

N-Channel JFETs

2N5484 SST5484 2N5485 SST5485 2N5486 SST5486

PRODUCT SUMMARY										
Part Number	V _{GS(off)} (V)	V _{(BR)GSS} Min (V)	g _{fs} Min (mS)	I _{DSS} Min (mA)						
2N/SST5484	−0.3 to −3	-25	3	1						
2N/SST5485	−0.5 to −4	-25	3.5	4						
2N/SST5486	−2 to −6	-25	4	8						

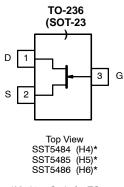
FEATURES

- Excellent High-Frequency Gain:
 Gps 13 dB (typ) @ 400 MHz 5485/6
- Very Low Noise: 2.5 dB (typ) @ 400 MHz – 5485/6
- Very Low Distortion
- High AC/DC Switch Off-Isolation

BENEFITS

- Wideband High Gain
- Very High System Sensitivity
- High Quality of Amplification
- High-Speed Switching Capability
- High Low-Level Signal Amplification

APPLICATIONS


- High-Frequency Amplifier/Mixer
- Oscillator
- Sample-and-Hold
- Very Low Capacitance Switches

DESCRIPTION

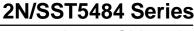
The 2N/SST5484 series consists of n-channel JFETs designed to provide high-performance amplification, especially at high frequencies up to and beyond 400 MHz.

The 2N series, TO-226AA (TO-92), and SST series, TO-236 (SOT-23), packages provide low-cost options and are available with tape-and-reel to support automated assembly (see Packaging Information).

*Marking Code for TO-236

For applications information see AN102 and AN105.

2N/SST5484 Series

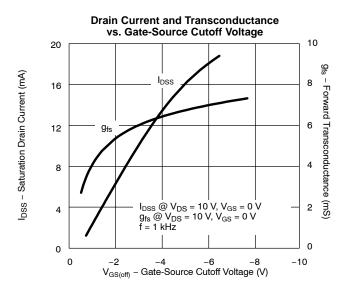

Vishay Siliconix

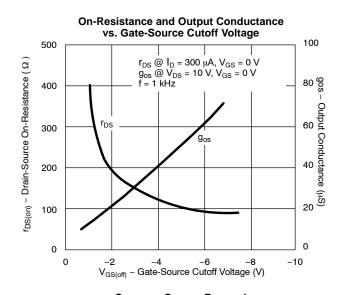
ABSOLUTE MAXIMUM RATINGS

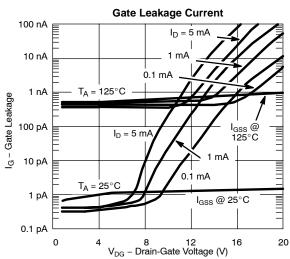
Gate-Drain, Gate-Source Voltage –25 V	Operating Junction Temperature
Gate Current	Power Dissipation ^a
Lead Temperature 300°C	Notes
Storage Temperature65 to 150°C	a. Derate 2.8 mW/°C above 25°C

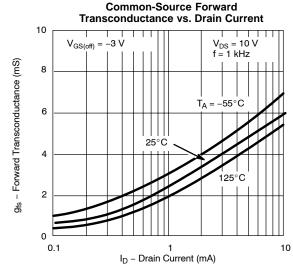
					Limits						
		Test Conditions		Typ ^a	2N:	5484	2N5485		2N	5486	1
Parameter	Symbol				Min	Max	Min	Max	Min	Max	Unit
Static	<u> </u>						1	1			
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \mu A$, $V_{DS} = 0 V$		-35	-25		-25		-25		V
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 15 V, I _D = 10 nA			-0.3	-3	-0.5	-4	-2	-6	1
Saturation Drain Current ^b	I _{DSS}	V _{DS} = 15 \	/, V _{GS} = 0 V		1	5	4	10	8	20	mA
Gate Reverse Current	I _{GSS}	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $T_A = 100^{\circ}\text{C}$		-0.002 -0.2		-1 -200		-1 -200		-1 -200	nA
Gate Operating Current ^c	I _G	V _{DG} = 10 \	V, I _D = 1 mA	-20						+	рA
Gate-Source Forward Voltage ^c	V _{GS(F)}	I _G = 10 mA , V _{DS} = 0 V		0.8							V
Dynamic	<u> </u>							<u> </u>			_
Common-Source Forward Transconductance ^{NO TAG}	9 _{fs}	Vns = 15 \	V. Vcs = 0 V		3	6	3.5	7	4	8	mS
Common-Source Output Conductance ^{NO TAG}	gos	f = 1	V, V _{GS} = 0 V 1 kHz			50		60		75	μS
Common-Source Input Capacitance	C _{iss}	V _{DS} = 15 V, V _{GS} = 0 V f = 1 MHz		2.2		5		5		5	
Common-Source Reverse Transfer Capacitance	C _{rss}			0.7		1		1		1	рF
Common-Source Output Capacitance	C _{oss}			1		2		2		2	
Equivalent Input Noise Voltage ^c	e _n	V _{DS} = 15 V, V _{GS} = 0 V f = 100 Hz		10							nV∕ √Hz
High-Frequency											
Common-Source			f = 100 MHz	5.5	2.5						mS
Transconductance ^d		V _{DS} = 15 V V _{GS} = 0 V	f = 400 MHz	5.5			3		3.5		μS mS
Common-Source	Y _{os(RE)}		f = 100 MHz	45		75					
Output Conductanced	00(112)		f = 400 MHz	65		0.1		100		100	
Common-Source Input Conductance ^d	Y _{is(RE)}		f = 100 MHz f = 400 MHz	0.05		0.1		1		1	
mput conductance		Vpo - 15 \	$V_{1} = 400 \text{ MHz}$ $V_{2} = 1 \text{ mA}$					'			╂
Common-Source Power Gain ^d	G _{ps}	f = 10	00 MHz	20	16	25					
		V _{DS} = 15 V	f = 100 MHz	21			18	30	18	30	4
		I _D = 4 mA	f = 400 MHz	13			10	20	10	20	4
	NF	$V_{DS} = 15 \text{ V}, \ V_{GS} = 0 \text{ V}$ $R_G = 1 \text{ M}\Omega, \ f = 1 \text{ kHz}$		0.3		2.5		2.5		2.5	dB
Noise Figure ^d			/, I _D = 1 mA f = 100 MHz	2		3					
		V _{DS} = 15 V	f = 100 MHz	1				2		2	1
		$I_D = 4 \text{ mA}$ $R_G = 1 \text{ k}\Omega$	f = 400 MHz	2.5				4		4	1

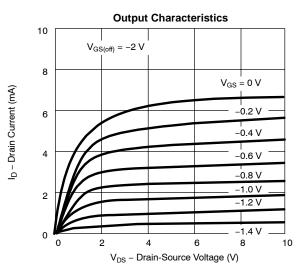
SPECIFICATIONS FO		Э (.А -									1
					Limits						
					SST	5484	SST5485		SST5486		
Parameter	Symbol	Test Conditions		Typb	Min	Max	Min	Max	Min	Max	Unit
Static											
Gate-Source Breakdown Voltage	V _{(BR)GSS}		, V _{DS} = 0 V	-35	-25		-25		-25		V
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 15 V	′, I _D = 10 nA		-0.3	-3	-0.5	-4	-2	-6	1
Saturation Drain Current ^b	I _{DSS}	V _{DS} = 15 V	/, V _{GS} = 0 V		1	5	4	10	8	20	mA
Cata Bayana Cumant	1	$V_{GS} = -20$	V, V _{DS} = 0 V	-0.002		-1		-1		-1	
Gate Reverse Current	IGSS		T _A = 100°C	-0.2		-200		-200		-200	nA
Gate Operating Current ^c	I _G	V _{DG} = 10 \	/, I _D = 1 mA	-20							рA
Gate-Source Forward Voltage ^c	V _{GS(F)}	I _G = 10 mA	, V _{DS} = 0 V	0.8							٧
Dynamic				•	•					•	
Common-Source Forward Transconductance ^{NO TAG}	9fs	$V_{DS} = 15 \text{ V, } V_{GS} = 0 \text{ V}$ f = 1 kHz			3	6	3.5	7	4	8	mS
Common-Source Output Conductance ^{NO TAG}	gos					50		60		75	μS
Common-Source Input Capacitance	C _{iss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 MHz		2.2							
Common-Source Reverse Transfer Capacitance	C _{rss}			0.7							pF
Common-Source Output Capacitance	C _{oss}			1							
Equivalent Input Noise Voltage ^c	e n	V _{DS} = 15 V f = 10	/, V _{GS} = 0 V 00 Hz	10							nV∕ √Hz
High-Frequency											
Common-Source			f = 100 MHz	5.5							mS
Transconductance	Y _{fs}		f = 400 MHz	5.5							
Common-Source Output Conductance	Y _{os}	V _{DS} = 15 V	f = 100 MHz	45							μS
		V _{GS} = 0 V	f = 400 MHz	65							μS mS
Common-Source Input Conductance	Y _{is}		f = 100 MHz	0.05							
			f = 400 MHz	0.8							
Common-Source Power Gain	G _{ps} V	$V_{DS} = 15 \text{ V}, I_{D} = 1 \text{ mA}$ f = 100 MHz		20							
		V _{DS} = 15 V	f = 100 MHz	21							
		$I_D = 4 \text{ mA}$	f = 400 MHz	13							
	$R_G = 1 M$ $V_{DS} = 15$, V _{GS} = 0 V 2, f = 1 kHz	0.3							dB	
Noise Figure		V_{DS} = 15 V, I_{D} = 1 mA R_{G} = 1 k Ω , f = 100 MHz		2							
		V _{DS} = 15 V	f = 100 MHz	1							1
		$I_D = 4 \text{ mA}$ $R_G = 1 \text{ k}\Omega$	f = 400 MHz	2.5							1

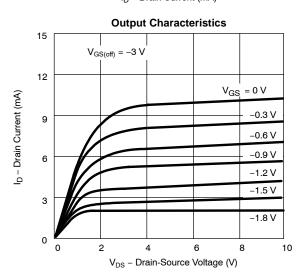

- Notes
 a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
 b. Pulse test: PW ≤ 300 µs duty cycle ≤ 3%.
 c. This parameter not registered with JEDEC.
 d. Not a production test.

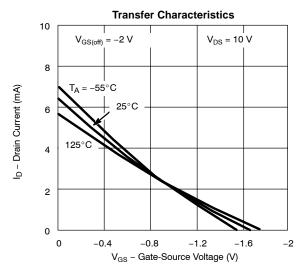

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

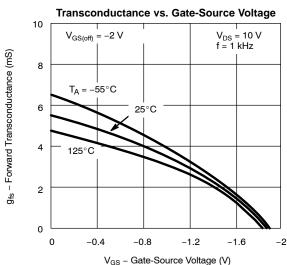

NH

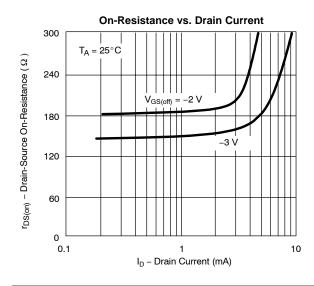


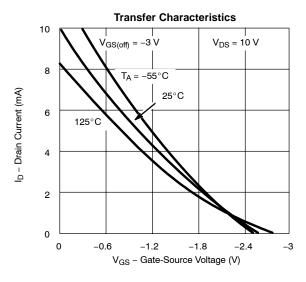

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

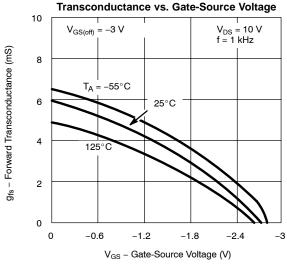


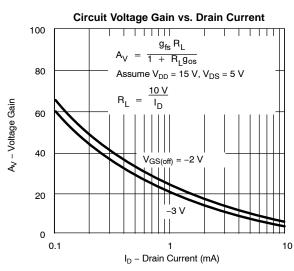


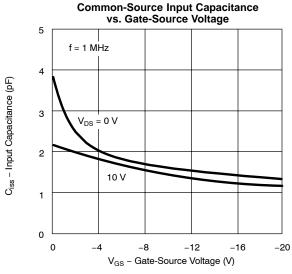


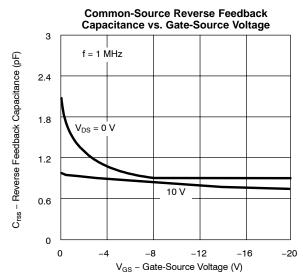


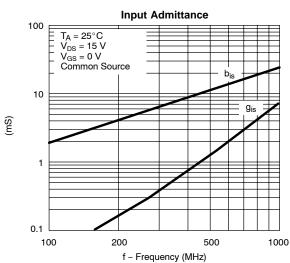


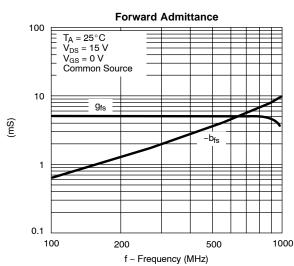

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

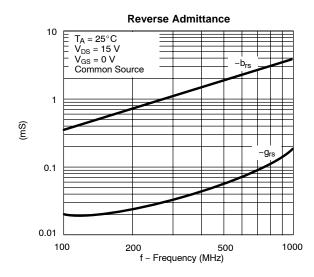


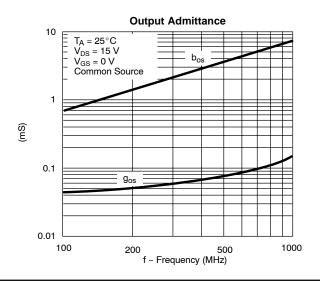


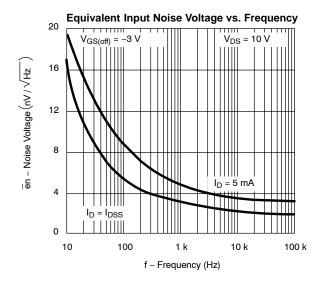


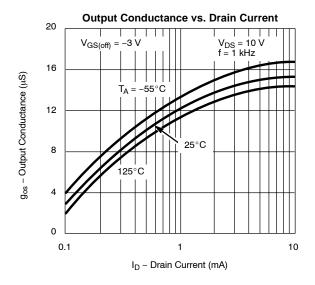





TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)







TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70246.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 18-Jul-08