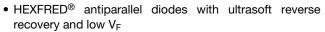


Vishay Semiconductors

"Half Bridge" IGBT MTP (Ultrafast NPT IGBT), 80 A



MTP

PRIMARY CHARACTERISTICS					
V_{CES}	1200 V				
$V_{CE(on)}$ typical at $V_{GE} = 15 \text{ V}$	3.36 V				
I_C at $T_C = 25$ °C	80 A				
Speed	8 kHz to 30 kHz				
Package	MTP				
Circuit configuration	Half bridge				

FEATURES

- Ultrafast non punch through (NPT) technology
- Positive V_{CE(on)} temperature coefficient
- 10 µs short circuit capability
- Square RBSOA

- Al₂O₃ DBC
- Very low stray inductance design for high speed operation
- UL approved file E78996
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

Note

This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

BENEFITS

- Optimized for welding, UPS and SMPS applications
- Rugged with ultrafast performance
- Benchmark efficiency above 20 kHz
- Outstanding ZVS and hard switching operation
- · Low EMI, requires less snubbing
- Excellent current sharing in parallel operation
- Direct mounting to heatsink
- PCB solderable terminals
- · Very low junction to case thermal resistance

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter breakdown voltage	V _{CES}		1200	V	
Continuous collector current		T _C = 25 °C	80		
Continuous collector current	I _C	T _C = 104 °C	40		
Pulsed collector current	I _{CM}		160	1	
Clamped inductive load current	I _{LM}		160	- A	
Diode continuous forward current	I _F	T _C = 105 °C	21		
Diode maximum forward current	I _{FM}		160		
Gate to emitter voltage	V _{GE}		± 20	V	
RMS isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500		
Maximum power dissipation (only IGBT)	В	T _C = 25 °C	463	W	
	P_{D}	T _C = 100 °C	185] vv	

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES}	V _{GE} = 0 V, I _C = 250 μA	1200	-	-	V
Temperature coefficient of breakdown voltage	$\Delta V_{(BR)CES}/\Delta T_J$	V _{GE} = 0 V, I _C = 3 mA (25 °C to 125 °C)	-	+1.1	-	V/°C
Collector to emitter saturation voltage V _{CE(on)}		$V_{GE} = 15 \text{ V}, I_{C} = 40 \text{ A}$	-	3.36	3.59	
	V _{CE(on)}	V _{GE} = 15 V, I _C = 80 A	-	4.53	4.91	V
		V _{GE} = 15 V, I _C = 40 A, T _J = 150 °C	=.	3.88	4.10	
		V _{GE} = 15 V, I _C = 80 A, T _J = 150 °C	-	5.35	5.68	
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}, I_{C} = 500 \mu A$	4	-	6	
Temperature coefficient of threshold voltage	$V_{GE(th)}/\Delta T_J$	V _{CE} = V _{GE} , I _C = 1 mA (25 °C to 125 °C)	-	-12	-	mV/°C
Transconductance	9 _{fe}	$V_{CE} = 50 \text{ V}, I_{C} = 40 \text{ A}, PW = 80 \mu \text{s}$	-	35	-	S
Zero gate voltage collector current I _{CES}		V _{GE} = 0 V, V _{CE} = 1200 V, T _J = 25 °C	-	-	250	μΑ
	I _{CES}	V _{GE} = 0 V, V _{CE} = 1200 V, T _J = 125 °C	-	0.4	1.0	mA
		V _{GE} = 0 V, V _{CE} = 1200 V, T _J = 150 °C	-	0.2	10	I IIIA
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V	-	-	± 250	nA

SWITCHING CHARACTERISTICS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Qg	I _C = 40 A	-	399	599	
Gate to emitter charge (turn-on)	Q_{ge}	V _{CC} = 600 V	-	43	65	nC
Gate to collector charge (turn-on)	Q _{gc}	V _{GE} = 15 V	-	187	281	
Turn-on switching loss	E _{on}	$V_{CC} = 600 \text{ V}, I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V},$	-	1.14	1.71	
Turn-off switching loss	E _{off}	$R_g = 5 \Omega$, L = 200 μ H, $T_J = 25 ^{\circ}$ C, energy losses include tail and diode	-	1.35	2.02	
Total switching loss	E _{tot}	reverse recovery	-	2.49	3.73	
Turn-on switching loss	E _{on}	$V_{CC} = 600 \text{ V}, I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V},$	-	1.60	2.40	mJ
Turn-off switching loss	E _{off}	$R_g = 5 \Omega$, L = 200 μH, T_J = 125 °C, energy losses include tail and diode reverse recovery	-	1.62	2.43	
Total switching loss	E _{tot}		-	3.22	4.82	
Input capacitance	C _{ies}	V _{GE} = 0 V V _{CC} = 30 V	-	5521	8282	
Output capacitance	C _{oes}		-	380	570	pF
Reverse transfer capacitance	C _{res}	f = 1.0 MHz	-	171	257	
Reverse bias safe operating area	RBSOA	$\begin{split} T_J &= 150 \text{ °C, } I_C = 160 \text{ A} \\ V_{CC} &= 1000 \text{ V, } V_p = 1200 \text{ V} \\ R_g &= 5 \Omega, V_{GE} = + 15 \text{ V to 0 V} \end{split}$	Fullsquare			
Short circuit safe operating area	SCSOA	$T_J = 150 ^{\circ}\text{C},$ $V_{CC} = 900 \text{V}, V_p = 1200 \text{V}$ $R_g = 5 \Omega, V_{GE} = +15 \text{V} \text{to 0 V}$	10	-	-	μs

DIODE SPECIFICATIONS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
		I _C = 40 A	-	2.98	3.38	
Diode forward voltage drop V _{FM}	I _C = 80 A	-	3.90	4.41	V	
	I _C = 40 A, T _J = 125 °C	-	3.08	3.39		
	I _C = 80 A, T _J = 125 °C	-	4.29	4.72		
	I _C = 40 A, T _J = 150 °C	-	3.12	3.42		
Reverse recovery energy of the diode	E _{rec}	V _{GE} = 15 V, R _q = 5 Ω, L = 200 μH	-	574	861	μJ
Diode reverse recovery time	t _{rr}	$V_{CC} = 600 \text{ V}, I_{C} = 40 \text{ A}$		120	180	ns
Peak reverse recovery current	I _{rr}	T _J = 125 °C	-	43	65	Α

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Operating junction temperature range	TJ		-40	-	150	°C
Storage temperature range	T _{Stg}		-40	-	125	
Junction to case	В		-	-	0.29	
Diode	- R _{thJC}		-	-	0.61	°C/W
Case to sink per module	R _{thCS}	Heatsink compound thermal conductivity = 1 W/mK	-	0.06	-	
Clearance (1)		External shortest distance in air between 2 terminals	5.5	-	-	
Creepage (2)		Shortest distance along external surface of the insulating material between 2 terminals	8	-	-	mm
Mounting torque to heatsink		A mounting compound is recommended and the torque should be checked after 3 hours to allow for the spread of the compound. Lubricated threads.	r 3 ± 10 %		Nm	
Weight				66		g

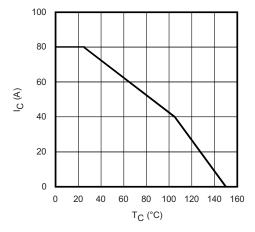


Fig. 1 - Maximum DC Collector Current vs. Case Temperature

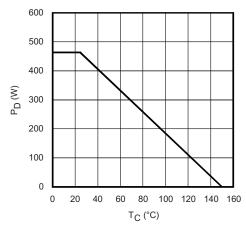


Fig. 2 - Power Dissipation vs. Case Temperature

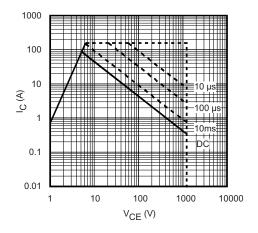


Fig. 3 - Forward SOA $T_C = 25$ °C; $T_J \le 150$ °C

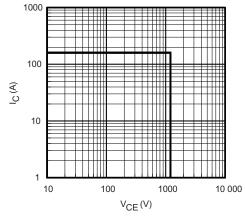


Fig. 4 - Reverse BIAS SOA $T_J = 150$ °C; $V_{GE} = 15$ V

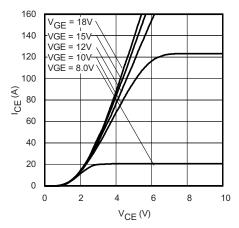


Fig. 5 - Typical IGBT Output Characteristics $T_J =$ - 40 °C; $t_p =$ 80 μs

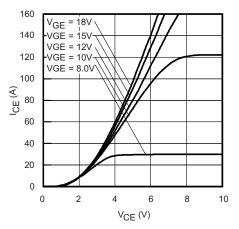


Fig. 6 - Typical IGBT Output Characteristics $T_J = 25\ ^{\circ}C;\, t_p = 80\ \mu s$

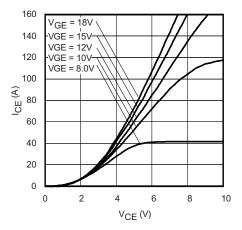


Fig. 7 - Typical IGBT Output Characteristics $T_J = 125~^{\circ}C; t_p = 80~\mu s$

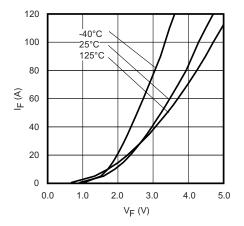


Fig. 8 - Typical Diode Forward Characteristics $t_p = 80 \; \mu s$

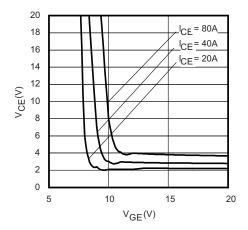


Fig. 9 - Typical V_{CE} vs. V_{GE} T_{J} = -40 °C

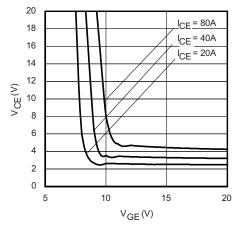


Fig. 10 - Typical V_{CE} vs. V_{GE} T_{J} = 25 °C

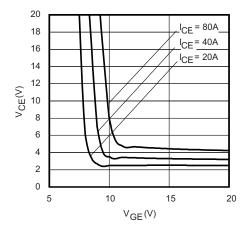


Fig. 11 - Typical V_{CE} vs. V_{GE} T_{J} = 125 °C

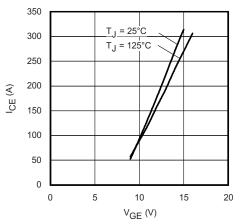


Fig. 12 - Typical Transfer Characteristics V_{CE} = 50 V; t_p = 10 μs

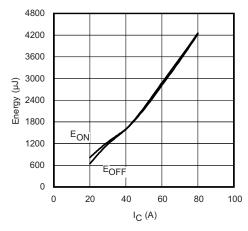


Fig. 13 - Typical Energy Loss vs. I_C T_J = 125 °C; L = 250 μ H; V_{CE} = 400 V R_g = 5 Ω ; V_{GE} = 15 V

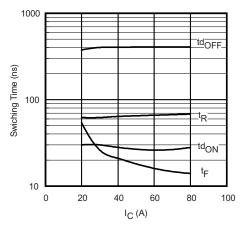


Fig. 14 - Typical Switching Time vs. I_C T_J = 125 °C; L = 250 μ H; V_{CE} = 400 V R_g = 5 Ω ; V_{GE} = 15 V

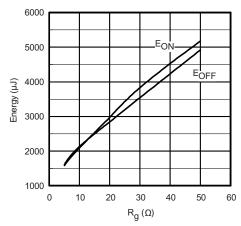


Fig. 15 - Typical Energy Loss vs. R_g T_J = 150 °C; L = 250 μ H; V_{CE} = 600 V I_{CE} = 40 A; V_{GE} = 15 V

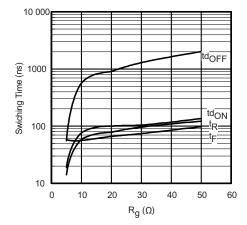


Fig. 16 - Typical Switching Time vs. R_g $T_J = 150$ °C; $L = 250~\mu H$; $V_{CE} = 600~V$ $I_{CE} = 40~A$; $V_{GE} = 15~V$

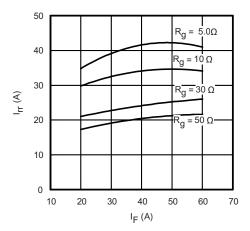


Fig. 17 - Typical Diode I_{rr} vs. I_{F} T_{J} = 125 °C

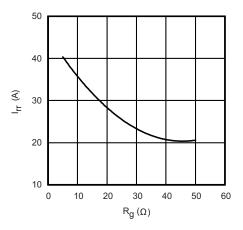


Fig. 18 - Typical Diode I_{rr} vs. R_g $T_J = 125$ °C; $I_F = 40$ A

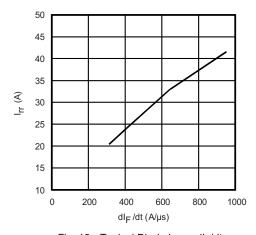


Fig. 19 - Typical Diode I $_{rr}$ vs. dI $_F$ /dt V $_{CC}$ = 600 V; V $_{GE}$ = 15 V; I $_{CE}$ = 40 A; T $_{J}$ = 125 °C

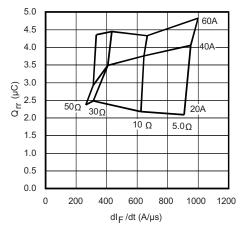


Fig. 20 - Typical Diode Q_{rr} vs. dI_F/dt V_{CC} = 600 V; V_{GE} = 15 V; T_J = 125 °C

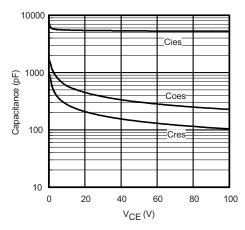


Fig. 21 - Typical Capacitance vs. V_{CE} $V_{GE} = 0 \text{ V}$; f = 1 MHz

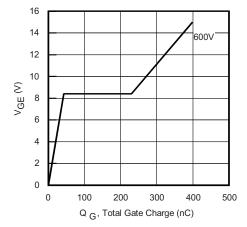


Fig. 22 - Typical Gate Charge vs. V_{GE} $I_{CE}=5.0$ A; $L=600~\mu H$

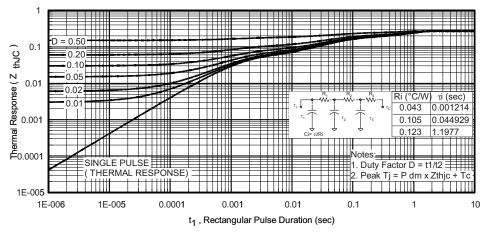


Fig. 23 - Maximum Transient Thermal Impedance, Junction to Case (IGBT)

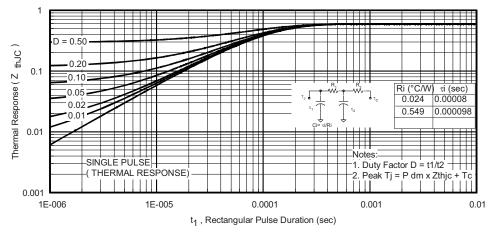


Fig. 24 - Maximum Transient Thermal Impedance, Junction to Case (Diode)

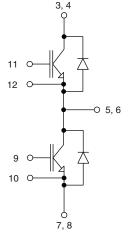
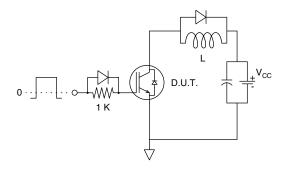



Fig. 25 - Electrical diagram

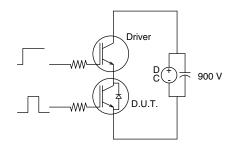


Fig. CT.1 - Gate Charge Circuit (Turn-Off)

Fig. CT.3 - S.C. SOA Circuit

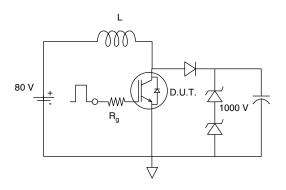


Fig. CT.2 - RBSOA Circuit

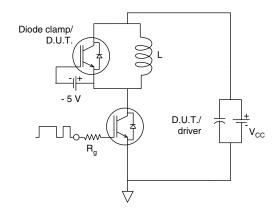
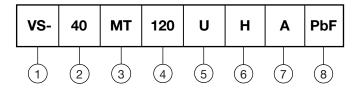
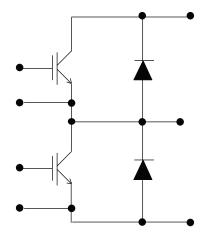



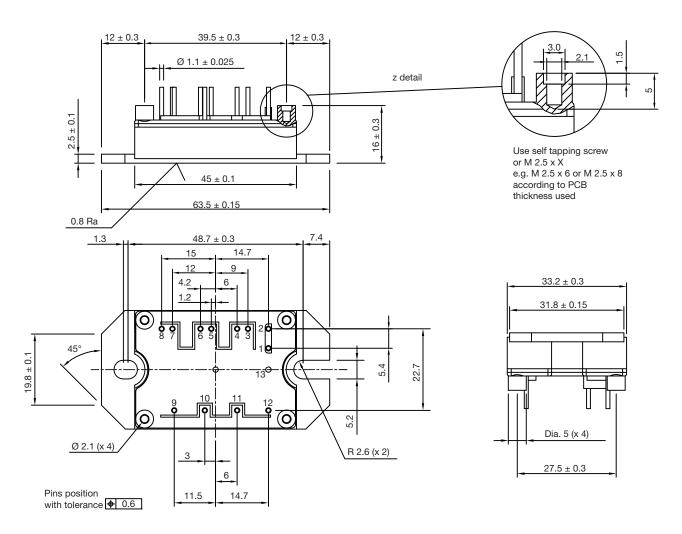
Fig. CT.4 - Switching Loss Circuit

ORDERING INFORMATION TABLE


Device code

- 1 Vishay Semiconductors product
- 2 Current rating (40 = 40 A)
- Essential part number
- 4 Voltage code (120 = 1200 V)
- 5 Speed / type (U = ultrafast IGBT)
- **6** Circuit configuration (H = half bridge)
- **7** $A = Al_2O_3$ DBC substrate
- 8 PbF = lead (Pb)-free

CIRCUIT CONFIGURATION



LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95175			

MTP

DIMENSIONS in millimeters

Note

· Unused terminals are not assembled in the package

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED