

400-mA Smart Regulator for Network Interface Card

FEATURES

- Single Fixed 3.3-V Output
- Linear Regulator for 5-V Power Input
- · Auxilliary Input Can Be Bypassed
- Automatically Switches Between Linear Regulator and Bypass Mode
- Linear Regulator: 3.3-V ±3% Output at 400-mA Current; 600-mA Peak Output Current
- Low Bypass Switch Voltage-Drop: <55-mV at 150 mA
- Built-in Short Circuit and Thermal Shutdown Protection

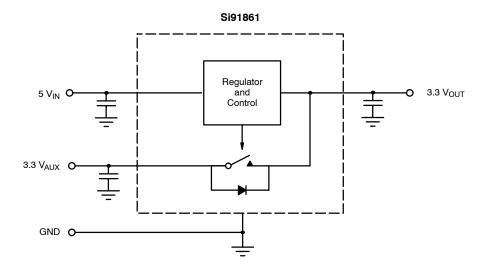
- Low Supply Current
- SOIC-8 Package

APPLICATIONS

- Network Interface Cards (NIC)
- PCMCIA Cards
- Cardbus
- Desktop Computers/Workstations

DESCRIPTION

The Si91861 provides a constant 3.3-V output with multiple inputs. This function is required in many power interface applications, such as the Network Interface Card (NIC). The Si91861 is offered in small SOIC-8 package with up to 2-W power handling capability. The complete application circuit uses only three external components.


The linear regulator steps down from the 5-V supply (5 V_{IN}) to 3.3 V. A 200-m Ω bypass switch is integrated to connect the 3.3- V_{AUX} input to the output. The power drawn priority is

 $5~V_{IN} > 3.3~V_{AUX}$, where the selection is done internally and automatically by the Si91861. The power handling capability is as such as to carry at least 400-mA continuous load current for any power input condition.

In order to satisfy the stringent ambient temperature requirements in many applications, the Si91861 is rated for the industrial temperature range of -40° C to 85° C.

The Si91861 is available in both standard and lead (Pb)-free packages.

FUNCTIONAL BLOCK DIAGRAM

Document Number: 71637 S-40702—Rev. B, 19-Apr-04

ABSOLUTE MAXIMUM RATINGS

Linear Regulator Output Current	pass Switch Current	600 mA 150°C 55°C to 150°C	Thermal Impedance $(\theta_{JA})^a$ Notes a Device mounted with all lead	ds soldered or welded to PC board.	,
ESD (Human Body Model) 2 kV b. Derate 16 mW/°C above T _A = 25°C	5D (Human Body Model)	2 kV k	o. Derate 16 mW/°C above T _A	= 25°C	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE

5-V _{IN}	. 4.5 V to 5.5 V	3.3 V _{OUT} Loading	1 mA to 400 mA
3.3-V _{AUX}	3 V to 3.6 V	Operating Ambient Temperature, T _A	. −40°C to 85°C

SPECIFICATIONS									
		Test Conditions Unless Otherwise Specified $5~V_{IN}=5~V, 3.3~V_{AUX}=3.3~V_{IOUT}=1~mA,~C_{IN}=4.7~\mu F,~C_{OUT}=2.2~\mu F$				Limits -40 to 85°0			
Parameter	Symbol			Temp ^a	Minb	Турс	Max ^b	Unit	
Regulator Mode									
Output Voltage (Regulator)	V _{O(reg)}	0 mA < I _{OUT} < 400 mA, 5	5 V _{IN} > 4.5 V	Full	3.201	3.3	3.399		
EV Colort		5 5	Threshold	Full		4.30	4.475	V	
5 V _{IN} Select		Rising Edge of Hysteresis	Hysteresis	Full		230		mV	
Ground Pin Current	,	I _O = 0 mA	I _O = 0 mA			0.3	0.8		
In Regulator Mode ^d	I _{GND}	I _O = 400 mA	١	Full		0.7	1.6	mA	
Peak Output Current (Regulator)	Io	t _{PW} = 2 ms		Full	600				
Output Noise Voltage (Regulator)	e _N	BW = 50 Hz to100 kHz, I _{OUT} = 150 mA		Room		300		μV_{rms}	
Ripple Rejection (Regulator)	Δ3.3 V _{OUT} / Δ5 V _{IN}	I _{OUT} = 150 mA	1 kHz	Room		60		dB	
			10 kHz	Room		40			
	",		100 kHz	Room		30			
Dynamic Line Regulation	$\Delta V_{O(line)}$	$V_{IN} = 4.5 \text{ V} \cdot \cdot \cdot 5.5 \text{ V}$ $t_{P}/t_{F} = 2 \mu s, I_{OUT} = 150 \text{ mA}$		Room		10		mV	
Dynamic Load Regulation	$\Delta V_{O(load)}$	I _{OUT} : 1 mA to 150 mA,	t _R /t _F = 2 μs	Room		20			
V _{OUT} Turn-On-Time	t _{ON}					15		μs	
Thermal Shutdown Junction Temperature	T _{J(sd)}			Full		165		°C	
Thermal Hysteresis	T _{HYST}			Full		20		-	
Short Circuit Current	I _{SC}	3.3 V _{OUT} = 0 V		Room		900		mA	
Bypass Mode (5 V _{IN} = GND)			-					
Output Voltage	V _{O(BP)}	0 mA < I _{OUT} < 15	60 mA	Full	3.247			V	
Bypass Switch On-Resistance	r _{DS(on)}	$3.0 \text{ V} \leq \text{V}_{AUX} \leq 3.6 \text{ V}$		Full		0.2	0.35	Ω	
Ground Current ^d	I _{GND}	0 mA < I _{OUT} < 400 mA		Full		200	400	μΑ	

Notes

- tes

 Room = 25°C, Full = -40 to 85°C.

 The algebraic convention whereby the most negative value is a minimum and the most positive a maximum.

 Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Typical values at 25°C ambient.

 Ground pin current includes the IC supply current and the current to drive the linear regulator or bypass switch.

Document Number: 71637 S-40702-Rev. B, 19-Apr-04

TIMING WAVEFORMS

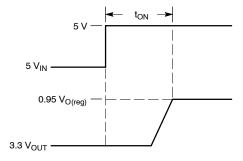
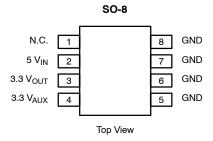
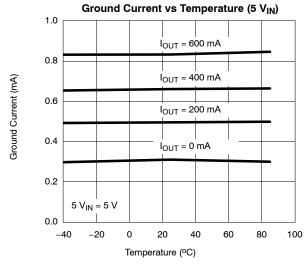
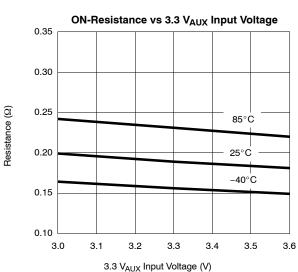
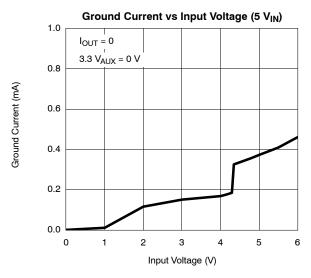



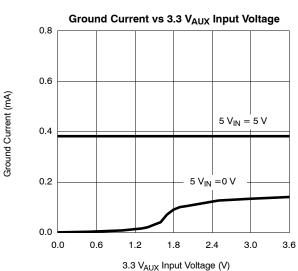
FIGURE 1. Timing Diagram

PIN CONFIGURATION

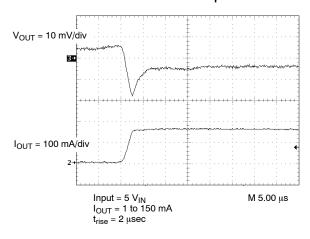

PIN DESCRIPTION					
Pin Number	Name	Function			
1	N.C.	Not connected. No effect to device operation			
2	5 V _{IN}	Power input for the Regulator			
3	3.3 V _{OUT}	Output 3.3 V			
4	3.3 V _{AUX}	Power input for the bypass function			
5, 6, 7, 8	GND	Ground			

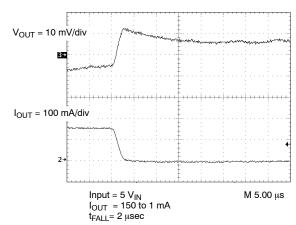



ORDERING INFORMATION					
Part Number	Temperature Range	Package			
Si91861DY-T1		Tana and Bool			
Si91861DY-T1—E3	−40 to 85°C	Tape and Reel			
Si91861DY		Bulk			

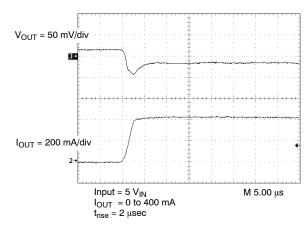

Eval Kit	Temperature Range	Board Type
Si91861DB	−40 to 85°C	Surface Mount

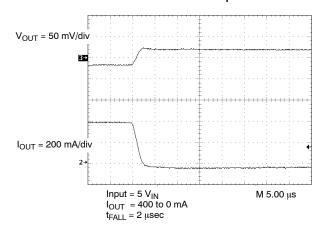
TYPICAL CHARACTERISTICS

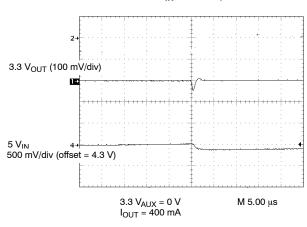


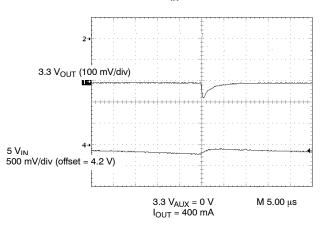


TYPICAL WAVEFORMS

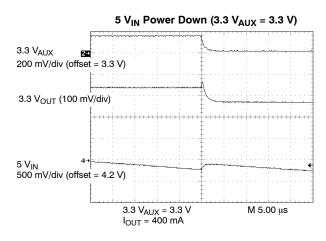

Load Transient Response-1

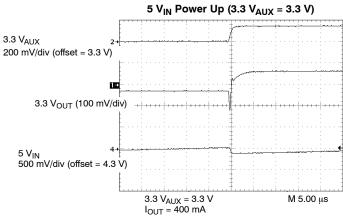

Load Transient Response-2

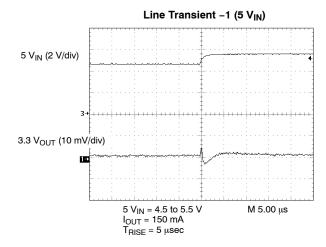

Load Transient Response-3

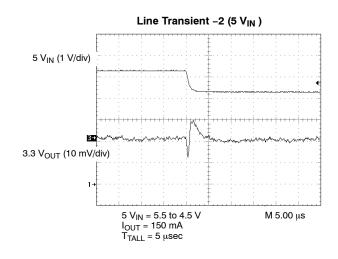

Load Transient Response-4

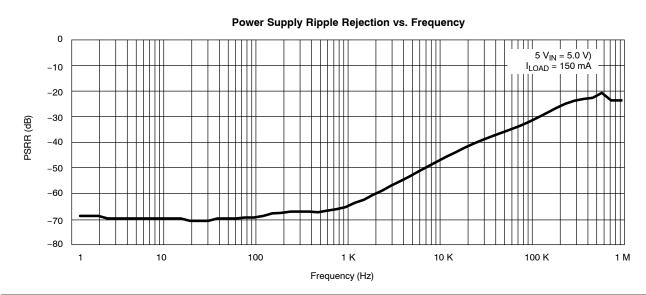
5-V_{IN} Power Up

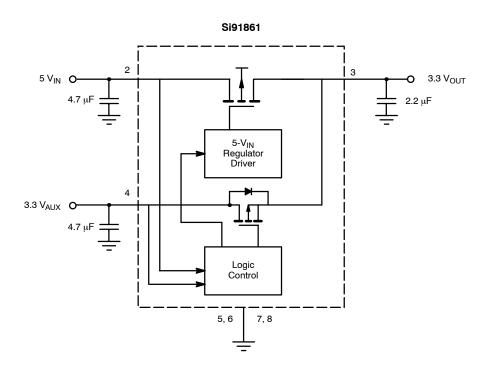



5-V_{IN} Power Down






TYPICAL WAVEFORMS



BLOCK DIAGRAMS AND TYPICAL APPLICATION CIRCUIT

DETAIL DESCRIPTION

During normal operation, the 5-V_{IN} input powers the fixed 3.3-V output (3.3 V_{OUT}) through an internal linear regulator. If 5 V_{IN} falls below 4.07 V, the output (3.3 V_{OUT}) is powered from 3.3-V_{AUX} input. The power drawn sequence is from 5 V_{IN}, then 3.3 V_{AUX}. The device prevents reverse current from flowing from the output to any unbiased or low voltage input.

Linear Regulator Mode

The output is regulated at 3.3 V when the 5-V_{IN} pin is more than 4.30 V. The linear regulator will regulate the output until the 5-V_{IN} pin fall below 4.07 V.

Bypass Mode

When the 5-V_{IN} pin falls below 4.07 V, the output is powered by 3.3 V_{AUX} through a 0.2- Ω internal switch.

Thermal and Over-current Protection

Thermal protection limits total power dissipation in the device. It safeguards the device in the event of fault conditions. When the junction temperature exceeds 165°C, the device turns off. The device turns back on once its junction temperature cools down by approximately 20°C. The device has overcurrent protection (typically at 900 mA) when it operates in linear regulator mode. A continuous short at output pin (3.3 $V_{\rm OUT})$ will result in a pulsed output as the thermal protection circuitry cycles the device on and off. For continuous operation, do not exceed the junction rating of 150°C. In bypass mode, the device is not current limited.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 18-Jul-08