mathrm{SPI} / \mathrm{I}^{2} \mathrm{C}$ interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the $\mathrm{SPI} / \mathrm{I}^{2} \mathrm{C}$ interface.

7.2 LSM6DS3 electrical connections in Mode 2

Figure 15. LSM6DS3 electrical connections in Mode 2

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, $\mathrm{C} 2=100 \mathrm{nF}$ ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the $\mathrm{SPI} / \mathrm{I}^{2} \mathrm{C}$ interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I ${ }^{2} \mathrm{C}$ interface.

8 Register mapping

The table given below provides a list of the 8/16 bit registers embedded in the device and the corresponding addresses.

Table 16. Registers address map

Name	Type	Register address		Default	Comment
		Hex	Binary		
RESERVED	-	00	00000000	-	Reserved
FUNC_CFG_ACCESS	r/w	01	00000001	00000000	Embedded functions configuration register
RESERVED	-	02	00000010	-	Reserved
RESERVED	-	03	00000011	-	Reserved
SENSOR_SYNC_TIME_ FRAME	r/w	04	00000100	00000000	Sensor sync configuration register
RESERVED	-	05	00000101	-	Reserved
FIFO_CTRL1	r/w	06	00000110	00000000	FIFO configuration registers
FIFO_CTRL2	r/w	07	00000111	00000000	
FIFO_CTRL3	r/w	08	00001000	00000000	
FIFO_CTRL4	r/w	09	00001001	00000000	
FIFO_CTRL5	r/w	0A	00001010	00000000	
ORIENT_CFG_G	r/w	OB	00001011	00000000	
RESERVED	-	0C	00001100	-	Reserved
INT1_CTRL	r/w	OD	00001101	00000000	INT1 pin control
INT2_CTRL	r/w	OE	00001110	00000000	INT2 pin control
WHO_AM_I	r	OF	00001111	01101001	Who I am ID
CTRL1_XL	r/w	10	00010000	00000000	Accelerometer and gyroscope control registers
CTRL2_G	r/w	11	00010001	00000000	
CTRL3_C	r/w	12	00010010	00000100	
CTRL4_C	r/w	13	00010011	00000000	
CTRL5_C	r/w	14	00010100	00000000	
CTRL6_C	r/w	15	00010101	00000000	
CTRL7_G	r/w	16	00010110	00000000	
CTRL8_XL	r/w	17	00010111	00000000	
CTRL9_XL	r/w	18	00011000	00111000	
CTRL10_C	r/w	19	00011001	00111000	

Table 16. Registers address map (continued)

Name	Type	Register address		Default	Comment
		Hex	Binary		
MASTER_CONFIG	r/w	1A	00011010	00000000	$I^{2} \mathrm{C}$ master configuration register
WAKE_UP_SRC	r	1B	00011011	output	Interrupts registers
TAP_SRC	r	1C	00011100	output	
D6D_SRC	r	1D	00011101	output	
STATUS_REG	r	1E	00011110	output	Status data register
RESERVED	-	1F	00011111	-	Reserved
OUT_TEMP_L	r	20	00100000	output	Temperature output data register
OUT_TEMP_H	r	21	00100001	output	
OUTX_L_G	r	22	00100010	output	Gyroscope output register
OUTX_H_G	r	23	00100011	output	
OUTY_L_G	r	24	00100100	output	
OUTY_H_G	r	25	00100101	output	
OUTZ_L_G	r	26	00100110	output	
OUTZ_H_G	r	27	00100111	output	
OUTX_L_XL	r	28	00101000	output	Accelerometer output register
OUTX_H_XL	r	29	00101001	output	
OUTY_L_XL	r	2A	00101010	output	
OUTY_H_XL	r	2B	00101011	output	
OUTZ_L_XL	r	2 C	00101100	output	
OUTZ_H_XL	r	2D	00101101	output	

Table 16. Registers address map (continued)

Name	Type	Register address		Default	Comment
		Hex	Binary		
SENSORHUB1_REG	r	2E	00101110	output	Sensor hub output registers
SENSORHUB2_REG	r	2 F	00101111	output	
SENSORHUB3_REG	r	30	00110000	output	
SENSORHUB4_REG	r	31	00110001	output	
SENSORHUB5_REG	r	32	00110010	output	
SENSORHUB6_REG	r	33	00110011	output	
SENSORHUB7_REG	r	34	00110100	output	
SENSORHUB8_REG	r	35	00110101	output	
SENSORHUB9_REG	r	36	00110110	output	
SENSORHUB10_REG	r	37	00110111	output	
SENSORHUB11_REG	r	38	00111000	output	
SENSORHUB12_REG	r	39	00111001	output	
FIFO_STATUS1	r	3A	00111010	output	FIFO status registers
FIFO_STATUS2	r	3B	00111011	output	
FIFO_STATUS3	r	3C	00111100	output	
FIFO_STATUS4	r	3D	00111101	output	
FIFO_DATA_OUT_L	r	3E	00111110	output	FIFO data output registers
FIFO_DATA_OUT_H	r	3F	00111111	output	
TIMESTAMP0_REG	r	40	01000000	output	Timestamp output registers
TIMESTAMP1_REG	r	41	01000001	output	
TIMESTAMP2_REG	r/w	42	01000010	output	
RESERVED	-	43-48		-	Reserved
STEP_TIMESTAMP_L	r	49	01001001	output	Step counter timestamp registers
STEP_TIMESTAMP_H	r	4A	01001010	output	
STEP_COUNTER_L	r	4B	01001011	output	Step counter output registers
STEP_COUNTER_H	r	4 C	01001100	output	
SENSORHUB13_REG	r	4D	01001101	output	Sensor hub output registers
SENSORHUB14_REG	r	4E	01001110	output	
SENSORHUB15_REG	r	4F	01001111	output	
SENSORHUB16_REG	r	50	01010000	output	
SENSORHUB17_REG	r	51	01010001	output	
SENSORHUB18_REG	r	52	01010010	output	
FUNC_SRC	r	53	01010011	output	Interrupt register

Table 16. Registers address map (continued)

Name	Type	Register address		Default	Comment
		Hex	Binary		
RESERVED	-	54-57		-	Reserved
TAP_CFG	r/w	58	01011000	00000000	Interrupt registers
TAP_THS_6D	r/w	59	01011001	00000000	
INT_DUR2	r/w	5A	01011010	00000000	
WAKE_UP_THS	r/w	5B	01011011	00000000	
WAKE_UP_DUR	r/w	5C	01011100	00000000	
FREE_FALL	r/w	5D	01011101	00000000	
MD1_CFG	r/w	5E	01011110	00000000	
MD2_CFG	r/w	5F	01011111	00000000	
RESERVED	-	60-65		-	Reserved
OUT_MAG_RAW_X_L	r	66	01100110	output	External magnetometer raw data output registers
OUT_MAG_RAW_X_H	r	67	01100111	output	
OUT_MAG_RAW_Y_L	r	68	01101000	output	
OUT_MAG_RAW_Y_H	r	69	01101001	output	
OUT_MAG_RAW_Z_L	r	6A	01101010	output	
OUT_MAG_RAW_X_H	r	6B	01101011	output	

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

9 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

9.1 FUNC_CFG_ACCESS (01h)

Enable embedded functions register (r/w).
Table 17. FUNC_CFG_ACCESS register

FUNC_CFG_EN	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 18. FUNC_CFG_ACCESS register description
FUNC_CFG_EN

Enable access to the embedded functions configuration registers ${ }^{(1)}$ from address 02h to 32 h . Default value: 0 .
(0: disable access to embedded functions configuration registers;
1: enable access to embedded functions configuration registers)

1. The embedded functions configuration registers details are available in 10: Embedded functions register mapping and 11: Embedded functions registers description.

9.2 SENSOR_SYNC_TIME_FRAME (04h)

Sensor synchronization time frame register (r/w).
Table 19. SENSOR_SYNC_TIME_FRAME register

TPH_7	TPH_6	TPH_5	TPH_4	TPH_3	TPH_2	TPH_1	TPH_0

Table 20. SENSOR_SYNC_TIME_FRAME register description

TPH_ [7:0]	Sensor synchronization time frame with the step of 500 ms and full range of 5 s. Unsigned 8-bit. Default value: 00000000

9.3 FIFO_CTRL1 (06h)

FIFO control register (r/w).
Table 21. FIFO_CTRL1 register

FTH_7	FTH_6	FTH_5	FTH_4	FTH_3	FTH_2	FTH_1	FTH_0

Table 22. FIFO_CTRL1 register description

FTH_[7:0]	FIFO threshold level setting ${ }^{(1)}$. Default value: 00000000. Watermark flag rises when the number of bytes written to FIFO after the next write is greater than or equal to the threshold level. Minimum resolution for the FIFO is 1 LSB $=2$ bytes (1 word) in FIFO

1. For a complete watermark threshold configuration, consider FTH_[11:8] in FIFO_CTRL2 (07h).

9.4 FIFO_CTRL2 (07h)

FIFO control register (r/w).
Table 23. FIFO_CTRL2 register

TIMER_PEDO _FIFO_EN	TIMER_PEDO _FIFO_DRDY	$0^{(1)}$	$0^{(1)}$	FTH_11	FTH10	FTH_9	FTH_8

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 24. FIFO_CTRL2 register description

TIMER_PEDO _FIFO_EN	Enable pedometer step counter and timestamp as $4^{\text {th }}$ FIFO data set. Default: 0 (0: disable step counter and timestamp data as $4^{\text {th }}$ FIFO data set; 1: enable step counter and timestamp data as $4^{\text {th }}$ FIFO data set)
TIMER_PEDO FIFO_DRDY	FIFO write mode ${ }^{(1)}$. Default: 0 (0: enable write in FIFO based on XL/Gyro data-ready; 1: enable write in FIFO at every step detected by step counter.)
FTH_[11:8]	FIFO threshold level setting ${ }^{(2)}$. Default value: 0000 Watermark flag rises when the number of bytes written to FIFO after the next write is greater than or equal to the threshold level. Minimum resolution for the FIFO is 1LSB = 2 bytes (1 word) in FIFO

1. This bit is effective if the DATA_VALID_SEL_FIFO bit of the MASTER_CONFIG (1Ah) register is set to 0 .
2. For a complete watermark threshold configuration, consider FTH_[7:0] in FIFO_CTRL1 (06h)

9.5 FIFO_CTRL3 (08h)

FIFO control register (r/w).
Table 25. FIFO_CTRL3 register

$0^{(1)}$	$0^{(1)}$	DEC_FIFO _GYRO2	DEC_FIFO _GYRO1	DEC_FIFO _GYRO0	DEC_FIFO _XL2	DEC_FIFO _XL1	DEC_FIFO _XL0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 26. FIFO_CTRL3 register description

DEC_FIFO_GYRO [2:0]	Gyro FIFO (first data set) decimation setting. Default: 000 For the configuration setting, refer to Table 27.
DEC_FIFO_XL [2:0]	Accelerometer FIFO (second data set) decimation setting. Default: 000 For the configuration setting, refer to Table 28.

Table 27. Gyro FIFO decimation setting

DEC_FIFO_GYRO [2:0]	Configuration
000	Gyro sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

Table 28. Accelerometer FIFO decimation setting

DEC_FIFO_XL[2:0]	Configuration
000	Accelerometer sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

9.6 FIFO_CTRL4 (09h)

FIFO control register (r/w).
Table 29. FIFO_CTRL4 register

$0^{(1)}$	ONLY_HIGH _DATA	DEC_DS4 _FIFO2	DEC_DS4 _FIFO1	DEC_DS4 _FIFO0	DEC_DS3 _FIFO2	DEC_DS3 _FIFO1	DEC_DS3 _FIFO0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 30. FIFO_CTRL4 register description

ONLY_HIGH_DATA	8-bit data storage in FIFO. Default: 0 (0: disable MSByte only memorization in FIFO for XL and Gyro; 1: enable MSByte only memorization in FIFO for XL and Gyro in FIFO)
DEC_DS4_FIFO[2:0]	Fourth FIFO data set decimation setting. Default: 000 For the configuration setting, refer to Table 31.
DEC_DS3_FIFO[2:0]	Third FIFO data set decimation setting. Default: 000 For the configuration setting, refer to Table 32.

Table 31. Fourth FIFO data set decimation setting

DEC_DS4_FIFO[2:0]	Configuration
000	Fourth FIFO data set not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

Table 32. Third FIFO data set decimation setting

DEC_DS3_FIFO[2:0]	Configuration
000	Third FIFO data set not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

9.7 FIFO_CTRL5 (OAh)

FIFO control register (r/w).
Table 33. FIFO_CTRL5 register

$0^{(1)}$	ODR_ FIFO_3	ODR_- FIFO_2	ODR_- FIFO_1	ODR_- FIFO_0	FIFO_ MODE_2	FIFO_-1 MODE_1	FIFO_- MODE_0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 34. FIFO_CTRL5 register description

ODR_FIFO_[3:0]	FIFO ODR selection, setting FIFO_MODE also. Default: 0000 For the configuration setting, refer to Table 35
FIFO_MODE_[2:0]	FIFO mode selection bits, setting ODR_FIFO also. Default value: 000 For the configuration setting refer to Table 36

Table 35. FIFO ODR selection

ODR_FIFO_[3:0]	
0000	FIFO disabled
0001	FIFO ODR is set to 12.5 Hz
0010	FIFO ODR is set to 26 Hz
0011	FIFO ODR is set to 52 Hz
0100	FIFO ODR is set to 104 Hz
0101	FIFO ODR is set to 208 Hz
0110	FIFO ODR is set to 416 Hz
0111	FIFO ODR is set to 833 Hz
1000	FIFO ODR is set to 1.66 kHz
1001	FIFO ODR is set to 3.33 kHz
1010	FIFO ODR is set to 6.66 kHz

1. If the device is working at an ODR slower than the one selected, FIFO ODR is limited to that ODR value. Moreover, these bits are effective if both the DATA VALID_SEL FIFO bit of MASTER_CONFIG (1Ah) and the TIMER_PEDO_FIFO_DRDY bit of FIFO_CTRL2 (07h) are set to 0.

Table 36. FIFO mode selection

FIFO_MODE_[2:0]	Configuration mode
000	Bypass mode. FIFO disabled.
001	FIFO mode. Stops collecting data when FIFO is full.
010	Reserved
011	Continuous mode until trigger is deasserted, then FIFO mode.
100	Bypass mode until trigger is deasserted, then Continuous mode.
101	Reserved
110	Continuous mode. If the FIFO is full, the new sample overwrites the older one.
111	Reserved

9.8 ORIENT_CFG_G (OBh)

Angular rate sensor sign and orientation register (r/w).
Table 37. ORIENT_CFG_G register

$0^{(1)}$	$0^{(1)}$	SignX_G	SignY_G	SignZ_G	Orient_2	Orient_1	Orient_0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 38. ORIENT_CFG_G register description

SignX_G	Pitch axis (X) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign)
SignY_G	Roll axis (Y) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign)
SignZ_G	Yaw axis (Z) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign)
Orient [2:0]	Directional user-orientation selection. Default value: 000 For the configuration setting, refer to Table 39.

Table 39. Settings for orientation of axes

Orient [2:0]	$\mathbf{0 0 0}$	$\mathbf{0 0 1}$	$\mathbf{0 1 0}$	$\mathbf{0 1 1}$	$\mathbf{1 0 0}$	$\mathbf{1 0 1}$
Pitch	X	X	Y	Y	Z	Z
Roll	Y	Z	X	Z	X	Y
Yaw	Z	Y	Z	X	Y	X

$9.9 \quad$ INT1_CTRL (ODh)

INT1 pad control register (r/w).
Each bit in this register enables a signal to be carried through INT1. The pad's output will supply the OR combination of the selected signals.

Table 40. INT1_CTRL register

INT1_- STEP_-	INT1_SIGN _MOT	INT1_FULL _FLAG	INT1_- FIFO_OVR	INT1_- FTH	INT1_- BOOT	INT1_-_ DRDY_G	INT1_- DRDY_XL

Table 41. INT1_CTRL register description

INT1_STEP_ DETECTOR	Pedometer step recognition interrupt enable on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_SIGN_MOT	Significant motion interrupt enable on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_FULL_FLAG	FIFO full flag interrupt enable on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_FIFO_OVR	FIFO overrun interrupt on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_FTH	FIFO threshold interrupt on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_BOOT	Boot status available on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_DRDY_G	Gyroscope Data Ready on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_DRDY_XL	Accelerometer Data Ready on INT1 pad. Default value: 0 (0: disabled; 1: enabled)

9.10 INT2_CTRL (0Eh)

INT2 pad control register (r/w).
Each bit in this register enables a signal to be carried through INT2. The pad's output will supply the OR combination of the selected signals.

Table 42. INT2_CTRL register

INT2_STEP _DELTA	INT2_STEP COUNT_OV	INT2_-_ FULL_FLAG	INT2_- FIFO_OVR	INT2_- FTH	INT2 DRDY _TEMP	INT2_- DRDY_G	INT2_- DRDY_XL

Table 43. INT2_CTRL register description

INT2_STEP_DELTA	Pedometer step recognition interrupt on delta time ${ }^{(1)}$ enable on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_STEP_COUNT OV	Step counter overflow interrupt enable on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_FULL_FLAG	FIFO full flag interrupt enable on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_FIFO_OVR	FIFO overrun interrupt on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_FTH	FIFO threshold interrupt on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_DRDY_TEMP	Temperature Data Ready in INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_DRDY_G	Gyroscope Data Ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_DRDY_XL	Accelerometer Data Ready on INT2 pad. Default value: 0 (0: disabled; $1:$ enabled)

1. Delta time value is defined in register STEP_COUNT_DELTA (15h).

9.11 WHO_AM_I (0Fh)

Who_AM_I register (r). This register is a read-only register. Its value is fixed at 69h.
Table 44. WHO_AM_I register

0	1	1	0	1	0	0	1

9.12 CTRL1_XL (10h)

Linear acceleration sensor control register 1 (r/w).
Table 45. CTRL1_XL register

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	FS_XL1	FS_XL0	BW_XL1	BW_XL0

Table 46. CTRL1_XL register description

ODR_XL [3:0]	Output data rate and power mode selection. Default value: 0000 (see Table 47).
FS_XL [1:0]	Accelerometer full-scale selection. Default value: 00. $(00: \pm 2 \mathrm{~g} ; 01: \pm 16 \mathrm{~g} ; 10: \pm 4 \mathrm{~g} ; 11: \pm 8 \mathrm{~g})$
BW_XL [1:0]	Anti-aliasing filter bandwidth selection. Default value: 00 $(00: 400 \mathrm{~Hz} ; 01: 200 \mathrm{~Hz} ; 10: 100 \mathrm{~Hz} ; 11: 50 \mathrm{~Hz})$

Table 47. Accelerometer ODR register setting

$\begin{gathered} \text { ODR_ } \\ \text { XL3 } \end{gathered}$	$\begin{gathered} \text { ODR_} \\ \text { XL2 } \end{gathered}$	$\begin{gathered} \text { ODR_- } \\ \text { XL1 } \end{gathered}$	$\begin{gathered} \text { ODR_ } \\ \text { XLO } \end{gathered}$	ODR selection [Hz] when XL_HM_MODE = 1	ODR selection [Hz] when XL_HM_MODE $=0$
0	0	0	0	Power-down	Power-down
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance)	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance)	6.66 kHz (high performance)

Table 48. BW and ODR (high-performance mode)

ODR ${ }^{(1)}$	Analog filter BW (XL_HM_MODE = 0)	
	XL_BW_SCAL_ODR = 0	XL_BW_SCAL_ODR = 1
6.66-3.33 kHz	Filter not used	Bandwidth is determined by setting BW_XL[1:0] in CTRL1_XL (10h)
1.66 kHz	400 Hz	
833 Hz	400 Hz	
416 Hz	200 Hz	
208 Hz	100 Hz	
104-12.5 Hz	50 Hz	

1. Filter not used when accelerometer is in normal and low-power modes.

9.13 CTRL2_G (11h)

Angular rate sensor control register 2 (r/w).
Table 49. CTRL2_G register

ODR_G3	ODR_G2	ODR_G1	ODR_G0	FS_G1	FS_G0	FS_125	$0^{(1)}$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 50. CTRL2_G register description

ODR_G [3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to Table 51)
FS_G [1:0]	Gyroscope full-scale selection. Default value: 00 $(00: 250 \mathrm{dps} ; 01: 500 \mathrm{dps} ; 10: 1000 \mathrm{dps} ; 11: 2000 \mathrm{dps})$
FS_125	Gyroscope full-scale at 125 dps. Default value: 0 (0: disabled; 1: enabled)

Table 51. Gyroscope ODR configuration setting

ODR_ G3	ODR_ G2	ODR_ G1	ODR_ G0	ODR [Hz] when G_HM_MODE $=1$	ODR [Hz] when G_HM_MODE $=\mathbf{0}$
0	0	0	0	Power down	Power down
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)

9.14 CTRL3_C (12h)

Control register 3 (r/w).

Table 52. CTRL3_C register

BOOT	BDU	H_LACTIVE	PP_OD	SIM	IF_INC	BLE	SW_RESET

Table 53. CTRL3_C register description

BOOT	Reboot memory content. Default value: 0 (0 : normal mode; 1: reboot memory content ${ }^{(1)}$)
BDU	Block Data Update. Default value: 0 (0 : continuous update; 1: output registers not updated until MSB and LSB have been read)
H_LACTIVE	Interrupt activation level. Default value: 0 (0: interrupt output pads active high; 1 : interrupt output pads active low)
PP_OD	Push-pull/open-drain selection on INT1 and INT2 pads. Default value: 0 (0: push-pull mode; 1: open-drain mode)
SIM	SPI Serial Interface Mode selection. Default value: 0 (0: 4-wire interface; 1:3-wire interface).
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (${ }^{2} \mathrm{C}$ or SPI). Default value: 1 (0: disabled; 1: enabled)
BLE	Big/Little Endian Data selection. Default value 0 (0: data LSB @ lower address; 1: data MSB @ lower address)
SW_RESET	Software reset. Default value: 0 (0: normal mode; 1: reset device) This bit is cleared by hardware after next flash boot.

1. Boot request is executed as soon as internal oscillator is turned on. It is possible to set bit while in powerdown mode, in this case it will be served at the next normal mode or sleep mode.

9.15 CTRL4_C (13h)

Control register 4 (r/w).
Table 54. CTRL4_C register

XL_BW_- SCAL_ODR	SLEEP_G	INT2_on__ INT1	FIFO_-_ TEMP_EN	DRDY_- MASK	I2C_disable	$0^{(1)}$	STOP_ON _FTH

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 55. CTRL4_C register description

$\begin{array}{\|l} \hline \text { XL_BW_- } \\ \text { SCAL_ODR } \end{array}$	Accelerometer bandwidth selection. Default value: 0 ($0^{(1)}$: bandwidth determined by ODR selection, refer to Table 48; $1^{(2)}$: bandwidth determined by setting BW_XL[1:0] in CTRL1_XL (10h) register.)
SLEEP_G	Gyroscope sleep mode enable. Default value: 0 (0: disabled; 1: enabled)
INT2_on_INT1	All interrupt signals available on INT1 pad enable. Default value: 0 (0: interrupt signals divided between INT1 and INT2 pads; 1: all interrupt signals in logic or on INT1 pad)
FIFO_TEMP_EN	Enable temperature data as $4^{\text {th }}$ FIFO data set ${ }^{(3)}$. Default: 0 (0: disable temperature data as $4^{\text {th }}$ FIFO data set; 1: enable temperature data as $4^{\text {th }}$ FIFO data set)
DRDY_MASK	Data-ready mask enable. If enabled, when switching from Power-Down to an active mode, the accelerometer and gyroscope data-ready signals are masked until the settling of the sensor filters is completed. Default value: 0 (0: disabled; 1: enabled)
12C_disable	Disable $\mathrm{I}^{2} \mathrm{C}$ interface. Default value: 0 (0: both $I^{2} \mathrm{C}$ and SPI enabled; 1 : $\mathrm{I}^{2} \mathrm{C}$ disabled, SPI only)
STOP_ON_FTH	Enable FIFO threshold level use. Default value: 0 (0 : FIFO depth is not limited; 1: FIFO depth is limited to threshold level)

1. Filter used in high-performance mode only with ODR less than 3.33 kHz .
2. Filter used in high-performance mode only.
3. This bit is effective if the TIMER_PEDO_FIFO_EN bit of FIFO_CTRL2 (O7h) register is set to 0 .

9.16 CTRL5_C (14h)

Control register 5 (r/w).
Table 56. CTRL5_C register

ROUNDING2	ROUNDING1	ROUNDING0	$0^{(1)}$	ST1_G	ST0_G	ST1_XL	ST0_XL

1. This bit must be set to ' 0 ' for the correct operation of the device

Table 57. CTRL5_C register description

ROUNDING[2:0]	Circular burst-mode (rounding) read from output registers. Default: 000 (000: no rounding; Others: refer to Table 58)
ST_G [1:0]	Angular rate sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to Table 59)
ST_XL [1:0]	Linear acceleration sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to Table 60)

Table 58. Output registers rounding pattern

ROUNDING[2:0]	Rounding pattern
000	No rounding
001	Accelerometer only
010	Gyroscope only
011	Gyroscope + accelerometer
100	Registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h) only
101	Accelerometer + registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h)
110	Gyroscope + accelerometer + registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h) and registers from SENSORHUB7_REG (34h) to SENSORHUB12_REG(39h)
111	Gyroscope + accelerometer + registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h)

Table 59. Angular rate sensor self-test mode selection

ST1_G	ST0_G	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Not allowed
1	1	Negative sign self-test

Table 60. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

9.17 CTRL6_C (15h)

Angular rate sensor control register $6(r / w)$.

Table 61. CTRL6_C register

TRIG_EN	LVLen	LVL2_EN	XL_HM_MODE	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 62. CTRL6_C register description

TRIG_EN	Gyroscope data edge-sensitive trigger enable. Default value: 0 (0: external trigger disabled; 1: external trigger enabled)
LVLen	Gyroscope data level-sensitive trigger enable. Default value: 0 (0: level-sensitive trigger disabled; 1: level sensitive trigger enabled)
LVL2_EN	Gyroscope level-sensitive latched enable. Default value: 0 (0: level-sensitive latched disabled; 1: level sensitive latched enabled)
XL_HM_MODE	High-performance operating mode disable for accelerometer ${ }^{(1)}$. Default value: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)

1. Normal and low-power mode depends on the ODR setting, for details refer to Table 47.

9.18 CTRL7_G (16h)

Angular rate sensor control register 7 (r/w).

Table 63. CTRL7_G register

G_HM_MODE	HP_G_- EN	HPCF_G1	HPCF_G0	HP_G_R $_{\text {ST }^{-}}$	ROUNDING_- STATUS	$0^{(1)}$	$0^{(1)}$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 64. CTRL7_G register description

G_HM_MODE	High-performance operating mode disable for gyroscope ${ }^{(1)}$. Default: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
HP_G_EN	Gyroscope digital high-pass filter enable. The filter is enabled only if the gyro is in HP mode. Default value: 0 (0: HPF disabled; 1: HPF enabled)
HP_G_RST	Gyro digital HP filter reset. Default: 0 (0: gyro digital HP filter reset OFF; 1: gyro digital HP filter reset ON)
ROUNDING_- STATUS	Source register rounding function enable on STATUS_REG (1Eh), FUNC_SRC (53h) and WAKE_UP_SRC (1Bh) registers. Default value: 0 (0: disabled; 1: enabled)
HPCF_G[1:0]	Gyroscope high-pass filter cutoff frequency selection. Default value: 00. Refer to Table 65.

1. Normal and low-power mode depends on the ODR setting, for details refer to Table 51.

Table 65. Gyroscope high-pass filter mode configuration

HPCF_G1	HPCF_G0	High-pass filter cutoff frequency
0	0	0.0081 Hz
0	1	0.0324 Hz
1	0	2.07 Hz
1	1	16.32 Hz

9.19 CTRL8_XL (17h)

Linear acceleration sensor control register 8 (r/w).
Table 66. CTRL8_XL register

$\underset{E N}{\text { LPF2_XL_ }_{-}}$	$\begin{gathered} \hline \text { HPCF_ } \\ \text { XL1 } \end{gathered}$	$\begin{aligned} & \text { HPCF } \\ & \text { XLO } \end{aligned}$	$0^{(1)}$	$0^{(1)}$	$\begin{gathered} \text { HP_SLOPE_X } \\ \text { L_EN } \end{gathered}$	$0^{(1)}$	$\begin{gathered} \text { LOW_PASS } \\ \text { _ON_6D } \end{gathered}$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 67. CTRL8_XL register description

LPF2_XL_EN	Accelerometer low-pass filter LPF2 selection. Refer to Figure 6.
	Accelerometer slope filter and high-pass filter configuration and cutoff setting. Refer to Table 68. It is also used to select the cutoff frequency of the LPF2 filter, as shown in Table 69. This low-pass filter can also be used in the
HPCF_XL[1:0]	6D/4D functionality by setting the LOW_PASS_ON_6D bit of CTRL8_XL (17h) to 1.
HP_SLOPE_XL_EN	Accelerometer slope filter / high-pass filter selection. Refer to Figure 6.
LOW_PASS_ON_6D	Low-pass filter on 6D function selection. Refer to Figure 6.

Table 68. Accelerometer slope and high-pass filter selection and cutoff frequency

HPCF_XL[1:0]	Applied filter	HP filter cutoff frequency [Hz]
00	Slope	ODR_XL/4
01	High-pass	ODR_XL/100
10	High-pass	ODR_XL/9
11	High-pass	ODR_XL/400

Table 69. Accelerometer LPF2 cutoff frequency

HPCF_XL[1:0]	LPF2 digital filter cutoff frequency [Hz]
00	ODR_XL/50
01	ODR_XL/100
10	ODR_XL/9
11	ODR_XL/400

9.20 CTRL9_XL (18h)

Linear acceleration sensor control register 9 (r/w).

Table 70. CTRL9_XL register

$0^{(1)}$	$0^{(1}$	Zen_XL	Yen_XL	Xen_XL	SOFT_EN	$0^{(1)}$	$0^{(1)}$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 71. CTRL9_XL register description

Zen_XL	Accelerometer Z-axis output enable. Default value: 1 (0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_XL	Accelerometer Y-axis output enable. Default value: 1 (0: Y-axis output disabled; 1: Y-axis output enabled)
Xen_XL	Accelerometer X-axis output enable. Default value: 1 $(0:$ X-axis output disabled; 1: X-axis output enabled)
SOFT_EN	Enable soft-iron correction algorithm for magnetometer ${ }^{(1)}$. Default value: 0 (0: soft-iron correction algorithm disabled; 1: soft-iron correction algorithm disabled)

1. This bit is effective if the IRON_EN bit of MASTER_CONFIG (1Ah) is set to 1 .

9.21 CTRL10_C (19h)

Control register 10 (r/w).

Table 72. CTRL10_C register

$0^{(1)}$	$0^{(1)}$	Zen_G	Yen_G	Xen_G	FUNC_EN	PEDO_RST _STEP	SIGN_ MOTION_EN

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 73. CTRL10_C register description

Zen_G	Gyroscope yaw axis (Z) output enable. Default value: 1 (0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_G	Gyroscope roll axis (Y) output enable. Default value: 1 (0: Y-axis output disabled; 1: Y axis output enabled)
Xen_G	Gyroscope pitch axis (X) output enable. Default value: 1 (0: X-axis output disabled; 1: X-axis output enabled)
FUNC_EN	Enable embedded functionalities (pedometer, tilt, significant motion, sensor hub and ironing) and accelerometer HP and LPF2 filters (refer to Figure 6). Default value: 0 (0: disable functionalities of embedded functions and accelerometer filters; 1: enable functionalities of embedded functions and accelerometer filters)
PEDO_RST_ STEP	Reset pedometer step counter. Default value: 0 (0: disabled; 1: enabled)
SIGN_MOTION EEN	Enable significant motion function. Default value: 0 (0: disabled; 1: enabled)

9.22 MASTER_CONFIG (1Ah)

Master configuration register (r/w).

Table 74. MASTER_CONFIG register

DRDY_ON _INT1	DATA_VALID _SEL_FIFO	$0^{(1)}$	START_- CONFIG	PULL_UP _EN	PASS__(THROUGH _MODE	IRON_EN	MASTER_ ON

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 75. MASTER_CONFIG register description

$\begin{aligned} & \text { DRDY_ON_ } \\ & \text { INT1 } \end{aligned}$	Manage the Master DRDY signal on INT1 pad. Default: 0 (0: disable Master DRDY on INT1; 1: enable Master DRDY on INT1)
DATA_VALID_ SEL_FIFO	Selection of FIFO data-valid signal. Default value: 0 (0 : data-valid signal used to write data in FIFO is the XL/Gyro data-ready or step detection ${ }^{(1)}$; 1: data-valid signal used to write data in FIFO is the sensor hub data-ready)
START CONFIG	Sensor Hub trigger signal selection. Default value: 0 (0 : Sensor hub signal is the XL/Gyro data-ready; 1: Sensor hub signal external from INT2 pad.)
PULL_UP_EN	Auxiliary $\mathrm{I}^{2} \mathrm{C}$ pull-up. Default value: 0 (0 : internal pull-up on auxiliary $\mathrm{I}^{2} \mathrm{C}$ line disabled; 1 : internal pull-up on auxiliary $\mathrm{I}^{2} \mathrm{C}$ line enabled)
$\begin{aligned} & \text { PASS_THROUGH } \\ & \text { _MODE } \end{aligned}$	$I^{2} \mathrm{C}$ interface pass-through. Default value: 0 (0 : through disabled; 1: through enabled)
IRON_EN	Enable hard-iron correction algorithm for magnetometer. Default value: 0 (0:hard-iron correction algorithm disabled; 1: hard-iron correction algorithm enabled)
MASTER_ON	Sensor hub ${ }^{2} \mathrm{C}$ master enable. Default: 0 (0 : master $I^{2} C$ of sensor hub disabled; 1 : master $I^{2} C$ of sensor hub enabled)

1. If the TIMER_PEDO_FIFO_DRDY bit in FIFO_CTRL2 (07h) is set to 0 , the trigger for writing data in FIFO is $\mathrm{XL} /$ Gyro dāta-ready, otherwise it's the step detection.

9.23 WAKE_UP_SRC (1Bh)

Wake up interrupt source register (r).

Table 76. WAKE_UP_SRC register

$0^{(1)}$	$0^{(1)}$	FF_IA	SLEEP_- STATE_IA	WU_IA	X_WU	Y_WU	$Z_{-} W U$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 77. WAKE_UP_SRC register description

FF_IA	Free-fall event detection status. Default: 0 (0: free-fall event not detected; 1: free-fall event detected)
SLEEP_ STATE_IA	Sleep event status. Default value: 0 (0: sleep event not detected; 1: sleep event detected)
WU_IA	Wakeup event detection status. Default value: 0 (0: wakeup event not detected; 1: wakeup event detected.)
X_WU	Wakeup event detection status on X-axis. Default value: 0 (0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Y_WU	Wakeup event detection status on Y-axis. Default value: 0 (0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
Z_WU	Wakeup event detection status on Z-axis. Default value: 0 (0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)

9.24 TAP_SRC (1Ch)

Tap source register (r).

Table 78. TAP_SRC register

$0^{(1)}$	TAP_IA	SINGLE_ TAP	DOUBLE_ TAP	TAP_SIGN	X_TAP $^{\text {Y }}$	Y_TAP	Z_TAP $^{\prime}$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 79. TAP_SRC register description

TAP_IA	Tap event detection status. Default: 0 (0: tap event not detected; 1: tap event detected)
SINGLE_TAP	Single-tap event status. Default value: 0 (0: single tap event not detected; 1: single tap event detected)
DOUBLE_TAP	Double-tap event detection status. Default value: 0 (0: double-tap event not detected; 1: double-tap event detected.)
TAP_SIGN	Sign of acceleration detected by tap event. Default: 0 (0: positive sign of acceleration detected by tap event; 1: negative sign of acceleration detected by tap event)
X_TAP	Tap event detection status on X-axis. Default value: 0 (0: tap event on X-axis not detected; 1: tap event on X-axis detected)
Y_TAP	Tap event detection status on Y-axis. Default value: 0 (0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
Z_TAP	Tap event detection status on Z-axis. Default value: 0 (0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)

9.25 D6D_SRC (1Dh)

Portrait, landscape, face-up and face-down source register (r).

Table 80. D6D_SRC register

$0^{(1)}$	D6D_IA	ZH	ZL	YH	YL	XH	XL

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 81. D6D_SRC register description

D6D_ IA	Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0 (0: change position not detected; 1: change position detected)
ZH	Z-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over threshold) detected)
ZL	Z-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)
YH	Y-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over-threshold) detected)
YL	Y-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)
X_H	X-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over threshold) detected)
X_L	X-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)

9.26 STATUS_REG (1Eh)

Table 82. STATUS_REG register

-	-	-	-	-	TDA	GDA	XLDA

Table 83. STATUS_REG register description

TDA	Temperature new data available. Default: 0 (0: no set of data is available at temperature sensor output; 1: a new set of data is available at temperature sensor output)
GDA	Gyroscope new data available. Default value: 0 (0: no set of data available at gyroscope output; 1: a new set of data is available at gyroscope output)
XLDA	Accelerometer new data available. Default value: 0 (0: no set of data available at accelerometer output; 1: a new set of data is available at accelerometer output)

9.27 OUT_TEMP_L (20h), OUT_TEMP(21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement.

Table 84. OUT_TEMP_L register

Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0

Table 85. OUT_TEMP_H register

Temp15	Temp14	Temp13	Temp12	Temp11	Temp10	Temp9	Temp8

Table 86. OUT_TEMP register description

Temp[15:0]	Temperature sensor output data The value is expressed as two's complement sign extended on the MSB.

9.28 OUTX_L_G (22h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 87. OUTX_L_G register

D7	D6	D5	D4	D3	D2	D1	D0

Table 88. OUTX_L_G register description

$D[7: 0]$	Pitch axis (X) angular rate value (LSbyte)

9.29 OUTX_H_G (23h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 89. OUTX_H_G register

D15	D14	D13	D12	D11	D10	D9	D8

Table 90. OUTX_H_G register description
$\mathrm{D}[15: 8] \quad$ Pitch axis (X) angular rate value (MSbyte)

9.30 OUTY_L_G (24h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 91. OUTY_L_G register

D7	D6	D5	D4	D3	D2	D1	D0

Table 92. OUTY_L_G register description

$D[7: 0]$	Roll axis (Y) angular rate value (LSbyte)

9.31 OUTY_H_G (25h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 93. OUTY_H_G register

D15	D14	D13	D12	D11	D10	D9	D8

Table 94. OUTY_H_G register description

$\mathrm{D}[15: 8]$	Roll axis (Y) angular rate value (MSbyte)

9.32 OUTZ_L_G (26h)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 95. OUTZ_L_G register

D7	D6	D5	D4	D3	D2	D1	D0

Table 96. OUTZ_L_G register description

$D[7: 0]$	Yaw axis (Z) angular rate value (LSbyte)

9.33 OUTZ_H_G (27h)

Angular rate sensor Yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Table 97. OUTZ_H_G register

D15	D14	D13	D12	D11	D10	D9	D8

Table 98. OUTZ_H_G register description

$D[15: 8]$	Yaw axis (Z) angular rate value (MSbyte)

9.34 OUTX_L_XL (28h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 99. OUTX_L_XL register

D7	D6	D5	D4	D3	D2	D1	D0

Table 100. OUTX_L_XL register description

$\mathrm{D}[7: 0]$	X-axis linear acceleration value (LSbyte)

9.35 OUTX_H_XL (29h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 101. OUTX_H_XL register

D15	D14	D13	D12	D11	D10	D9	D8

Table 102. OUTX_H_XL register description
D [15:8] \quad X-axis linear acceleration value (MSbyte)

9.36 OUTY_L_XL (2Ah)

Linear acceleration sensor Y -axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 103. OUTY_L_XL register

D7	D6	D5	D4	D3	D2	D1	D0

Table 104. OUTY_L_XL register description

$\mathrm{D}[7: 0]$	Y -axis linear acceleration value (LSbyte)

9.37 OUTY_H_XL (2Bh)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 105. OUTY_H_G register

D15	D14	D13	D12	D11	D10	D9	D8

Table 106. OUTY_H_G register description

$\mathrm{D}[15: 8]$	Y-axis linear acceleration value (MSbyte)

9.38 OUTZ_L_XL (2Ch)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 107. OUTZ_L_XL register

D7	D6	D5	D4	D3	D2	D1	D0

Table 108. OUTZ_L_XL register description

$D[7: 0]$	Z-axis linear acceleration value (LSbyte)

9.39
 OUTZ_H_XL (2Dh)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Table 109. OUTZ_H_XL register

D15	D14	D13	D12	D11	D10	D9	D8

Table 110. OUTZ_H_XL register description

$\mathrm{D}[15: 8]$	Z-axis linear acceleration value (MSbyte)

9.40 SENSORHUB1_REG (2Eh)

First byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 111. SENSORHUB1_REG register

SHub1_7	SHub1_6	SHub1_5	SHub1_4	SHub1_3	SHub1_2	SHub1_1	SHub1_0

Table 112. SENSORHUB1_REG register description
SHub1_[7:0] \quad First byte associated to external sensors

9.41 SENSORHUB2_REG (2Fh)

Second byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operations configurations (for external sensors from $x=0$ to $x=3$).

Table 113. SENSORHUB2_REG register

SHub2_7	SHub2_6	SHub2_5	SHub2_4	SHub2_3	SHub2_2	SHub2_1	SHub2_0

Table 114. SENSORHUB2_REG register description
SHub2_[7:0] Second byte associated to external sensors

9.42 SENSORHUB3_REG (30h)

Third byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operations configurations (for external sensors from $x=0$ to $x=3$).

Table 115. SENSORHUB3_REG register

SHub3_7	SHub3_6	SHub3_5	SHub3_4	SHub3_3	SHub3_2	SHub3_1	SHub3_0

Table 116. SENSORHUB3_REG register description

SHub3_[7:0]	Third byte associated to external sensors

9.43 SENSORHUB4_REG (31h)

Fourth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 117. SENSORHUB4_REG register

SHub4_7	SHub4_6	SHub4_5	SHub4_4	SHub4_3	SHub4_2	SHub4_1	SHub4_0

Table 118. SENSORHUB4_REG register description

SHub4_[7:0]	Fourth byte associated to external sensors

9.44 SENSORHUB5_REG (32h)

Fifth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 119. SENSORHUB5_REG register

SHub5_7	SHub5_6	SHub5_5	SHub5_4	SHub5_3	SHub5_2	SHub5_1	SHub5_0

Table 120. SENSORHUB5_REG register description

SHub5_[7:0]	Fifth byte associated to external sensors

9.45 SENSORHUB6_REG (33h)

Sixth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 121. SENSORHUB6_REG register

SHub6_7	SHub6_6	SHub6_5	SHub6_4	SHub6_3	SHub6_2	SHub6_1	SHub6_0

Table 122. SENSORHUB6_REG register description
SHub6_[7:0] \quad Sixth byte associated to external sensors

9.46 SENSORHUB7_REG (34h)

Seventh byte associated to external sensors. The content of the register is consistent with the
SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).
Table 123. SENSORHUB7_REG register

SHub7_7	SHub7_6	SHub7_5	SHub7_4	SHub7_3	SHub7_2	SHub7_1	SHub7_0

Table 124. SENSORHUB7_REG register description

SHub7_[7:0]	Seventh byte associated to external sensors

9.47 SENSORHUB8_REG(35h)

Eighth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 125. SENSORHUB8_REG register

SHub8_7	SHub8_6	SHub8_5	SHub8_4	SHub8_3	SHub8_2	SHub8_1	SHub8_0

Table 126. SENSORHUB8_REG register description
SHub8_[7:0] Eighth byte associated to external sensors

9.48 SENSORHUB9_REG (36h)

Ninth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 127. SENSORHUB9_REG register

SHub9_7	SHub9_6	SHub9_5	SHub9_4	SHub9_3	SHub9_2	SHub9_1	SHub9_0

Table 128. SENSORHUB9_REG register description
SHub9_[7:0] Ninth byte associated to external sensors

9.49 SENSORHUB10_REG (37h)

Tenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 129. SENSORHUB10_REG register

SHub10_7	SHub10_6	SHub10_5	SHub10_4	SHub10_3	SHub10_2	SHub10_1	SHub10_0

Table 130. SENSORHUB10_REG register description
SHub10_[7:0] Tenth byte associated to external sensors

9.50 SENSORHUB11_REG (38h)

Eleventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 131. SENSORHUB11_REG register

SHub11_7	SHub11_6	SHub11_5	SHub11_4	SHub11_3	SHub11_2	SHub11_1	SHub11_0

Table 132. SENSORHUB11_REG register description
SHub11_[7:0] \quad Eleventh byte associated to external sensors

9.51 SENSORHUB12_REG(39h)

Twelfth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 133. SENSORHUB12_REG register

SHub12_7	SHub12_6	SHub12_5	SHub12_4	SHub12_3	SHub12_2	SHub12_1	SHub12_0

Table 134. SENSORHUB12_REG register description

SHub12[7:0]	Twelfth byte associated to external sensors

9.52 FIFO_STATUS1 (3Ah)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 135. FIFO_STATUS1 register

DIFF_-	DIFF_	DIFF_-	DIFF_	DIFF_	DIFF_	DIFF_	DIFF_
FIFO_7	FIFO_6	FIFO_5	FIFO_4	FIFO_3	FIFO_2	FIFO_1	FIFO_0

Table 136. FIFO_STATUS1 register description
DIFF_FIFO_[7:0] \quad Number of unread words (16-bit axes) stored in FIFO ${ }^{(1)}$.

1. For a complete number of unread samples, consider DIFF_FIFO [11:8] in FIFO_STATUS2 (3Bh)

9.53 FIFO_STATUS2 (3Bh)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 137. FIFO_STATUS2 register

FTH	FIFO_-	FIFO_-	FIFO_-_	DIFF_	DIFF_	DIFF_	DIFF_-
	OVER_RUN	FULL	EMPTY	FIFO_11	FIFO_10	FIFO_9	FIFO_8

Table 138. FIFO_STATUS2 register description

FTH	FIFO watermark status. Default value: 0 (0: FIFO filling is lower than watermark level(1); 1: FIFO filling is equal to or higher than the watermark level)
FIFO_OVER_RUN	FIFO overrun status. Default value: 0 (0: FIFO is not completely filled; 1: FIFO is completely filled)
FIFO_FULL	FIFO full status. Default value: 0 (0: FIFO is not full; 1: FIFO will be full at the next ODR)
FIFO_EMPTY	FIFO empty bit. Default value: 0 (0: FIFO contains data; 1: FIFO is empty)
DIFF_FIFO_[7:0]	Number of unread words (16-bit axes) stored in FIFO $^{(2)}$.

1. FIFO watermark level is set in FTH_[11:0] in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)
2. For a complete number of unread samples, consider DIFF_FIFO [11:8] in FIFO_STATUS1 (3Ah)

9.54 FIFO_STATUS3 (3Ch)

FIFO status control register (r . For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 139. FIFO_STATUS3 register

$\begin{aligned} & \text { FIFO } \\ & \text { PATTER } \end{aligned}$ _7	FIFO PATTER 6	$\begin{aligned} & \text { FIFO } \\ & \text { PATTER } \\ & .5 \end{aligned}$	$\begin{aligned} & \text { FIFO } \\ & \text { PATTER } \\ & \quad 4 \end{aligned}$	$\begin{gathered} \text { FIFO } \\ \text { PATTERN } \\ \ldots 3 \end{gathered}$	$\begin{aligned} & \text { FIFO } \\ & \text { PATTER } \\ & \quad 2 \end{aligned}$	$\begin{aligned} & \text { FIFO } \\ & \text { PATTER } \end{aligned}$ _1	FIFO PATTER N 0

Table 140. FIFO_STATUS3 register description

FIFO_ PATTERN_[7:0]	Word of recursive pattern read at the next reading.

9.55 FIFO_STATUS4 (3Dh)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 141. FIFO_STATUS4 register

$0^{(1)}$	$0^{(1)}$	$O^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	FIFO_- PATTERN_9	FIFO_ PATTERN_8

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 142. FIFO_STATUS4 register description

FIFO__ PATTERN_[9:8]	Word of recursive pattern read at the next reading.

9.56 FIFO_DATA_OUT_L (3Eh)

FIFO data output register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 143. FIFO_DATA_OUT_L register

$\begin{aligned} & \text { DATA- } \\ & \text { OUT- }^{-} 7 \\ & \text { FIFO }{ }^{-1} \end{aligned}$	$\begin{gathered} \text { DATA } \\ \text { OUT- } \\ \text { FIFO L- } \end{gathered}$	$\begin{aligned} & \text { DATA- } \\ & \text { OUT-- } \\ & \text { FIFO L } 5 \end{aligned}$	$\begin{aligned} & \text { DATA- } \\ & \text { OUT-- } \\ & \text { FIFO L- } 4 \end{aligned}$	$\begin{aligned} & \text { DATA- } \\ & \text { OUT- } \\ & \text { FIFO L } 3 \end{aligned}$	$\begin{aligned} & \text { DATA- } \\ & \text { OUT- } \\ & \text { FIFO L- } 2 \end{aligned}$	DATA_ OUT FIFO L 1	DATA_ OUT FIFO L 0

Table 144. FIFO_DATA_OUT_L register description
DATA_OUT_FIFO_L_[7:0] \quad FIFO data output (first byte)

9.57 FIFO_DATA_OUT_H (3Fh)

FIFO data output register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 145. FIFO_DATA_OUT_H register

$\begin{aligned} & \text { DATA_- } \\ & \text { OUT_- }_{-} \\ & \text {FIFO_H_7 } \end{aligned}$	$\begin{gathered} \text { DATA_- } \\ \text { OUT_-_-_6 }^{\text {FIFO_H_ }} \end{gathered}$	$\begin{aligned} & \text { DATA_- } \\ & \text { OUT_- }_{\text {FI___ }} \end{aligned}$	$\begin{gathered} \text { DATA_- } \\ \text { OUT_-_-_4 }_{\text {FIFO_H_- }} \end{gathered}$	$\begin{aligned} & \text { DATA_- } \\ & \text { OUT_- }_{-} \\ & \text {FIFO_H_3 } \end{aligned}$	$\begin{gathered} \text { DATA_- } \\ \text { OUT-_-_2 } \\ \text { FIFO_H_ } \end{gathered}$	$\begin{gathered} \text { DATA_- } \\ \text { OUT-_-1 } \\ \text { FIFO_H_1 } \end{gathered}$	$\begin{gathered} \text { DATA_- } \\ \text { OUT-_-_ }^{2} \\ \text { FIFO_H_O } \end{gathered}$

Table 146. FIFO_DATA_OUT_H register description

DATA_OUT_FIFO_H_[7:0]	FIFO data output (second byte)

9.58 TIMESTAMPO_REG (40h)

Timestamp first byte data output register (r). The value is expressed as a 24 -bit word and the bit resolution is defined by setting the value in WAKE_UP_DUR (5Ch).

Table 147. TIMESTAMP0_REG register

| TIMESTA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MP0_7 | MP0_6 | MP0_5 | MP0_4 | MP0_3 | MP0_2 | MP0_1 | MP0_0 |

Table 148. TIMESTAMPO_REG register description
TIMESTAMP0_[7:0] TIMESTAMP first byte data output

9.59 TIMESTAMP1_REG (41h)

Timestamp second byte data output register (r). The value is expressed as a 24 -bit word and the bit resolution is defined by setting value in WAKE_UP_DUR (5Ch).

Table 149. TIMESTAMP1_REG register

| TIMESTA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MP1_7 | MP1_6 | MP1_5 | MP1_4 | MP1_3 | MP1_2 | MP1_1 | MP1_0 |

Table 150. TIMESTAMP1_REG register description

TIMESTAMP1_[7:0]	TIMESTAMP second byte data output

9.60 TIMESTAMP2_REG (42h)

Timestamp third byte data output register (r/w). The value is expressed as a 24 -bit word and the bit resolution is defined by setting the value in WAKE_UP_DUR (5Ch). To reset the timer, the AAh value has to be stored in this register.

Table 151. TIMESTAMP2_REG register

| TIMESTA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MP2_7 | MP2_6 | MP2_5 | MP2_4 | MP2_3 | MP2_2 | MP2_1 | MP2_0 |

Table 152. TIMESTAMP2_REG register description
TIMESTAMP2_[7:0] \quad TIMESTAMP third byte data output

9.61 STEP_TIMESTAMP_L (49h)

Step counter timestamp information register (r). When a step is detected, the value of TIMESTAMP_REG1 register is copied in STEP_TIMESTAMP_L.

Table 153. STEP_TIMESTAMP_L register

STEP_	STEP_	STEP_-_	STEP_	STEP_-	STEP_	STEP_	STEP_
TIMESTA							
MP_L_7	MP_L_6	MP_L_5	MP_L_4	MP_L_3	MP_L_2	MP_L_1	MP_L_0

Table 154. STEP_TIMESTAMP_L register description
STEP_TIMESTAMP_L[7:0] \quad Timestamp of last step detected.

9.62 STEP_TIMESTAMP_H (4Ah)

Step counter timestamp information register (r). When a step is detected, the value of TIMESTAMP_REG2 register is copied in STEP_TIMESTAMP_H.

Table 155. STEP_TIMESTAMP_H register

STEP_	STEP_	STEP_-	STEP_	STEP_-	STEP_	STEP_-	STEP_
TIMESTA							
MP_H_7	MP_H_6	MP_H_5	MP_H_4	MP_H_3	MP_H_2	MP_H_1	MP_H_0

Table 156. STEP_TIMESTAMP_H register description
STEP_TIMESTAMP_H[7:0] \quad Timestamp of last step detected.

9.63 STEP_COUNTER_L (4Bh)

Step counter output register (r).
Table 157. STEP_COUNTER_L register

					P_CO	P	
UNT	UNTER_L	UNTER_L	UNTER_L	UNTER_L	UNTER_L	NTE	
7	6	5	4	3 -	2 -	1 -	0

Table 158. STEP_COUNTER_L register description
STEP_COUNTER_L_[7:0] Step counter output (LSbyte)

9.64 STEP_COUNTER_H (4Ch)

Step counter output register (r).
Table 159. STEP_COUNTER_H register

| STEP_CO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNTER_H |
| _7 | _6 | _5 | _4 | _3 | _2 | _1 | _0 |

Table 160. STEP_COUNTER_H register description
STEP_COUNTER_H_[7:0] \quad Step counter output (MSbyte)

9.65 SENSORHUB13_REG (4Dh)

Thirteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 161. SENSORHUB13_REG register

SHub13_7	SHub13_6	SHub13_5	SHub13_4	SHub13_3	SHub13_2	SHub13_1	SHub13_0

Table 162. SENSORHUB13_REG register description

SHub13_[7:0]
Thirteenth byte associated to external sensors

9.66 SENSORHUB14_REG (4Eh)

Fourteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 163. SENSORHUB14_REG register

SHub14_7	SHub14_6	SHub14_5	SHub14_4	SHub14_3	SHub14_2	SHub14_1	SHub14_0

Table 164. SENSORHUB14_REG register description

SHub14_[7:0]	Fourteenth byte associated to external sensors

9.67 SENSORHUB15_REG (4Fh)

Fifteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 165. SENSORHUB15_REG register

SHub15_7	SHub15_6	SHub15_5	SHub15_4	SHub15_3	SHub15_2	SHub15_1	SHub15_0

Table 166. SENSORHUB15_REG register description

SHub15_[7:0]	Fifteenth byte associated to external sensors

9.68 SENSORHUB16_REG (50h)

Sixteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $\mathrm{x}=0$ to $\mathrm{x}=3$).

Table 167. SENSORHUB16_REG register

SHub16_7	SHub16_6	SHub16_5	SHub16_4	SHub16_3	SHub16_2	SHub16_1	SHub16_0

Table 168. SENSORHUB16_REG register description

SHub16_[7:0]	Sixteenth byte associated to external sensors

9.69 SENSORHUB17_REG (51h)

Seventeenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 169. SENSORHUB17_REG register

SHub17_7	SHub17_6	SHub17_5	SHub17_4	SHub17_3	SHub17_2	SHub17_1	SHub17_0

Table 170. SENSORHUB17_REG register description
SHub17_[7:0] \quad Seventeenth byte associated to external sensors

9.70 SENSORHUB18_REG (52h)

Eighteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 171. SENSORHUB18_REG register

SHub18_7	SHub18_6	SHub18_5	SHub18_4	SHub18_3	SHub18_2	SHub18_1	SHub18_0

Table 172. SENSORHUB18_REG register description
SHub18_[7:0] \quad Eighteenth byte associated to external sensors

9.71 FUNC_SRC (53h)

Significant motion, tilt, step detector, hard/soft-iron and sensor hub interrupt source register (r).

Table 173. FUNC_SRC register

$\mathrm{NT}_{-} \mathrm{IA}_{\text {IA }}$	$\begin{aligned} & \text { SIGN_- } \\ & \text { MOTION_IA } \end{aligned}$	TILT_IA	STEP DETECTED	STEP OVERFLOW	$0^{(1)}$	$\begin{gathered} \text { SI_END_ } \\ \text { OP } \end{gathered}$	SENSOR HUB END OP

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 174. FUNC_SRC register description

STEP_COUNT _DELTA_IA	Pedometer step recognition on delta time status. Default value: 0 (0: no step recognized during delta time; 1: at least one step recognized during delta time)
SIGN_ MOTION_IA	Significant motion event detection status. Default value: 0 (0: significant motion event not detected; 1: significant motion event detected)
TILT_IA	Tilt event detection status. Default value: 0 (0: tilt event not detected; 1: tilt event detected)
STEP_ DETECTED	Step detector event detection status. Default value: 0 (0: step detector event not detected; 1: step detector event detected)
STEP_ OVERFLOW	Step counter overflow status. Default value: 0 (0: step counter value < $2^{16} ; 1:$ step counter value reached 2^{16})

Table 174. FUNC_SRC register description (continued)

SI_END_OP	Hard/soft-iron calculation status. Default value: 0 (0: Hard/soft-iron calculation not concluded; 1: Hard/soft-iron calculation concluded)
SENSORHUB _END_OP	Sensor hub communication status. Default value: 0 (0: sensor hub communication not concluded; 1: sensor hub communication concluded)

9.72 TAP_CFG (58h)

Timestamp, pedometer, tilt, filtering, and tap recognition functions configuration register (r/w).

Table 175. TAP_CFG register

TIMER_ EN	PEDO_EN	TILT_EN	SLOPE _FDS	TAP_X_EN	TAP_Y_EN	TAP_Z_EN	LIR

Table 176. TAP_CFG register description

TIMER_EN	Timestamp count enable, output data are collected in TIMESTAMPO_REG (40h), TIMESTAMP1_REG (41h), TIMESTAMP2_REG (42h) register. Default: 0 (0: timestamp count disabled; 1: timestamp count enabled)
PEDO_EN	Pedometer algorithm enable. Default value: 0 (0: pedometer algorithm disabled; 1: pedometer algorithm enabled) $)$
TILT_EN	Tilt calculation enable. Default value: 0 (0: tilt calculation disabled; 1: tilt calculation enabled.)
SLOPE_FDS	Enable accelerometer HP and LPF2 filters (refer to Figure 6). Default value: 0 (0: disable; 1: enable)
TAP_X_EN	Enable X direction in tap recognition. Default value: 0 (0: X direction disabled; 1:X direction enabled)
TAP_Y_EN	Enable Y direction in tap recognition. Default value: 0 (0: Y direction disabled; 1:Y direction enabled)
TAP_Z_EN	Enable Z direction in tap recognition. Default value: 0 (0: Z direction disabled; 1:Z direction enabled) $)$
LIR	Latched Interrupt. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)

9.73 TAP_THS_6D (59h)

Portrait/landscape position and tap function threshold register (r/w).
Table 177. TAP_THS_6D register

D4D_EN	SIXD_THS $_{1}$	SIXD_{0} THS	TAP_THS $_{4}$	TAP_THS $_{3}$	TAP_THS $_{2}$	TAP_THS	TAP_THS

Table 178. TAP_THS_6D register description

D4D_EN	4D orientation detection enable. Z-axis position detection is disabled. Default value: 0 (0: enabled; 1: disabled)
SIXD_THS[1:0]	Threshold for D6D function. Default value: 00 For details, refer to Table 179.
TAP_THS[4:0]	Threshold for tap recognition. Default value: 00000

Table 179. Threshold for D4D/D6D function

SIXD_THS[1:0]	Threshold value
00	80 degrees
01	70 degrees
10	60 degrees
11	50 degrees

9.74 INT_DUR2 (5Ah)

Tap recognition function setting register (r/w).
Table 180. INT_DUR2 register

DUR3	DUR2	DUR1	DUR0	QUIET1	QUIET0	SHOCK1	SHOCK0

Table 181. INT_DUR2 register description

	Duration of maximum time gap for double tap recognition. Default: 0000 When double tap recognition is enabled, this register expresses the maximum time between two consecutive detected taps to determine a double tap event. The default value of these bits is 0000b which corresponds to 16*ODR_XL time. If the DUR[3:0] bits are set to a different value, 1LSB corresponds to 32*ODR_XL time.
	Expected quiet time after a tap detection. Default value: 00 Quiet time is the time after the first detected tap in which there must not be any overthreshold event. The default value of these bits is 00b which corresponds to 2^{*} ODR_XL time. If the QUIET[1:0] bits are set to a different value, 1LSB corresponds to 4*ODR_XL time.
	Maximum duration of overthreshold event. Default value: 00 Maximum duration is the maximum time of an overthreshold signal detection to be recognized as a tap event. The default value of these bits is 00b which corresponds to 4*ODR_XL time. If the SHOCK[1:0] bits are set to a different value, 1LSB corresponds to 8*ODR_XL time.

9.75 WAKE_UP_THS (5Bh)

Single and double-tap function threshold register (r/w).

Table 182. WAKE_UP_THS register

SINGLE_- DOUBLE _TAP	INACTIVITY	WK_THS5	WK_THS4	WK_THS3	WK_THS2	WK_THS1	WK_THS0

Table 183. WAKE_UP_THS register description

SINGLE_DOUBLE_TAP	Single/double-tap event enable. Default: 0 (0: only single-tap event enabled; 1: both single and double-tap events enabled)
INACTIVITY	Inactivity event enable. Default value: 0 (0: sleep disabled; 1: sleep enabled)
WK_THS[5:0]	Threshold for wakeup. Default value: 000000

9.76 WAKE_UP_DUR (5Ch)

Free-fall, wakeup, timestamp and sleep mode functions duration setting register (r/w).

Table 184. WAKE_UP_DUR register

FF_DUR5	WAKE DUR1	WAKE DURO	$\begin{gathered} \text { TIMER_ } \\ \text { HR } \end{gathered}$	SLEEP DUR3	$\begin{aligned} & \text { SLEEP_- } \\ & \text { DUR2 } \end{aligned}$	$\begin{gathered} \text { SLEEP_- } \\ \text { DUR1 } \end{gathered}$	$\begin{gathered} \text { SLEEP_- } \\ \text { DURO } \end{gathered}$

Table 185. WAKE_UP_DUR register description

FF_DUR5	Free fall duration event. Default: 0 For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh) configuration.
WAKE_DUR[1:0]	Wake up duration event. Default: 00 1 LSB = 1 ODR_time
TIMER_HR	Timestamp register resolution setting (1) $(0: 1 L S B=6.4$ ms; $1: 1 \mathrm{LSB}=25 \mu \mathrm{~s})$
SLEEP_DUR[3:0]	Duration to go in sleep modue: 0 $1 \mathrm{LSB}=512$ ODR

1. Configuration of this bit affects TIMESTAMPO REG (40h), TIMESTAMP1 REG (41h), TIMESTAMP2 REG (42h), STEP_TIMESTAM $\bar{M} _$L (49h), STEP_TIMESTAMM_H (4Ah), and STEP_COUNT_DELTA (15h) regīters.

9.77 FREE_FALL (5Dh)

Free-fall function duration setting register (r/w).

Table 186. FREE_FALL register

FF_DUR4	FF_DUR3	FF_DUR2	FF_DUR1	FF_DUR0	FF_THS2	FF_THS1	FF_THS0

Table 187. FREE_FALL register description

FF_DUR[4:0]	Free-fall duration event. Default: 0 For the complete configuration of the free fall duration, refer to FF_DUR5 in WAKE_UP_DUR (5Ch) configuration
FF_THS[2:0]	Free fall threshold setting. Default: 000 For details refer to Table 188.

Table 188. Threshold for free-fall function

FF_THS[2:0]	Threshold value
000	156 mg
001	219 mg
010	250 mg
011	312 mg
100	344 mg
101	406 mg
110	469 mg
111	500 mg

9.78 MD1_CFG (5Eh)

Functions routing on INT1 register (r/w).

Table 189. MD1_CFG register

INT1- INACT- STATE	INT1- SINGLE-- TAP	INT1_WU	INT1_FF	INT1_- DOUBLE_ TAP	INT1_6D	INT1_TILT	INT1 TIMER

Table 190. MD1_CFG register description

INT1_INACT_ STATE	Routing on INT1 of inactivity mode. Default: 0 (0: routing on INT1 of inactivity disabled; 1: routing on INT1 of inactivity enabled)
INT1_SINGLE_ TAP	Single-tap recognition routing on INT1. Default: 0 (0: routing of single-tap event on INT1 disabled; 1: routing of single-tap event on INT1 enabled)
INT1_WU	Routing of wakeup event on INT1. Default value: 0 (0: routing of wakeup event on INT1 disabled; 1: routing of wakeup event on INT1 enabled)

Table 190. MD1_CFG register description (continued)

INT1_FF	Routing of free-fall event on INT1. Default value: 0 (0: routing of free-fall event on INT1 disabled; 1: routing of free-fall event on INT1 enabled)
INT1_DOUBLE _TAP	Routing of tap event on INT1. Default value: 0 (0: routing of double-tap event on INT1 disabled; 1: routing of double-tap event on INT1 enabled)
INT1_6D	Routing of 6D event on INT1. Default value: 0 (0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)
INT1_TILT	Routing of tilt event on INT1. Default value: 0 (0: routing of tilt event on INT1 disabled; 1: routing of tilt event on INT1 enabled)
INT1_TIMER	Routing of end counter event of timer on INT1. Default value: 0 (0: routing of end counter event of timer on INT1 disabled; 1: routing of end counter event of timer event on INT1 enabled)

9.79 MD2_CFG (5Fh)

Functions routing on INT2 register (r/w).
Table 191. MD2_CFG register

| INT2_ | INT2_- | INT2_- | INT2_WU | INT2_FF | INOUBLE_-
 INACT-
 STATE | SINGLE_
 TAP | INT2_6D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | INT2_TILT | INT2_- |
| :--- |
| IRON |

Table 192. MD2_CFG register description

| INT2_INACT_ |
| :--- | :--- |
STATE	\quad	Routing on INT2 of inactivity mode. Default: 0		
(0: routing on INT2 of inactivity disabled; 1: routing on INT2 of inactivity enabled)	$	$	INT2_SINGLE_	
:---	:---			
TAP	Single-tap recognition routing on INT2. Default: 0 (0: routing of single-tap event on INT2 disabled; 1: routing of single-tap event on INT2 enabled)			
INT2_WU	Routing of wakeup event on INT2. Default value: 0 (0: routing of wakeup event on INT2 disabled; 1: routing of wake-up event on INT2 enabled)			
INT2_FF	Routing of free-fall event on INT2. Default value: 0 (0: routing of free-fall event on INT2 disabled; 1: routing of free-fall event on INT2 enabled)			
INT2_DOUBLE	Routing of tap event on INT2. Default value: 0 (0: routing of double-tap event on INT2 disabled; 1: routing of double-tap event on INT2 enabled)			
TAP	Routing of 6D event on INT2. Default value: 0 (0: routing of 6D event on INT2 disabled; 1: routing of 6D event on INT2 enabled)			
INT2_6D	Routing of tilt event on INT2. Default value: 0 (0: routing of tilt event on INT2 disabled; 1: routing of tilt event on INT2 enabled)			
INT2_TILT	Routing of soft-iron/hard-iron algorithm end event on INT2. Default value: 0 (0: routing of soft-iron/hard-iron algorithm end event on INT2 disabled; 1: routing of soft-iron/hard-iron algorithm end event on INT2 enabled)			
INT2_IRON				

9.80 OUT_MAG_RAW_X_L (66h)

External magnetometer raw data (r).
Table 193. OUT_MAG_RAW_X_L register

D7	D6	D5	D4	D3	D2	D1	D0

Table 194. OUT_MAG_RAW_X_L register description

$D[7: 0]$	X-axis external magnetometer value (LSbyte)

9.81 OUT_MAG_RAW_X_H (67h)

External magnetometer raw data (r).
Table 195. OUT_MAG_RAW_X_H register

D15	D14	D13	D12	D11	D10	D9	D8

Table 196. OUT_MAG_RAW_X_H register description

$\mathrm{D}[15: 8]$	X-axis external magnetometer value (MSbyte)

9.82 OUT_MAG_RAW_Y_L (68h)

External magnetometer raw data (r).
Table 197. OUT_MAG_RAW_Y_L register

D7	D6	D5	D4	D3	D2	D1	D0

Table 198. OUT_MAG_RAW_Y_L register description

$D[7: 0]$	Y-axis external magnetometer value (LSbyte)

9.83 OUT_MAG_RAW_Y_H (69h)

External magnetometer raw data (r).
Table 199. OUT_MAG_RAW_Y_H register

D15	D14	D13	D12	D11	D10	D9	D8

Table 200. OUT_MAG_RAW_Y_H register description

$D[15: 8]$	Y-axis external magnetometer value (MSbyte)

9.84 OUT_MAG_RAW_Z_L (6Ah)

External magnetometer raw data (r).
Table 201. OUT_MAG_RAW_Z_L register

D7	D6	D5	D4	D3	D2	D1	D0

Table 202. OUT_MAG_RAW_Z_L register description

$D[7: 0]$	Z-axis external magnetometer value (LSbyte)

9.85 OUT_MAG_RAW_Z_H (6Bh)

External magnetometer raw data (r).
Table 203. OUT_MAG_RAW_Z_H register

D15	D14	D13	D12	D11	D10	D9	D8

Table 204. OUT_MAG_RAW_Z_H register description

$D[15: 8]$	Z-axis external magnetometer value (MSbyte)

10 Embedded functions register mapping

The table given below provides a list of the registers for the embedded functions available in the device and the corresponding addresses. Embedded functions registers are accessible when FUNC_CFG_EN is set to ' 1 ' in FUNC_CFG_ACCESS (01h).

Note: \quad All modifications of the content of the embedded functions registers have to be performed with the device in power-down mode.

Table 205. Registers address map - embedded functions

Name	Type	Register address		Default	Comment
		Hex	Binary		
SLV0_ADD	r/w	02	00000010	00000000	
SLV0_SUBADD	r/w	03	00000011	00000000	
SLAVEO_CONFIG	r/w	04	00000100	00000000	
SLV1_ADD	r/w	05	00000101	00000000	
SLV1_SUBADD	r/w	06	00000110	00000000	
SLAVE1_CONFIG	r/w	07	00000111	00000000	
SLV2_ADD	r/w	08	00001000	00000000	
SLV2_SUBADD	r/w	09	00001001	00000000	
SLAVE2_CONFIG	r/w	0A	00001010	00000000	
SLV3_ADD	r/w	OB	00001011	00000000	
SLV3_SUBADD	r/w	OC	00001100	00000000	
SLAVE3_CONFIG	r/w	OD	00001101	00000000	
DATAWRITE_SRC MODE_SUB_SLV0	r/w	OE	00001110	00000000	
PEDO_THS_REG	r/w	OF	00001111	00010000	
RESERVED	-	10-12		-	Reserved
SM_THS	r/w	13	00010011	00000110	
PEDO_DEB_REG	r/w	14	00010100	01101110	
STEP_COUNT_DELTA	r/w	15	00010101	00000000	
MAG_SI_XX	r/w	24	00100100	00001000	
MAG_SI_XY	r/w	25	00100101	00000000	
MAG_SI_XZ	r/w	26	00100110	00000000	
MAG_SI_YX	r/w	27	00100111	00000000	
MAG_SI_YY	r/w	28	00101000	00001000	
MAG_SI_YZ	r/w	29	00101001	00000000	
MAG_SI_ZX	r/w	2A	00101010	00000000	
MAG_SI_ZY	r/w	2B	00101011	00000000	

Table 205. Registers address map - embedded functions (continued)

Name	Type	Register address		Default	Comment
		Hex	Binary		
MAG_SI_ZZ	r / w	2C	00101100	00001000	
MAG_OFFX_L	r / w	2D	00101101	00000000	
MAG_OFFX_H	r / w	2 E	00101110	00000000	
MAG_OFFY_L	r / w	2F	00101111	00000000	
MAG_OFFY_H	r / w	30	00110000	00000000	
MAG_OFFZ_L	r / w	31	00110001	00000000	
MAG_OFFZ_H	r / w	32	00110010	00000000	

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

11 Embedded functions registers description

Note: \quad All modifications of the content of the embedded functions registers have to be performed with the device in power-down mode.

11.1 SLV0_ADD (02h)

$1^{2} \mathrm{C}$ slave address of the first external sensor (Sensor1) register (r/w).

Table 206. SLV0_ADD register

Slave0_ add6	Slave0_ add5	Slave0_- $_{\text {add4 }}$	Slave0_ add3	Slave0_- $^{\text {add2 }}$	Slave0_ add1	Slave0_- add0	rw_0

Table 207. SLVO_ADD register description

Slave0_add[6:0]	I^{2} C slave address of Sensor1 that can be read by sensor hub. Default value: 0000000
rw_0	Read/write operation on Sensor1. Default value: 0 (0: write operation; 1: read operation)

11.2 SLV0_SUBADD (03h)

Address of register on the first external sensor (Sensor1) register (r/w).

Table 208. SLVO_SUBADD register

Slave0_ reg7	Slave0_ reg6	Slave0_ reg5	Slave0_ reg4	Slave0_ reg3	Slave0_ reg2	Slave0_ reg1	Slave0_ reg0

Table 209. SLVO_SUBADD register description

Slave0_reg[7:0]	$\begin{array}{l}\text { Address of register on Sensor1 that has to be read/write according to the rw_0 bit } \\ \text { value in SLVO_ADD (02h). Default value: } 00000000\end{array}$

11.3 SLAVEO_CONFIG (04h)

First external sensor (Sensor1) configuration and sensor hub settings register (r/w).

Table 210. SLAVE0_CONFIG register

Slave0_ rate1	Slave0_ rate0	Aux_sens _on1	Aux_sens _on0	Src_mode	Slave0_ numop2	Slave0_- numop1	Slave0_ numop0

Table 211. SLAVE0_CONFIG register description

	Decimation of read operation on Sensor1 starting from the sensor hub trigger. Default value: 00 (00: no decimation 01: update every 2 samples 10: update every 4 samples 11: update every 8 samples)
Aux_sens_on[1:0]	Number of external sensors to be read by sensor hub. Default value: 00 (00: one sensor 01: two sensors 10: three sensors 11: four sensors)
Src_mode	Source mode conditioned read (1) $. ~ D e f a u l t ~ v a l u e: ~$
(0: source mode read disabled; 1: source mode read enabled)	

1. Read conditioned by the content of the register at address specified in

DATAWRITE_SRC_MODE_SUB_SLVO (OEh) register. If the content is non-zero the operation continues with the reading of the address specified in the SLVO_SUBADD (03h) register, else the operation is interrupted.

11.4 SLV1_ADD (05h)

$\mathrm{I}^{2} \mathrm{C}$ slave address of the second external sensor (Sensor2) register (r/w).

Table 212. SLV1_ADD register

Slave1_ add6	Slave1_- add5	Slave1_ add4	Slave1_ add3	Slave1_ add2	Slave1_ add1	Slave1_ add0	r_1 $^{\text {ad }}$

Table 213. SLV1_ADD register description

Slave1_add[6:0]	$I^{2} \mathrm{C}$ slave address of Sensor2 that can be read by sensor hub. Default value: 0000000
$r_{-} 1$	Read operation on Sensor2 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)

11.5 SLV1_SUBADD (06h)

Address of register on the second external sensor (Sensor2) register (r/w).

Table 214. SLV1_SUBADD register

Slave1_ reg7	Slave1_ reg6	Slave1_ reg5	Slave1_ reg4	Slave1_- reg3	Slave1_ reg2	Slave1_ reg1	Slave1_ reg0

Table 215. SLV1_SUBADD register description
Slave1_reg[7:0]
Address of register on Sensor2 that has to be read according to the r_1 bit value in SLV1_ADD (05h). Default value: 00000000

11.6 SLAVE1_CONFIG (07h)

Second external sensor (Sensor2) configuration register (r/w).

Table 216. SLAVE1_CONFIG register

Slave1_ rate1	Slave1_ rate0	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	Slave1 numop	Slave1 numop1	Slave1 numop

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 217. SLAVE1_CONFIG register description

	Decimation of read operation on Sensor2 starting from the sensor hub trigger. Default value: 00 (00: no decimation Slave1_rate[1:0]
	10: update every 2 samples 11: update every 4 samples 8 samples)
Slave1_numop[2:0]	Number of read operations on Sensor2.

11.7 SLV2_ADD (08h)

$1^{2} \mathrm{C}$ slave address of the third external sensor (Sensor3) register (r/w).

Table 218. SLV2_ADD register

Slave2_ add6	Slave2_- add5	Slave2_- add4	Slave2_ add3	Slave2_ add2	Slave2_ add1	Slave2_- add0	r_2

Table 219. SLV2_ADD register description

Slave2_add[6:0]	$I^{2} \mathrm{C}$ slave address of Sensor3 that can be read by sensor hub. Default value: 0000000
r_2	Read operation on Sensor3 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)

11.8 SLV2_SUBADD (09h)

Address of register on the third external sensor (Sensor3) register (r/w).

Table 220. SLV2_SUBADD register

Slave2_ reg7	Slave2_ reg6	Slave2_ reg5	Slave2_ reg4	Slave2_ reg3	Slave2_ reg2	Slave2_- reg1	Slave2_ reg0

Table 221. SLV2_SUBADD register description
Slave2_reg[7:0]
Address of register on Sensor3 that has to be read according to the $r_{-} 2$ bit value in SLV2_ADD (08h). Default value: 00000000

11.9 SLAVE2_CONFIG (OAh)

Third external sensor (Sensor3) configuration register (r/w).

Table 222. SLAVE2_CONFIG register

Slave2_ rate1	Slave2_- rate0	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	Slave2 numop2	Slave2 - numop1	Slave2 numop0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 223. SLAVE2_CONFIG register description

	Decimation of read operation on Sensor3 starting from the sensor hub trigger. Default value: 00 Slave2_rate[1:0] (00: no decimation 01: update every 2 samples 10: update every 4 samples $11:$ update every 8 samples)
Slave2_numop[2:0]	Number of read operations on Sensor3.

11.10 SLV3_ADD (0Bh)

$\mathrm{I}^{2} \mathrm{C}$ slave address of the fourth external sensor (Sensor4) register (r/w).

Table 224. SLV3_ADD register

Slave3_ add6	Slave3_ add5	Slave3_ add4	Slave3_ add3	Slave3_- add2	Slave3_ add1	Slave3_- add0	r_3

Table 225. SLV3_ADD register description

Slave3_add[6:0]	I^{2} C slave address of Sensor4 that can be read by the sensor hub. Default value: 0000000
r_3	Read operation on Sensor4 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)

11.11 SLV3_SUBADD (0Ch)

Address of register on the fourth external sensor (Sensor4) register (r/w).

Table 226. SLV3_SUBADD register

Slave3_ reg7	Slave3_ reg6	Slave3_ reg5	Slave3_ reg4	Slave3_ reg3	Slave3_ reg2	Slave3_- reg1	Slave3_ reg0

Table 227. SLV3_SUBADD register description
Slave3_reg[7:0]
Address of register on Sensor4 that has to be read according to the r_3 bit value in SLV3_ADD (OBh). Default value: 00000000

11.12 SLAVE3_CONFIG (ODh)

Fourth external sensor (Sensor4) configuration register (r/w).

Table 228. SLAVE3_CONFIG register

Slave3_ rate1	Slave3_ rate0	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	Slave3_ numop2	Slave3_- numop1	Slave3_ numop0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 229. SLAVE3_CONFIG register description

	Decimation of read operation on Sensor4 starting from the sensor hub trigger. Default value: 00 (00: no decimation Slave3_rate[1:0] 10: update every 2 samples 11: update every 4 samples 8 samples)
Slave3_numop[2:0]	Number of read operations on Sensor4.

11.13 DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh)

Data to be written into the slave device register (r/w).

Table 230. DATAWRITE_SRC_MODE_SUB_SLV0 register

Slave_ dataw7	Slave_ dataw6	Slave_ dataw5	Slave dataw4	Slave_ dataw3	Slave_ dataw2	Slave dataw1	Slave_ dataw0

Table 231. DATAWRITE_SRC_MODE_SUB_SLV0 register description

Slave_dataw[7:0]	Data to be written into the slave device according to the rw_0 bit in SLVO_ADD (02h) register or address to be read in source mode. Default value: 00000000

11.14 PEDO_THS_REG (OFh)

Pedometer minimum threshold and internal full-scale configuration register (r/w).
Table 232. PEDO_THS_REG register default values

PEDO_4G	-	-	THS MIN4	THS MIN3	THS MIN2	THS MIN1	THS MIN0

Table 233. PEDO_THS_REG register description

	This bit sets the internal full scale used in pedometer functions. Using this bit, saturation is avoided (e.g. FAST walk). $0:$ internal full scale $=2 \mathrm{~g}$. PEDO_ internal full scale 4 g (device full_scale @CTRL1_XL must be $\geq 4 \mathrm{~g}$, otherwise internal full scale is 2 g)
THS_MIN[4:0]	Configurable minimum threshold. $1 \mathrm{LSB}=16 \mathrm{mg}$ @PEDO_4G=0, 1LSB $=32 \mathrm{mg}$ @PEDO_4G=1

11.15 SM_THS (13h)

Significant motion configuration register (r/w).

Table 234. SM_THS register

$\underset{7}{\text { SM_THS_ }}$	$\mathrm{SM}_{6} \mathrm{SHS}_{-}$	$\mathrm{SM}_{5} \mathrm{THS}$	$\underset{4}{\overline{S M}}$	$\underset{3}{\text { SM_THS }}$	$\underset{2}{\text { SM_THS }}$	$\mathrm{SM}_{1} \mathrm{THS}$	$\underset{0}{\text { SM_THS_}_{-}}$

Table 235. SM_THS register description
SM_THS[7:0] \quad Significant motion threshold. Default value: 00000110

11.16 PEDO_DEB_REG (14h)

Pedometer debounce configuration register (r/w).

Table 236. PEDO_DEB_REG register default values

DEB	DEB	DEB	DEB	DEB_	DEB	DEB	DEB
TIME4	TIME3	TIME2	TIME1	TIME0	STEP2	STEP1	STEP0

Table 237. PEDO_DEB_REG register description

DEB_TIME[4:0]	Debounce time. If the time between two consecutive steps is greater than DEB_TIME*80ms, the debouncer is reactivated. Default value: 01101
DEB_STEP[2:0]	Debounce threshold. Minimum number of steps to increment the step counter (debounce). Default value: 110

11.17 STEP_COUNT_DELTA (15h)

Time period register for step detection on delta time (r/w).
Table 238. STEP_COUNT_DELTA register

SC_	SC_	SC_	SC_-	SC_	SC_	SC_-	SC_
DELTA_7	DELTA_6	DELTA_5	DELTA__4	DELTA_3	DELTA_2	DELTA_1	DELTA_0

Table 239. STEP_COUNT_DELTA register description

$$
\begin{array}{|l|l|}
\hline \text { SC_DELTA[7:0] } & \text { Time period value }{ }^{(1)}(1 \text { LSB }=1.6384 \mathrm{~s}) \\
\hline
\end{array}
$$

1. This value is effective if the TIMER_EN bit of the TAP_CFG (58h) register is set to 1 and the TIMER_HR bit of the WAKE_UP_DUR (5Ch) register is set to 0 .

11.18 MAG_SI_XX (24h)

Soft-iron matrix correction register (r/w).
Table 240. MAG_SI_XX register

MAG_SI_-	MAG_SI_ XX_7	MAG_SI_ XX_6	MAG_SI_ XX_4	MAG_SI_ XX_3	MAG_SI_ XX_2	MAG_SI_ XX_1	MAG_SI_ XX_0

Table 241. MAG_SI_XX register description
MAG_SI_XX_[7:0] \quad Soft-iron correction row1 col1 coefficient ${ }^{(1)}$. Default value: 00001000

1. Value is expressed in sign-module format.

11.19 MAG_SI_XY (25h)

Soft-iron matrix correction register (r/w).
Table 242. MAG_SI_XY register

$\begin{gathered} \hline \text { MAG_SI_ } \\ X Y{ }^{-} 7 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XY_6 } \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ \text { XY_5 } \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ \mathrm{XY}^{-} 4 \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ \text { XY_3 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XY_2 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XY_1 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XY_0 } \end{gathered}$

Table 243. MAG_SI_XY register description
MAG_SI_XY_[7:0] Soft-iron correction row1 col2 coefficient ${ }^{(1)}$. Default value: 00000000

1. Value is expressed in sign-module format.

11.20 MAG_SI_XZ (26h)

Soft-iron matrix correction register (r/w).

Table 244. MAG_SI_XZ register

MAG_SI_	MAG_SI_	MAG_SI	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_	MAG_SI_
XZ_7	XZ_6	XZ_5	XZ_4	XZ_3	XZ_2	XZ_1	XZ_0

Table 245. MAG_SI_XZ register description

```
MAG_SI_XZ_[7:0] Soft-iron correction row1 col3 coefficient (1). Default value: 00000000
```

1. Value is expressed in sign-module format.

11.21 MAG_SI_YX (27h)

Soft-iron matrix correction register (r/w).
Table 246. MAG_SI_YX register

| MAG_SI_ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YX_7 | YX_6 | YX_5 | YX_4 | YX_3 | YX_2 | YX_1 | YX_0 |

Table 247. MAG_SI_YX register description
MAG_SI_YX_[7:0] \quad Soft-iron correction row2 col1 coefficient ${ }^{(1)}$. Default value: 00000000

1. Value is expressed in sign-module format.

11.22 MAG_SI_YY (28h)

Soft-iron matrix correction register (r/w).
Table 248. MAG_SI_YY register

$\begin{gathered} \hline \text { MAG_SI_ } \\ \mathrm{YY}_{-} 7 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { YY_6 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { YY_5 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { YY_4 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { YY_3 } \end{gathered}$	$\begin{gathered} \text { MAG_SI } \\ \mathrm{YY}^{-} \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { YY_1 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI } \\ \text { YY_O } \end{gathered}$

Table 249. MAG_SI_YY register description
MAG_SI_YY_[7:0] \quad Soft-iron correction row2 col2 coefficient ${ }^{(1)}$. Default value: 00001000

1. Value is expressed in sign-module format.

11.23 MAG_SI_YZ (29h)

Soft-iron matrix correction register (r/w).
Table 250. MAG_SI_YZ register

$\begin{gathered} \text { MAG_SI_ } \\ \mathrm{YZ}_{-} \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { YZ_6 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ Y Z _5 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ Y Z-4 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI } \\ \text { YZ } 3 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI } \\ Y Z 2 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI__ } \\ \text { YZ_1 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ Y Z _0 \end{gathered}$

Table 251. MAG_SI_YZ register description

MAG_SI_YZ_[7:0]	Soft-iron correction row2 col3 coefficient ${ }^{(1)}$. Default value: 00000000

1. Value is expressed in sign-module format.

11.24 MAG_SI_ZX (2Ah)

Soft-iron matrix correction register (r/w).
Table 252. MAG_SI_ZX register

$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZX_7 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZX_6 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZX_5 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZX_4 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ 7 \times 3 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZX_2 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZX_1 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZX_0 } \end{gathered}$

Table 253. MAG_SI_ZX register description

MAG_SI_ZX_[7:0]	Soft-iron correction row3 col1 coefficient ${ }^{(1)}$. Default value: 00000000

[^1]
11.25 MAG_SI_ZY (2Bh)

Soft-iron matrix correction register (r/w).

Table 254. MAG_SI_ZY register

$\begin{gathered} \text { MAG_SI_ } \\ \text { ZY_7 } \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ \text { ZY_6 } \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ Z Y-5 \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ Z Y_{-} \end{gathered}$	$\begin{gathered} \text { MAG_SI } \\ \text { ZY_3 } \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ \text { ZY_2 } \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ Z Y_{-} _1 \end{gathered}$	$\begin{gathered} \text { MAG_SI } \\ Z Y \text { _O } \end{gathered}$

Table 255. MAG_SI_ZY register description

$$
\begin{array}{|l|l|}
\hline \text { MAG_SI_ZY_[7:0] } & \text { Soft-iron correction row3 col2 coefficient }{ }^{(1)} \text {. Default value: } 00000000 \\
\hline
\end{array}
$$

1. Value is expressed in sign-module format.

11.26 MAG_SI_ZZ (2Ch)

Soft-iron matrix correction register (r/w).

Table 256. MAG_SI_ZZ register

$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_7 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_6 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_5 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_4 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_3 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_2 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_1 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_0 } \end{gathered}$

Table 257. MAG_SI_ZZ register description

1. Value is expressed in sign-module format.

11.27 MAG_OFFX_L (2Dh)

Offset for X -axis hard-iron compensation register (r/w). The value is expressed as a 16 -bit word in two's complement.

Table 258. MAG_OFFX_L register

| MAG_OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X_L_7 | X_L_6 | X_L_5 | X_L_4 | X_L_3 | X_L_2 | X_L_1 | X_L_0 |

Table 259. MAG_OFFX_L register description
MAG_OFFX_L_[7:0] \quad Offset for X-axis hard-iron compensation. Default value: 00000000

11.28 MAG_OFFX_H (2Eh)

Offset for X -axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 260. MAG_OFFX_H register

| MAG_OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X_H_7 | X_H_6 | X_H_5 | X_H_4 | X_H_3 | X_H_2 | X_H_1 | X_H_0 |

Table 261. MAG_OFFX_L register description

[^2]
11.29 MAG_OFFY_L (2Fh)

Offset for Y-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 262. MAG_OFFY_L register

| MAG_OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y_L_7 | Y_L_6 | Y_L_5 | Y_L_4 | Y_L_3 | Y_L_2 | Y_L_1 | Y_L_0 |

Table 263. MAG_OFFY_L register description

```
MAG_OFFY_L_[7:0] Offset for Y-axis hard-iron compensation. Default value: 00000000
```


11.30 MAG_OFFY_H (30h)

Offset for Y -axis hard-iron compensation register (r/w). The value is expressed as a 16 -bit word in two's complement.

Table 264. MAG_OFFY_H register

| MAG_OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $Y_{-} \mathbf{H}_{-} 7$ | $Y_{-} \mathbf{H}_{-}$ | $Y_{-} \mathbf{H}_{-} 5$ | $Y_{-} \mathbf{H}_{-}$ | $Y_{-} \mathbf{H}_{-} 3$ | $Y_{-} \mathbf{H}_{-}$ | Y_H_1 2 | $Y_{-} \mathbf{H}_{-} 0$ |

Table 265. MAG_OFFY_L register description
MAG_OFFY_H_[7:0] \quad Offset for Y-axis hard-iron compensation. Default value: 00000000

11.31 MAG_OFFZ_L (31h)

Offset for Z-axis hard-iron compensation register (r/w). The value is expressed as a 16 -bit word in two's complement.

Table 266. MAG_OFFZ_L register

$\begin{gathered} \text { MAG_OFF } \\ \text { Z_L_7 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_L_6 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_L_5 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ Z \quad \text { L_4 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ Z _ \text {L_3 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_L_2 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_L_1 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_L_0 } \end{gathered}$

Table 267. MAG_OFFZ_L register description
MAG_OFFZ_L_[7:0] Offset for Z-axis hard-iron compensation. Default value: 00000000

11.32 MAG_OFFZ_H (32h)

Offset for Z-axis hard-iron compensation register (r/w). The value is expressed as a 16 -bit word in two's complement.

Table 268. MAG_OFFZ_H register

$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_7 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_6 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_5 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_4 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_3 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_2 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_1 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_0 } \end{gathered}$

Table 269. MAG_OFFX_L register description

[^3]
12 Soldering information

The LGA package is compliant with the ECOPACK ${ }^{\circledR}$, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020
Land pattern and soldering recommendations are available at www.st.com/mems.

13 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

13.1 LGA-14 package information

Figure 16. LGA-14 2.5×3x0.86 mm 14L package outline and mechanical data

13.2 LGA-14 packing information

Figure 17. Carrier tape information for LGA-14 package

Figure 18. LGA-14 package orientation in carrier tape

Figure 19. Reel information for carrier tape of LGA-14 package

Table 270. Reel dimensions for carrier tape of LGA-14 package

Reel dimensions (mm)	
A (max)	330
B (min)	1.5
C	13 ± 0.25
D (min)	20.2
N (min)	60
G	$12.4+2 /-0$
T (max)	18.4

14 Revision history

Table 271. Document revision history

Date	Revision	Changes
03-Nov-2014	1	Initial release
18-Dec-2014	2	$\begin{array}{l}\text { Updated Section 2: Embedded low-power features and subsection } \\ \text { Updated Section 5.4: FIFO and subsections }\end{array}$
Added Section 5.4.7: Filter block diagrams		
Updated IddLP in Table 4 and TODR in Table 5: Temperature sensor characteristics		
Updated Table 16: Registers address map		
Revised registers in Section 9: Register description		
Updated Table 205: Registers address map - embedded functions		
Revised registers in Section 11: Embedded functions registers description		
Textual update in Figure 16: LGA-14 2.5x3x0.86 mm 14L package outline and		
mechanical data		

Table 271. Document revision history (continued)

Date	Revision	Changes
20-Jul-2017	9	Corrected Vin in Table 8: Absolute maximum ratings Specified SPI mode 3 in Section 4.4.1: SPI - serial peripheral interface and throughout Section 6: Digital interfaces Updated Table 82: STATUS_REG register
18-Aug-2017	10	Updated gyroscope full-scale

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics - All rights reserved

[^0]: a. The LSM6DS3H is recommended for optimal OIS/EIS performance.

[^1]: 1. Value is expressed in sign-module format.
[^2]: MAG_OFFX_H_[7:0]
 Offset for X-axis hard-iron compensation. Default value: 00000000

[^3]: MAG_OFFZ_H_[7:0]
 Offset for Z-axis hard-iron compensation. Default value: 00000000

