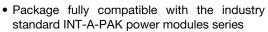


www.vishay.com


Vishay Semiconductors

Three Phase Controlled Bridge (Power Modules), 55 A to 110 A

PRIMARY CHARACTERISTICS						
I _O	55 A to 110 A					
V _{RRM}	800 V to 1600 V					
Package	MTK					
Circuit configuration	Three phase bridge					

FEATURES

- High thermal conductivity package, electrically insulated case
- Excellent power volume ratio
- 4000 V_{RMS} isolating voltage
- UL E78996 approved
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

A range of extremely compact, encapsulated three phase controlled bridge rectifiers offering efficient and reliable operation. They are intended for use in general purpose and heavy duty applications.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL	CHARACTERISTICS	VALUES 5.MTK	VALUES 9.MTK	VALUES 11.MTK	UNITS			
1		55	90	110	А			
IO	T _C	85	85	85	°C			
	50 Hz	390	950	1130	A			
I _{FSM}	60 Hz	410	1000	1000 1180				
I ² t	50 Hz	770	4525	6380	A2-			
1-1	60 Hz	700	4130	5830	- A ² s			
I ² √t		7700	45 250	63 800	A²√s			
V_{RRM}	Range	800 to 1600						
T _{Stg}	Range	-40 to +125 °C						
TJ	Range	-40 to +125 °C						

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS									
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM REPETITIVE PEAK OFF-STATE VOLTAGE, GATE OPEN CIRCUIT V	I _{RRM} /I _{DRM} , MAXIMUM AT T _J = 125 °C mA				
	80	800	900	800					
	100	1000	1100	1000					
VS-5.MTK	120	1200	1300	1200	10				
	140	1400	1500	1400					
	160	1600	1700	1600					
	80	800	900	800					
	100	1000	1100	1000					
VS-9.MTK VS-11.MTK	120	1200	1300	1200	20				
VO 11.IVI1IX	140	1400	1500	1400					
	160	1600	1700	1600					

Revision: 28-Nov-2019 1 Document Number: 94353

www.vishay.com

Vishay Semiconductors

FORWARD CONDUCTION								
PARAMETER	SYMBOL		TEST CONI	VALUES 5.MTK	VALUES 9.MTK	VALUES 11.MTK	UNITS	
Maximum DC output current at	I _O	120° rect	conduction and	פור	55	90	110	Α
case temperature	10	120 1001.	oonadonon ang	JIO	85	85	85	°C
		t = 10 ms	No voltage		390	950	1130	
Maximum peak, one-cycle forward, non-repetitive on state	I _{TSM}	t = 8.3 ms	reapplied		410	1000	1180	Α
surge current	TSM	t = 10 ms	100 % V _{RRM}		330	800	950	
		t = 8.3 ms	reapplied	Initial $T_{.1} = T_{.1}$ max.	345	840	1000	
		t = 10 ms	No voltage	iiiliai ij – ijiiiax.	770	4525	6380	
Maximum I2t for fusing	I ² t	t = 8.3 ms	reapplied		700	4130	5830	A ² s
Maximum From Idaing	1 (t = 10 ms	100 % V _{RRM}		540	3200	4510	A-S
		t = 8.3 ms			500	2920	4120	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms	to 10 ms, no vo	7700	45 250	63 800	A²√s	
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x 1	$\pi \times I_{T(AV)} < I < \pi$	1.17	1.09	1.04	V	
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(A)})$	_{V)}), T _J maximun	1.45	1.27	1.27	ľ	
Low level value on-state slope resistance	r _{t1}	(16.7 % x 1	$\pi \times I_{T(AV)} < I < \pi$	12.40	4.10	3.93	mΩ	
High level value on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(A)})$	_{V)}), T _J maximun	11.04	3.59	3.37	11122	
Maximum on-state voltage drop	V_{TM}	I _{pk} = 150 A	, T _J = 25 °C, t _p	2.68	1.65	1.57	V	
Maximum non-repetitive rate of rise of turned on current	dI/dt	$I_{J} = 25 ^{\circ}\text{C}$, from 0.67 V_{DRM} , $I_{TM} = \pi x I_{T(AV)}$, $I_{g} = 500$ mA, $t_{r} < 0.5 \mu s$, $t_{p} > 6 \mu s$				150		A/μs
Maximum holding current	I _H	T _J = 25 °C gate open		= 6 V, resistive load,		200		mA
Maximum latching current	ΙL	$T_J = 25 ^{\circ}C$, anode supply	= 6 V, resistive load		400		

BLOCKING									
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES 5.MTK	VALUES 9.MTK	VALUES 11.MTK	UNITS			
RMS isolation voltage	V _{ISOL}	$T_J = 25~^{\circ}\text{C}$ all terminal shorted, $f = 50~\text{Hz}$, $t = 1~\text{s}$		4000		V			
Maximum critical rate of rise of off-state voltage	dV/dt ⁽¹⁾	$T_J = T_J$ maximum, linear to 0.67 V_{DRM} , gate open circuit	500			V/µs			

Note

 $^{^{(1)}}$ Available with dV/dt = 1000 V/ μ s, to complete code add S90 i. e. 113MT160KBS90

TRIGGERING							
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES 5.MTK	VALUES 9.MTK	VALUES 11.MTK	UNITS
Maximum peak gate power	P_{GM}				10		w
Maximum average gate power	P _{G(AV)}				2.5		VV
Maximum peak gate current	I_{GM}	$T_J = T_J$ maximum			2.5		Α
Maximum peak negative gate voltage	- V _{GT}				10		
Manian was assisted DO and		$T_J = -40 ^{\circ}\text{C}$			4.0		V
Maximum required DC gate voltage to trigger	V_{GT}	$T_J = 25 ^{\circ}C$			2.5		
voltage to trigger		T _J = 125 °C	Anode supply = 6 V,		1.7		
Marian and ind DO and		T _J = -40 °C	resistive load		270		
Maximum required DC gate current to trigger	I_{GT}	T _J = 25 °C			150		mA
Current to trigger		T _J = 125 °C			80		
Maximum gate voltage that will not trigger	V_{GD}	T - T maximum rates	1)/ applied		0.25		V
Maximum gate current that will not trigger	I _{GD}	$T_J = T_J$ maximum, rated V_{DRM} applied					mA

Revision: 28-Nov-2019 2 Document Number: 94353

www.vishay.com

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS									
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES 5.MTK	VALUES 9.MTK	VALUES 11.MTK	UNITS			
Maximum junction operating and storage temperature range	T _J , T _{Stg}		-40 to +125			°C			
		DC operation per module	0.18	0.14	0.12				
Maximum thermal resistance,	В	DC operation per junction	1.07	0.86	0.70				
junction to case	R_{thJC}	120 °C rect. conduction angle per module	0.19	0.15	0.12	K/W			
		120 °C rect. conduction angle per junction	1.17	0.91	0.74	10,00			
Maximum thermal resistance, case to heatsink per module	R _{thCS}	Mounting surface smooth, flat and grased	0.03						
Mounting to heatsink		A mounting compound is recommended and	4 to 6		Nm				
torque ± 10 % to terminal		the torque should be rechecked after a period of	3 to 4			INIII			
Approximate weight		3 hours to allow for the spread of the compound. Lubricated threads.	225			g			

△R CONDUCTION PER JUNCTION											
DEVICES	SINUSOIDAL CONDUCTION AT T _J MAXIMUM					RECTANGULAR CONDUCTION AT T _J MAXIMUM					UNITS
	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	
5.MTK	0.072	0.085	0.108	0.152	0.233	0.055	0.091	0.117	0.157	0.236	
9.MTK	0.033	0.039	0.051	0.069	0.099	0.027	0.044	0.055	0.071	0.100	K/W
11.MTK	0.027	0.033	0.042	0.057	0.081	0.023	0.037	0.046	0.059	0.082	

Note

• Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

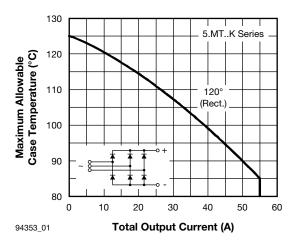


Fig. 1 - Current Ratings Characteristic

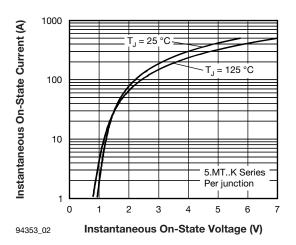
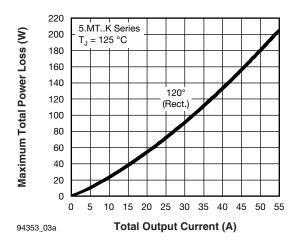



Fig. 2 - Forward Voltage Drop Characteristics

www.vishay.com

Vishay Semiconductors

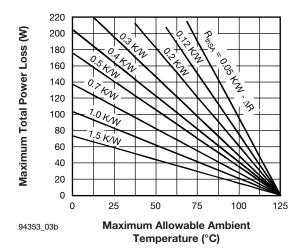


Fig. 3 - Total Power Loss Characteristics

130

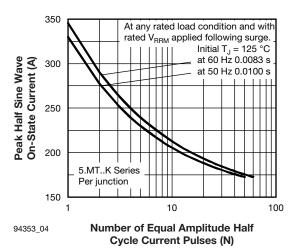


Fig. 4 - Maximum Non-Repetitive Surge Current

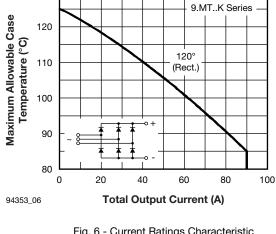


Fig. 6 - Current Ratings Characteristic

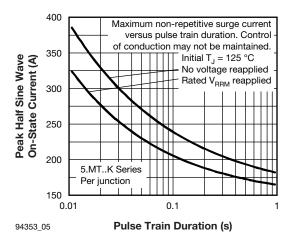
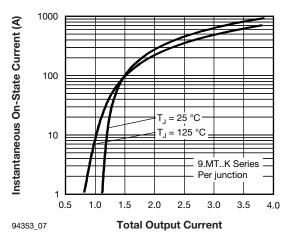
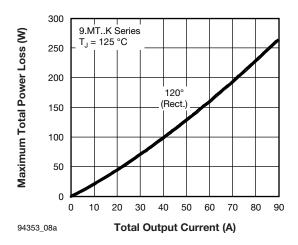


Fig. 5 - Maximum Non-Repetitive Surge Current




Fig. 7 - Forward Voltage Drop Characteristics

Revision: 28-Nov-2019 Document Number: 94353

www.vishay.com

Vishay Semiconductors

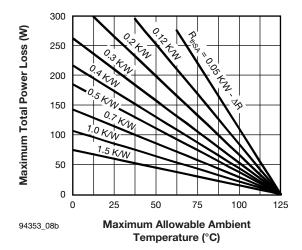


Fig. 8 - Total Power Loss Characteristics

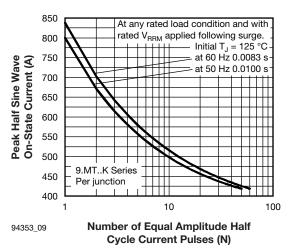


Fig. 9 - Maximum Non-Repetitive Surge Current

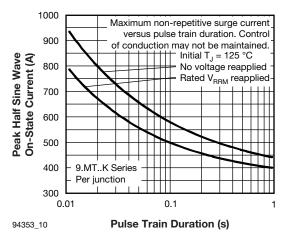


Fig. 10 - Maximum Non-Repetitive Surge Current

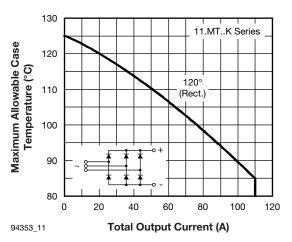


Fig. 11 - Current Ratings Characteristic

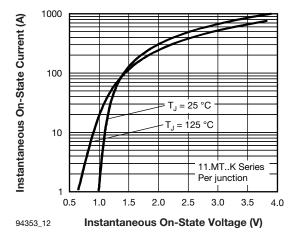


Fig. 12 - Forward Voltage Drop Characteristics

Revision: 28-Nov-2019 5 Document Number: 94353

www.vishay.com

Vishay Semiconductors

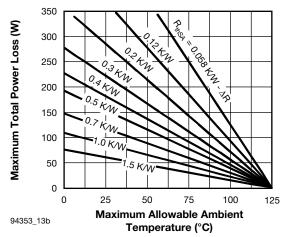


Fig. 13 - Total Power Loss Characteristics

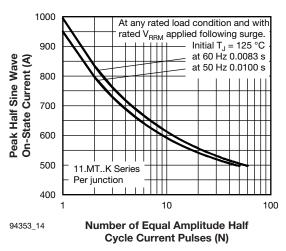


Fig. 14 - Maximum Non-Repetitive Surge Current

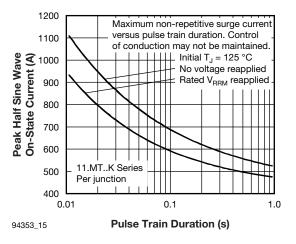


Fig. 15 - Maximum Non-Repetitive Surge Current

Fig. 16 - Thermal Impedance Z_{thJC} Characteristics

Revision: 28-Nov-2019 6 Document Number: 94353

www.vishay.com

Vishay Semiconductors

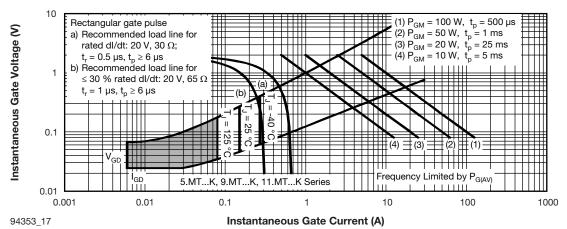
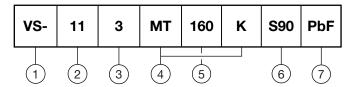
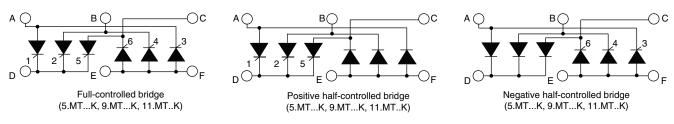



Fig. 17 - Gate Characteristics

ORDERING INFORMATION TABLE

Device code



- 1 Vishay Semiconductors product
- Current rating code:
 - 5 = 55 A (average)
 - 9 = 90 A (average)
 - 11 = 110 A (average)
- 3 Circuit configuration code:
 - 1 = negative half-controlled bridge
 - 2 = positive half-controlled bridge
 - 3 = full-controlled bridge
- 4 Essential part number
- 5 Voltage code x 10 = V_{RRM} (see Voltage Ratings table)
- 6 Critical dV/dt:
 - None = 500 V/µs (standard value)
 - S90 = 1000 V/µs (special selection)
- 7 PbF = Lead (Pb)-free

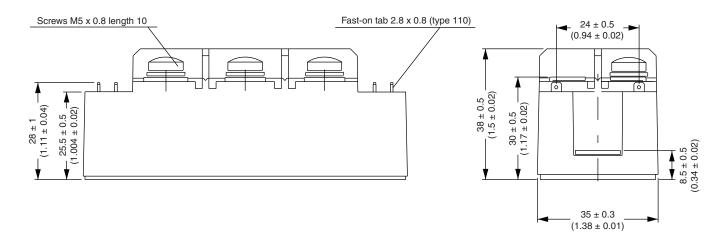
Note

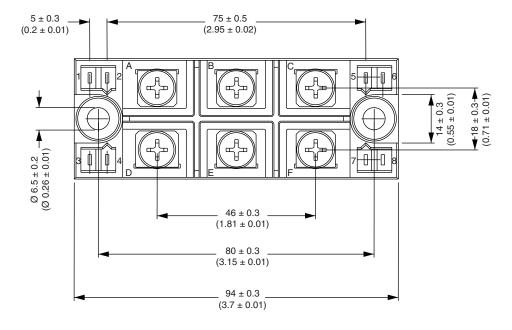
• To order the optional hardware go to www.vishay.com/doc?95172

CIRCUIT CONFIGURATION

LINKS TO RELAT	
Dimensions	www.vishay.com/doc?95004

Revision: 28-Nov-2019 7 Document Number: 94353


Downloaded from **Arrow.com**.

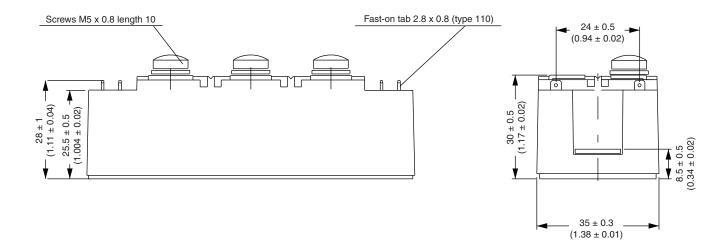


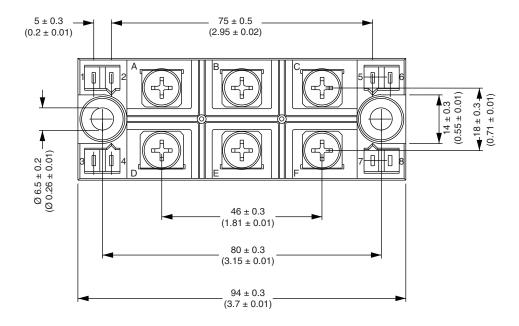
Vishay Semiconductors

MTK (with and without optional barrier)

DIMENSIONS WITH OPTIONAL BARRIERS in millimeters (inches)

Document Number: 95004 Revision: 27-Aug-07


Outline Dimensions


Vishay Semiconductors

MTK (with and without optional barrier)

DIMENSIONS WITHOUT OPTIONAL BARRIERS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2022 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED