IEEE1394 ONE PORT CABLE TERMINATION NETWORK WITH ESD PROTECTION DIODES

MAIN APPLICATIONS

IEEE1394 line termination on:
■ Desktops

- Notebooks
- Digital Camcorders
- External storage drive
- Set Top Box

FEATURES

■ Line termination for 2 twisted pairs TPA and TPB

- The device complies with IEEE1394 requirement for differential and common more impedance on TPA and TPB line
- Monolithic device with complete termination for one IEEE1394 connection

DESCRIPTION

The ST1394-01SC6 is an integrated te mination network that optimizes board layout o! tie PHY layer in IEEE1394 one port cable application.
This monolithic device is testec' r cording to ESD requirement described in IECú1000-4-2 standard level 2. ST1394-0; SS, 6 device ruggednt co_{o} limits overvoltage at the 1's 94 tranceiver in.p.ts and outputs below ac nt ntable limits.
The Sils94-01SC6 impiel 6 Its IEEE1394 recremmendation for line ter nination of TPA and it ? differential lintc. Escellent matching of the termination resioior will minimize common mode noise that is reecded to improve communication speed.

E'E JEFITS

- Resistor matching between TPA / TPB lines.
- Resistor matching between TPA+ / TPA-

■ Single chip devise versus 11 discretes

- No need for additional overvoltage protection device

■ High level of integration

Table 1. Truer Code

ST1394-01.CC6	Marking

Figura : Pinout Configuration

TM: IPAD is a trademark of STMicroelectronics.

Table 2: Absolute Ratings $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter and test conditions	Value	Unit
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-55 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum junction temperature	+150	${ }^{\circ} \mathrm{C}$
TL	Lead solder temperature (10 second duration)	260	${ }^{\circ} \mathrm{C}$

Table 3: Electrical Characteristics ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Min.	Typ.	Max.	Unit
R1, R2, R3, R4	Bus termination resistors (note 1)		55		Ω
C_{Z}	Zener capacitance			5	NF
R_{pd}	Pull down resistor		5		$\mathrm{k} \Omega$
C	Capacitor in parallel with R_{pd}		250	pF	
(R1+R2), $(R 3+R 4)$	Bus termination impedance	102	115	18	Ω

Note 1: matching between 55Ω resistors is better than $\pm 1 \%$.
Figure 2: Functionnal Diagram

APPLICATION INFORMATION

The functional diagram here above presents a IEEE1394-a cable and shows how to connect the ST1394-01SC6 in order to correctly terminate and filter the TPA and TPB lines.

TECHNICAL INFORMATION: Frequency behavior of data and strobe signals

Figure 3: Measurement confitions

Figure 5: TPA line: comparison between Aplac model and device

Figure 4: Test Board

Figure 6: TPB line• co: $n_{1} \boldsymbol{\sim}$:ison between Aplac model and device

Note: For á cur.vєnıence reason, frequency response have been carried out on both TPA and TPB lines as if TPA+ and TPA- or TPB+ and TPB-wfie ${ }^{*} \in$ Pectively Inputs and Outputs lines

Figure 7: Crosstalk between TPA and TPB lines

Figure 8: CST1394 APLAC model

Figure 9: SOT23-6L Package Mechanical Data

Figure 10: SOT23-6L Foot print dimensions (in millimeters)

Table 4: Ordering Information

Ordering code	Marking	Package	Weight	Base qty	Delivery mode
ST1394-01SC6	139	SOT23-6L	16.7 mg	3000	Tape \& reel

Note: More informations are available in the application note:
AN1783: "HOW TO MAKE FIRE-WIRE COMMUNICATION PORT SAFE?"
Table 5: Revision History

Date	Revision	Description of Changes
Jul-2003	1 A	First issue.
$28-$ Oct-2004	2	SOT23-6L package dimensions change for reference "D" from 3.0 millimeters (0.118 inches) to 3.05 millimeters (0.120 inches).

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

