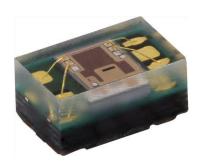
RoHS

COMPLIANT

HALOGEN


FREE GREEN

www.vishay.com

Vishay Semiconductors

RGBCIR Color Sensor With I²C Interface

ADDITIONAL RESOURCES

DESCRIPTION

VEML3328 sensor senses red, green, blue, clear, and IR light by incorporating photodiodes, amplifiers, and analog / digital circuits into a single CMOS chip. With this sensor, the brightness and color temperature of a display backlight can be adjusted based on the ambient light source, and it can differentiate indoor from outdoor lighting environments.

FEATURES

- · Package type: surface-mount
- Dimensions (L x W x H in mm): 2.0 x 1.25 x 1.0
- Integrated modules: color sensor and signal conditioning IC

- Provides 16-bit resolution for each channel (R, G, B, C, and IR)
- Package: OPLGA4
- Temperature compensation: -40 °C to +85 °C
- Low power consumption I²C (SMBus compatible) interface
- Floor life: 168 h, MSL 3, according to J-STD-020
- Output type: I2C bus
- Operation voltage: 2.6 V to 3.6 V
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Automatic white balancing and color cast correction in digital cameras
- · Automatic LCD backlight adjustment
- Maintaining consistent true color and ideal brightness levels on handheld displays as users move between indoor and outdoor environments
- On / off light switching in industrial and consumer applications
- Active monitoring of LED color output for IoT and smart lighting

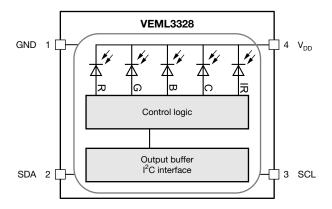
PRODUCT SUMMARY						
PART NUMBER	OPERATING VOLTAGE RANGE (V)	I ² C BUS VOLTAGE RANGE (V)	PEAK SENSITIVITY (nm)	OUTPUT CODE		
VEML3328	2.6 to 3.6	1.7 to 3.6	590, 610, 560, 470, 825 (C, R, G, B, IR)	16 bit, I ² C		

Rev. 1.2, 07-Sep-2021 **1** Document Number: 84968 For technical questions, contact: sensorstechsupport@vishay.com

Vishay Semiconductors

ORDERING INFORMATION						
ORDERING CODE	PACKAGING	VOLUME (1)	REMARKS			
VEML3328	Tape and reel	MOQ: 2500 pcs	2.00 mm x 1.25 mm x 1.00 mm			

Note


(1) MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER TEST CONDITION SYMBOL MIN. MAX. UNIT							
Supply voltage		V_{DD}	0	4	V		
Operation temperature range		T _{amb}	-40	+85	°C		
Storage temperature range		T _{stg}	-40	+85	°C		

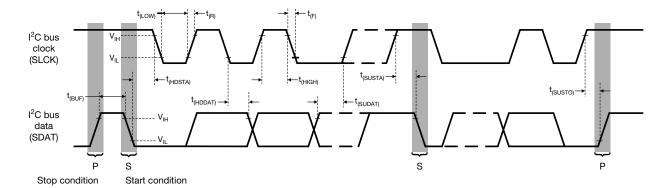
RECOMMENDED OPERATING CONDITIONS (T _{amb} = 25 °C, unless otherwise specified)							
PARAMETER TEST CONDITION SYMBOL MIN. MAX. UNIT							
Supply voltage		V_{DD}	2.6	3.6	V		
Operation temperature range		T _{amb}	-40	+85	°C		
I ² C bus operating frequency		f _(I2CCLK)	10	400	kHz		

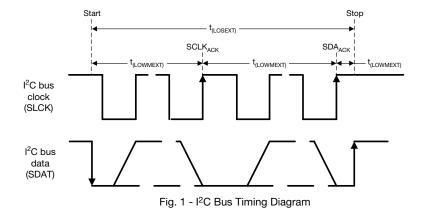
PIN DESCRIPTIONS			
PIN ASSIGNMENT	SYMBOL	TYPE	FUNCTION
1	GND	-	Power supply ground; all voltages are referenced to GND
2	SDA	I / O (open drain)	I ² C digital bus data input / output
3	SCL	I	I ² C digital bus clock input
4	V_{DD}	-	Supply voltage

BLOCK DIAGRAM

Vishay Semiconductors

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
	TEST CONDITION					_	
Supply voltage		V_{DD}	2.6	3.0	3.6	V	
Supply current (1)		I_{DD}	500	580	1000	μA	
I ² C signal input ⁽¹⁾ Logic high		V _{IH}	1.2	-	-	V	
Logic low		V_{IL}	-	-	0.4	7 v	
		λ_{PC}	-	590	-		
		λ_{PR}	-	610	-	nm	
Peak sensitivity wavelength		λ_{PG}	=	560	-		
		λ _{PB}	-	470	-		
		λ_{PIR}	-	825	-	1	
	520 nm LED (1)(2)	С	=	57	-		
	850 nm LED (1)(2)	IR	-	25	-	1	
Irradiance responsivity	643 nm LED (1)(2)	R	-	41	-	counts/(µW/cm²)	
	520 nm LED (1)(2)	G	-	39	-	1	
	460 nm LED (1)(2)	В	-	34	-	1	
Sensitivity	5000 K WLED (1)(3)	G	-	0.003	-	lx/count	
Dark offset (1)(3)		R, G, B, C, IR	0	-	3	counts	
Operating temperature range		T _{amb}	-40	-	+85	°C	
Shutdown current (1)	Light condition = dark	I _{DD}	0	800	1000	nA	


Notes


⁽¹⁾ Test condition: V_{DD} = 3 V, temperature: 25 °C (2) IT: 100 ms, SENS = (0) = x 1, DG = (0:0) = x 1, GAIN = (0:0) = x 1 (3) IT: 400 ms, SENS = (0) = x 1, DG = (1:0) = x 4, GAIN = (1:0) = x 4

Vishay Semiconductors

PARAMETER	CVMPOL	STANDA	RD MODE	FAST	MODE	
PARAMETER	SYMBOL	MIN.	MAX.	MIN.	MAX.	UNIT
Clock frequency	f _(I2CCLK)	10	100	10	400	kHz
Bus free time between start and stop condition	t _(BUF)	4.7	-	1.3	-	μs
Hold time after (repeated) start condition; after this period, the first clock is generated	t _(HDSTA)	4.0	-	0.6	-	μs
Repeated start condition setup time	t _(SUSTA)	4.7	-	0.6	-	μs
Stop condition setup time	t _(SUSTO)	4.0	-	0.6	-	μs
Data hold time	t _(HDDAT)	-	3450	-	900	ns
Data setup time	t _(SUDAT)	250	-	100	-	ns
I ² C clock (SCK) low period	t _(LOW)	4.7	-	1.3	-	μs
I ² C clock (SCK) high period	t _(HIGH)	4.0	-	0.6	=	μs
Clock / data fall time	t _f	-	300	-	300	ns
Clock / data rise time	t _r	-	1000	-	300	ns

PARAMETER TIMING INFORMATION

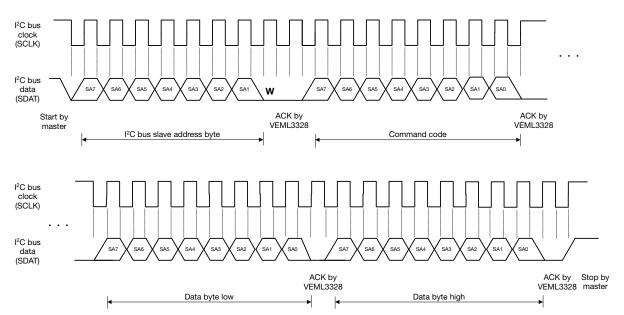


Fig. 2 - I²C Bus Timing for Sending Word Command Format

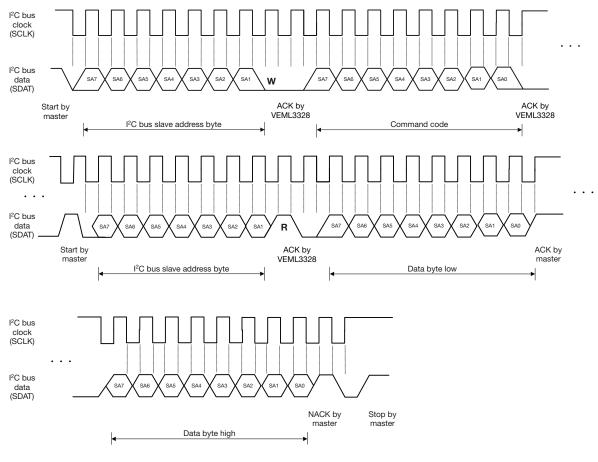
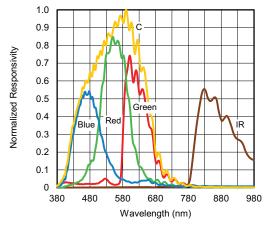



Fig. 3 - I²C Bus Timing for Receiving Word Command Format

Rev. 1.2, 07-Sep-2021 5 Document Number: 84968

TYPICAL PERFORMANCE CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

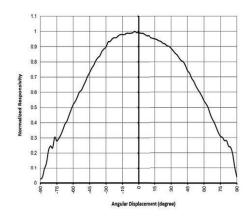


Fig. 4 - Normalized Responsivity vs. Wavelength

Fig. 5 - Normalized Responsivity vs. Angular Displacement

APPLICATION INFORMATION

Pin Connection With the Host

The VEML3328 is a cost effective solution color and IR sensor with an I²C interface. All possible settings and result data can be accessed via the standard I²C interface.

A typical application circuit is shown in Fig. 6 below. The additional 0.1 µF capacitor near the V_{DD} pin in the circuit is used for power supply noise rejection. Pull-up resistors for the l^2C bus design are recommended to be 2.2 k Ω .

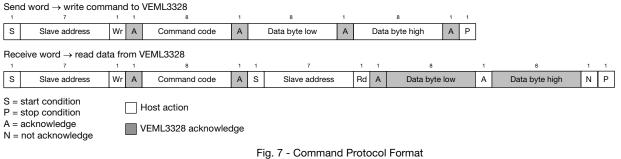



Fig. 6 - Hardware Pin Connection Diagram (Slave Address 0x10)

Digital Interface

The VEML3328 contains a command register accessible via the I²C bus. All settings can be controlled via this register. The VEML3328's I²C command format description for read and write operations between VEML3328 and the host is shown in Fig. 7. The white areas indicate the host activity and the gray areas indicate VEML3328's acknowledgement of the host access activity. Note that this protocol must be followed exactly to avoid false communication on the bus. Special care should be taken for the "Read Word" format, as here a repeated start condition is a must, as indicated.

Rev. 1.2, 07-Sep-2021 6 Document Number: 84968

Vishay Semiconductors

Command Register Format

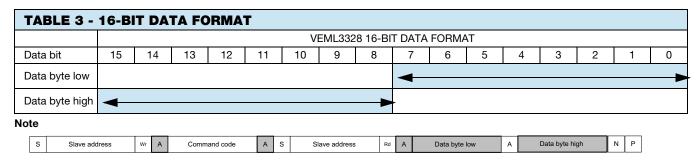
VEML3328 uses 0x10 slave address for 7-bit I²C addressing protocol. VEML3328 has 16-bit resolution for each channel (R, G, B, C, and IR).

TABLE 1 - CO	MMAND CODE D	ESCRIP	TION	
COMMAND CODE	REGISTER NAME	BIT	FUNCTION DESCRIPTION	R/W
	SD1	15	Shutdown setting ⁽¹⁾ SD1 = 0 power on; SD1 = 1 shutdown (default)	
	SD_ALS only	14	0 = power on all channels (default) 1 = power on G, C, and IR (R, B shutdown)	
	DG	13 : 12	(0:0) = x 1 (default) (0:1) = x 2 (1:0) = x 4 (1:1) = reserved	
	GAIN	11 : 10	$(1:1) = x \frac{1}{2}$ (0:0) = x 1 (default) (0:1) = x 2 (1:0) = x 4	
	Reserved	9:8	Set (0:0)	
0x00	Reserved	7	Set 0	
UXUU	SENS	6	0 = high sensitivity (default); 1 = low sensitivity (1/3)	R/W
	ІТ	5:4	Integration time setting (0:0) = 50 ms (default) (0:1) = 100 ms (1:0) = 200 ms (1:1) = 400 ms	
	AF	3	Auto / active force mode 0 = auto mode (default); 1 = active force mode	
	TRIG	2	Trigger a single measurement when in active force mode. This bit resets to "0" automatically when the measurement cycle is complete. 0 = no trigger (default); 1 = trigger one measurement cycle	
	Reserved	1	Set 0	
	SD0	0	Shutdown setting ⁽¹⁾ SD0 = 0 power on; SD0 = 1 shutdown (default)	

Note

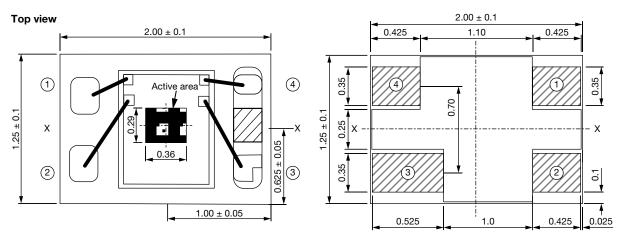
⁽¹⁾ For power on, both SD0 and SD1 have to be set to 0. For shutdown, both SD0 and SD1 have to be set to 1

TABLE 2	DATA REGISTERS				
COMMAND CODE	REGISTER NAME	DATE BYTE LOW / HIGH	BIT	FUNCTION DESCRIPTION	R/W
0x04	C_LSB	Low	7:0	Clear channel LSB data	
0X04	C_MSB	High	7:0	Clear channel MSB data	
0x05	R_LSB	Low	7:0	Red channel LSB data	
0.005	R_MSB	High	7:0	Red channel MSB data	
0x06	G_LSB	Low	7:0	Green channel LSB data	
0000	G_MSB	High	7:0	Green channel MSB data	☐ R
0x07	B_LSB	Low	7:0	Blue channel LSB data	7 "
UXU7	B_MSB	High	7:0	Blue channel MSB data	
0x08	IR_LSB	Low	7:0	Infrared channel LSB data	
UXUO	IR_MSB	High	7:0	Infrared channel MSB data	
0x0C	ID_L	Low	7:0	Device ID 0x28	
UXUC	Reserved	High	7:0		


Note

• Command codes 0x01 to 0x03 and 0x09 to 0x0B are reserved

Rev. 1.2, 07-Sep-2021 **7** Document Number: 84968


Data Access

Each of the C, R, G, B, and IR result registers has a 16-bit resolution (2 bytes). One byte is the LSB and the other byte is the MSB. The host needs to follow the read word protocol as shown in Fig. 7. The data format shows as below.

• Data byte low represents LSB and data byte high represents MSB

PACKAGE INFORMATION in millimeters

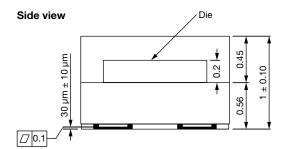


Fig. 8 - VEML3328A3OG Package Dimensions

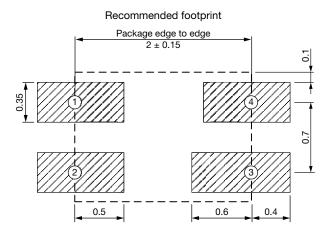


Fig. 9 - VEML3328A3OG PCB Layout Footprint

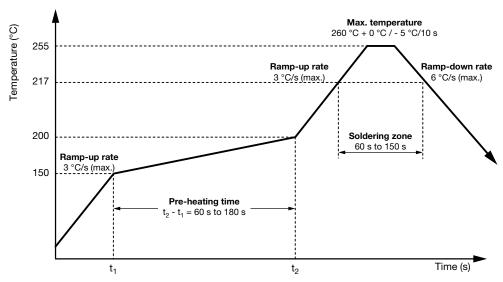
RECOMMENDED ST	RECOMMENDED STORAGE AND REBAKING CONDITIONS							
PARAMETER	CONDITIONS	MIN.	MAX.	UNIT				
Storage temperature		5	50	°C				
Relative humidity		-	60	%				
Open time		-	168	h				
Total time	From the date code on the aluminized envelope (unopened)	-	12	months				
Pabaking	Tape and reel: 60 °C	-	22	h				
Rebaking	Tube: 60 °C	-	22	h				

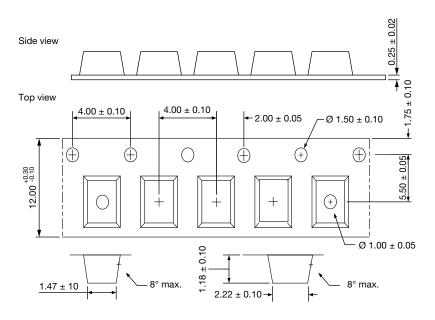
RECOMMENDED INFRARED REFLOW

Soldering conditions which are based on J-STD-020 C

IR REFLOW PROFILE CONDITION							
PARAMETER	CONDITIONS	TEMPERATURE	TIME				
Peak temperature		255 °C + 0 °C / - 5 °C (max.: 260 °C)	10 s				
Preheat temperature range and timing		150 °C to 200 °C	60 s to 180 s				
Timing within 5 °C to peak temperature		-	10 s to 30 s				
Timing maintained above temperature / time		217 °C	60 s to 150 s				
Timing from 25 °C to peak temperature		-	8 min (max.)				
Ramp-up rate		3 °C/s (max.)	-				
Ramp-down rate		6 °C/s (max.)	-				

Recommend Normal Solder Reflow is 235 °C to 255 °C




Fig. 10 - VEML3328 OPLGA Solder Reflow Profile Chart

RECOMMENDED IRON TIP SOLDERING CONDITION AND WARNING HANDLING

- 1. Solder the device with the following conditions:
 - 1.1. Soldering temperature: 400 °C (max.)
 - 1.2. Soldering time: 3 s (max.)
- 2. If the temperature of the method portion rises in addition to the residual stress between the leads, the possibility that an open or short circuit occurs due to the deformation or destruction of the resin increases
- 3. The following methods: VPS and wave soldering, have not been suggested for the component assembly
- 4. Cleaning method conditions:
 - 4.1. Solvent: methyl alcohol, ethyl alcohol, isopropyl alcohol
 - 4.2. Solvent temperature < 45 °C (max.)
 - 4.3. Time: 3 min (min.)

Rev. 1.2, 07-Sep-2021 10 Document Number: 84968

TAPE PACKAGING INFORMATION in millimeters

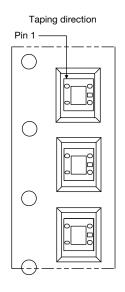


Fig. 11 - VEML3328 A3OG Package Carrier Tape

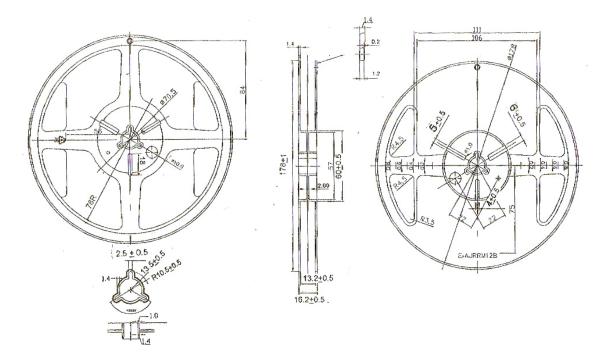


Fig. 12 - Reel Dimensions

Rev. 1.2, 07-Sep-2021 11 Document Number: 84968

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2022 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED