

Vishay Semiconductors

High Efficiency LED, Ø 5 mm Untinted Non-Diffused Package

DESCRIPTION

The TLHY5800 was developed for standard applications which need a very small radiation angle or a very high luminous intensity.

It is housed in a 5 mm untinted non-diffused plastic package. The very small viewing angle of this device provides a very high luminous intensity.

The LED is categorized in luminous intensity and additionally in wavelength groups.

That allows users to assemble the LED with uniform appearance.

100

250

PRODUCT GROUP AND PACKAGE DATA

Product group: LEDPackage: 5 mm

TLHY5800

Product series: standard
Angle of half intensity: ± 4°

Yellow

FEATRUES

- Standard T-1¾ package
- Small mechanical tolerances
- Suitable for DC and high peak current
- · Very small viewing angle
- · Very high intensity
- · Luminous intensity categorized
- · Color categorized

 ESD-withstand voltage up to 2 kV according to JESD22-A114-B

Pb-free

RoHS

HALOGEN FREE

<u>GREEN</u> (5-2008)

APPLICATIONS

- · Status lights
- Off / on indicator
- Lightpipe
- Outdoor display
- Medical instruments
- · Maintenance lights
- · Legend lights

594

10

2.4

3

20

GaAsP on GaP

PARTS TABLE								
PART COLOF		LUMINOUS INTENSITY (mcd)	at I _F	WAVELENGTH (nm)	at I _F	FORWARD VOLTAG (V)	at I _F	TECHNOLOGY
		MIN. TYP. MAX.	(IIIA)	MIN. TYP. MAX.	(IIIA)	MIN. TYP. MAX	. (IIIA)	

20

581

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C unless otherwise specified) TLHY5800					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V _R	6	V	
DC forward current	T _{amb} ≤ 65 °C	I _F	30	mA	
Surge forward current	t _p ≤ 10 μs	I _{FSM}	1	Α	
Power dissipation	T _{amb} ≤ 65 °C	P _V	100	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	- 40 to + 100	°C	
Storage temperature range		T _{stg}	- 55 to + 100	°C	
Soldering temperature	t ≤ 5 s, 2 mm from body	T _{sd}	260	°C	
Thermal resistance junction/ambient		R_{thJA}	350	K/W	

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 ^{\circ}C$, unless otherwise specified) TLHY5800, YELLOW						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity (1)	I _F = 20 mA	I _V	100	250	-	mcd
Dominant wavelength	I _F = 10 mA	λ_{d}	581	-	594	nm
Peak wavelength	I _F = 10 mA	λ_{p}	-	585	-	nm
Angle of half intensity	I _F = 10 mA	φ	-	± 4	-	0
Forward voltage	I _F = 20 mA	V _F	-	2.4	3	V
Reverse voltage	I _R = 10 μA	V _R	6	15	-	V
Junction capacitance	$V_R = 0 V, f = 1 MHz$	C _j	-	50	-	pF

Note

⁽¹⁾ In one packing unit I_{Vmin.}/I_{Vmax.} ≤ 0.5

LUMINOUS INTENSITY CLASSIFICATION					
GROUP	LIGHT INTENSITY (mcd)				
STANDARD	MIN.	MAX.			
W	100	200			
Х	130	260			
Υ	180	360			
Z	240	480			
AA	320	640			
BB	430	860			
CC	575	1150			
DD	750	1500			
EE	1000	2000			
FF	1350	2700			

Note

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped in any one bag. In order to ensure availability, single wavelength groups will not be orderable.

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

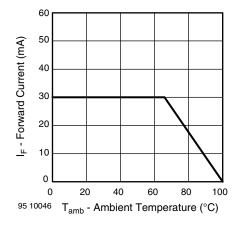


Fig. 1 - Forward Current vs. Ambient Temperature

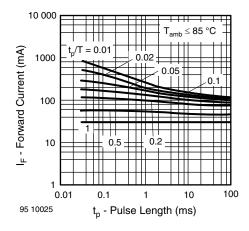


Fig. 2 - Forward Current vs. Pulse Length

[•] Luminous intensity is tested at a current pulse duration of 25 ms and an accuracy of \pm 11 %.

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each bag (there will be no mixing of two groups on each bag).

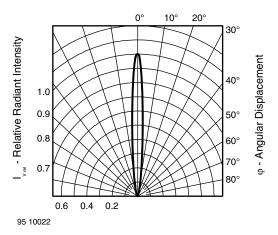
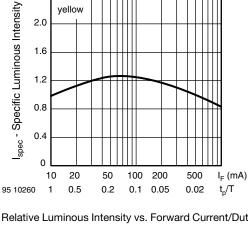



Fig. 3 - Relative Luminous Intensity vs. Angular Displacement

yellow

2.0

Fig. 6 - Relative Luminous Intensity vs. Forward Current/Duty Cycle

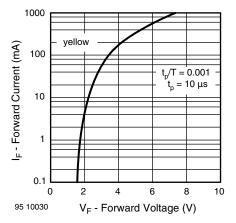


Fig. 4 - Forward Current vs. Forward Voltage

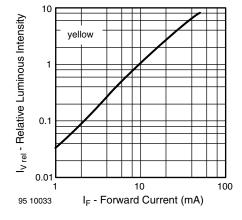


Fig. 7 - Relative Luminous Intensity vs. Forward Current

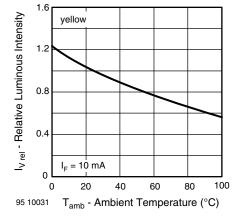
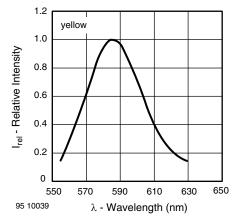
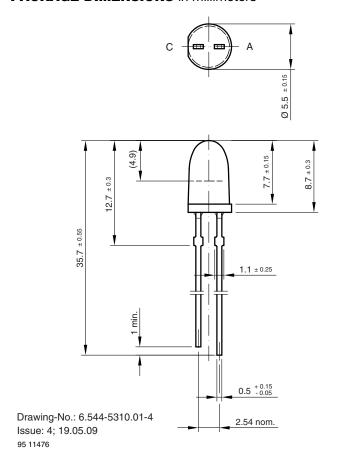
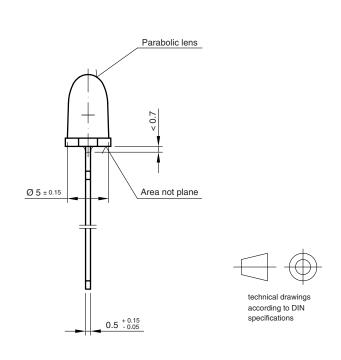


Fig. 5 - Relative Luminous Intensity vs. Ambient Temperature


Fig. 8 - Relative Intensity vs. Wavelength

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED