
Vishay Semiconductors

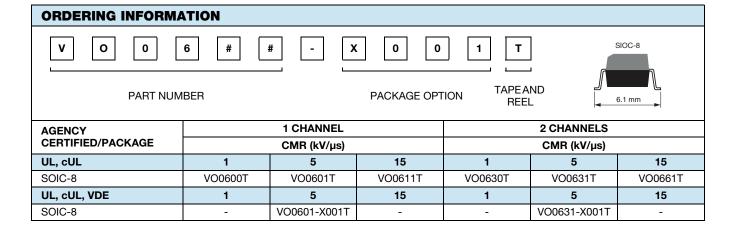
High Speed Optocoupler, 10 MBd, SOIC-8 Package

www.vishay.com

DESCRIPTION

The VO06xxT family are single and dual channel 10 MBd optocoupler utilizing a high efficient input LED coupled with an integrated optical photodiode IC detector. The detector has an open drain NMOS-transister output, providing less leakage compared to an open collector Schottky clamped transister output. For the single channel type, an enable function on pin 7 allows the detector to be strobed. The internal shield provides a guaranteed common mode transient immunity of 5 kV/µs for the VO0601T and VO0631T and 15 kV/µs for the VO0611T and VO0661T. The use of a 0.1 µF bypass capacitor connected between pin 5 and 8 is recommended.

AGENCY APPROVALS


- UL1577, file no. E52744
- cUL-file no. E52744, equivalent to CSA bulletin 5A
- DIN EN 60747-5-5 (VDE 0884-5), available with option 1

FEATURES

- Choice of CMR performance of 15 kV/µs, 5 kV/µs, and 1 kV/µs
- High speed: 10 MBd typical
- + 5 V CMOS compatibility
- Pure tin leads
- Guaranteed AC and DC performance over temperature: 40 °C to + 100 °C temp. range
- Meets IEC 60068-2-42 (SO₂) and IEC 60068-2-43 (H₂S) requirements
- · Low input current capability: 5 mA
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Microprocessor system M interface
- PLC, ATE input/output isolation
- Computer peripheral interface: SPI
- Digital fieldbus isolation: CC-Link, DeviceNet, profibus, SDS
- High speed A/D and D/A conversion
- AC plasma display panel level shifting
- Multiplexed data transmission
- Digital control power supply
- Ground loop elimination

Rev. 2.0, 25-Oct-12

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Document Number: 84607

Pb-free

RoHS

COMPLIANT

www.vishay.com

Vishay Semiconductors

TRUTH TABLE (positive logic)						
LED	ENABLE ⁽¹⁾	OUTPUT				
On	Н	L				
Off	Н	Н				
On	L	Н				
Off	L	Н				
On	NC	L				
Off	NC	Н				

Note

⁽¹⁾ Only applicable for single channel devices

PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
INPUT			• • • • •	
Average forward current (single channel)		I _F	20	mA
Average forward current (dual channel)		I _F	15	mA
Reverse input voltage		V _R	5	V
Enable input voltage (single channel)		VE	V _{CC} + 0.5 V	V
Enable input current (single channel)		Ι _Ε	5	mA
Surge current	t = 100 µs	I _{FSM}	200	mA
Output power dissipation (single channel)		P _{diss}	35	mW
Output power dissipation (per channel for dual channel)		P _{diss}	25	mW
OUTPUT				
Supply voltage	1 min maximum	V _{CC}	7	V
Output current		Ι _Ο	50	mA
Output voltage		Vo	7	V
Output power dissipation (single channel)		P _{diss}	85	mW
Output power dissipation (per channel for dual channel)		P _{diss}	60	mW
COUPLER			• • • • •	
Isolation test voltage	t = 1 s	V _{ISO}	4000	V _{RMS}
Storage temperature		T _{stg}	- 55 to + 150	°C
Operating temperature		T _{amb}	- 40 to + 100	°C
Lead solder temperature	for 10 s		260	°C
Solder reflow temperature ⁽¹⁾	for 1 min		260	°C

Notes

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not
implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
maximum ratings for extended periods of the time can adversely affect reliability.

⁽¹⁾ Refer to reflow profile for soldering conditions for surface mounted devices.

RECOMMENDED OPERATING CONDITION								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Operating temperature		T _{amb}	- 40		100	°C		
Supply voltage		V _{CC}	4.5		5.5	V		
Input current low level		I _{FL}	0		250	μA		
Input current high level		I _{FH}	5		15	mA		
Output pull up resistor		RL	330		4K	Ω		
Logic high enable voltage		V _{EH}	2		V _{CC}	V		
Logic low enable voltage		V _{EL}	0.0		0.8	V		
Fanout	$R_L = 1 k\Omega$	Ν			5	-		

Rev. 2.0, 25-Oct-12

Document Number: 84607

www.vishay.com

Vishay Semiconductors

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT				•		•
Input forward voltage	I _F = 10 mA	V _F	1.1	1.4	1.7	V
Reverse current	$V_R = 5 V$	I _R		0.01	10	μA
Input capacitance	$f = 1 \text{ MHz}, V_F = 0 \text{ V}$	CI		55		pF
OUTPUT						
Lligh lovel eventy every (single channel)	$V_{E} = 0.5 \text{ V}, I_{F} = 0 \text{ mA}$	I _{CCH}		4.1	7	mA
High level supply current (single channel) -	$V_E = V_{CC}$, $I_F = 0$ mA	I _{CCH}		3.3	6	mA
High level supply current (dual channel)	I _F = 10 mA	I _{CCH}		6.5	12	mA
Low level supply current (single channel)	$V_{E} = 0.5 \text{ V}, I_{F} = 10 \text{ mA}$	I _{CCL}		4	7	mA
	$V_E = V_{CC}$, $I_F = 10 \text{ mA}$	I _{CCL}		3.3	6	mA
Low level supply current (dual channel)	I _F = 10 mA	I _{CCL}		6.5	12	mA
High level output current	$V_{E} = 2 V, V_{O} = 5.5 V,$ $I_{F} = 250 \mu A$	I _{OH}		0.002	1	μA
Low level output voltage	$V_E = 2 V$, $I_F = 5 mA$, I_{OL} (sinking) = 13 mA	V _{OL}		0.2	0.6	V
Input threshold current	$V_E = 2 V, V_O = 5.5 V,$ I_{OL} (sinking) = 13 mA	I _{TH}		2.4	5	mA
High level enable current		I _{EH}		- 0.6	- 1.6	mA
Low level enable current		I _{EL}		- 0.8	- 1.6	mA
High level enable voltage		V _{EH}	2			V
Low level enable voltage		V _{EL}		T	0.8	V

Note

• Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

SWITCHING CHARACTERISTICS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Propagation delay time to high output level	$R_L=350~\Omega,~C_L=15~pF$	t _{PLH}	20	48	100	ns
Propagation delay time to low output level	$R_L=350~\Omega,~C_L=15~pF$	t _{PHL}	25	50	100	ns
Pulse width distortion	$R_L = 350 \ \Omega$, $C_L = 15 \ pF$	t _{PHL} - t _{PLH}		2.9	35	ns
Propagation delay skew	$R_L = 350 \ \Omega$, $C_L = 15 \ pF$	t _{PSK}		8	40	ns
Output rise time (10 to 90 %)	$R_L = 350 \ \Omega$, $C_L = 15 \ pF$	t _r		23		ns
Output fall time (90 to 10 %)	$R_L = 350 \ \Omega$, $C_L = 15 \ pF$	t _f		7		ns
Propagation delay time of enable from V_{EH} to V_{EL}		t _{ELH}		12		ns
Propagation delay time of enable from V_{EL} to V_{EH}		t _{EHL}		11		ns

Note

• Over recommended temperature (T_A = - 40 °C to + 100 °C), V_{CC} = 5 V, I_F = 7.5 mA unless otherwise specified. All typicals at T_A = 25 °C, V_{CC} = 5 V.

Vishay Semiconductors

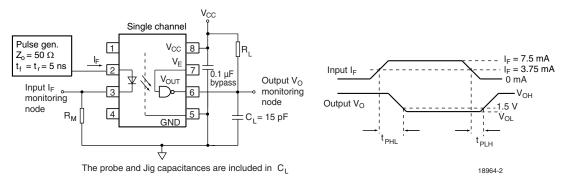


Fig. 1 - Single Channel Test Circuit for $t_{\text{PLH}},\,t_{\text{PHL}},\,t_{\text{r}}$ and t_{f}

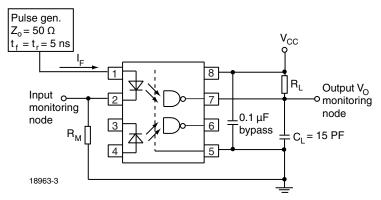


Fig. 2 - Dual Channel Test Circuit for t_{PLH} , t_{PHL} , t_r and t_f

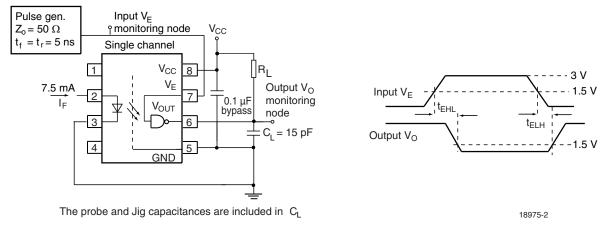


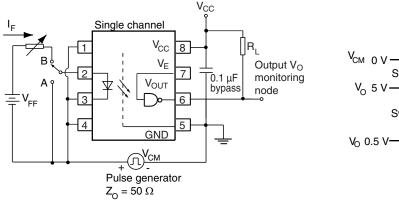
Fig. 3 - Single Channel Test Circuit for t_{EHL} , t_{ELH}

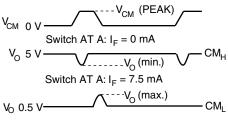
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Semiconductors

COMMON MODE TRANSIENT IMMUNITY								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
	$\begin{array}{l} V_{CM} = 10 \text{ V}, V_{CC} = 5 \text{ V}, I_F = 0 \text{ mA}, \\ V_{O(min)} = 2 \text{ V}, R_L = 350 \ \Omega, T_{amb} = 25 \ ^\circ C^{(1)} \end{array}$	CM _H	1000			V/µs		
Common mode transient immunity (high)	$\begin{array}{l} V_{CM} = 50 \text{ V}, V_{CC} = 5 \text{ V}, I_F = 0 \text{ mA}, \\ V_{O(min)} = 2 \text{ V}, R_L = 350 \ \Omega, T_{amb} = 25 \ ^\circ C^{(2)} \end{array}$	CM _H	5000	10 000		V/µs		
	$\begin{array}{l} V_{CM} = 1 \text{ kV}, V_{CC} = 5 \text{ V}, I_F = 0 \text{ mA}, \\ V_{O(min)} = 2 \text{ V}, R_L = 350 \ \Omega, T_{amb} = 25 \ ^\circ C^{(3)} \end{array}$	CM _H	15 000	25 000		V/µs		
	$\begin{array}{l} V_{CM} = 10 \text{ V}, V_{CC} = 5 \text{ V}, I_F = 7.5 \text{ mA}, \\ V_{O(max)} = 0.8 \text{ V}, R_L = 350 \ \Omega, T_{amb} = 25 \ ^\circ C^{(1)} \end{array}$	CM _L	1000			V/µs		
Common mode transient immunity (low)	$\begin{array}{l} V_{CM} = 50 \text{ V}, V_{CC} = 5 \text{ V}, I_F = 7.5 \text{ mA}, \\ V_{O(max)} = 0.8 \text{ V}, R_L = 350 \ \Omega, T_{amb} = 25 \ ^{\circ}C^{(2)} \end{array}$	CM _L	5000	10 000		V/µs		
	$\begin{array}{l} V_{CM} = 1 \ \text{kV}, \ V_{CC} = 5 \ \text{V}, \ \text{I}_{\text{F}} = 7.5 \ \text{mA}, \\ V_{O(\text{max})} = 0.8 \ \text{V}, \ \text{R}_{\text{L}} = 350 \ \Omega, \ \text{T}_{\text{amb}} = 25 \ ^{\circ}\text{C}^{(3)} \end{array}$	CM _L	15 000	25 000		V/µs		


Notes


⁽¹⁾ For VO0600T and VO0630T

⁽²⁾ For VO0601T and VO0631T

⁽³⁾ For VO0611T and VO0661T

18976-2

Fig. 4 - Single Channel Test Circuit for Common Mode Transient Immunity

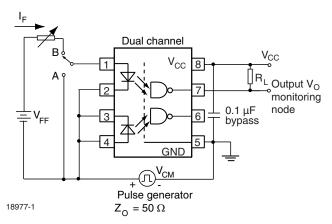


Fig. 5 - Dual Channel Test Circuit for Common Mode Transient Immunity

5

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay Semiconductors

SAFETY AND INSULATION RATINGS							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Climatic classification	according to IEC 68 part 1			55/100/21			
Comparative tracking index		CTI	175		399		
V _{IOTM}			6000			V	
VIORM			560			V	
P _{SO}					350	mW	
I _{SI}					150	mA	
T _{SI}					165	°C	
Creepage			4			mm	
Clearance			4			mm	
Insulation thickness			0.2			mm	

Note

As per IEC 60747-5-5, 7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of prodective circuits.

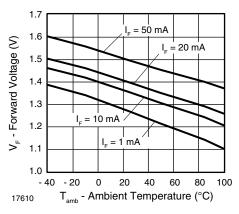


Fig. 6 - Forward Voltage vs. Ambient Temperature

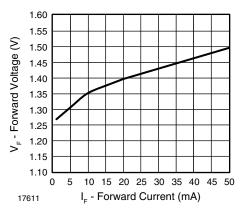


Fig. 7 - Forward Voltage vs. Forward Current

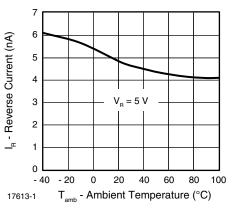
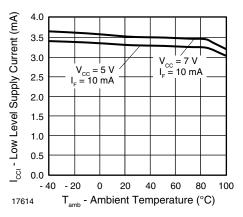
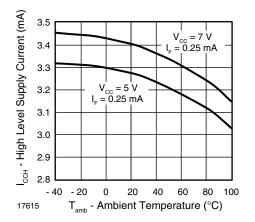


Fig. 8 - Reverse Current vs. Ambient Temperature




Fig. 9 - Low Level Supply Current vs. Ambient Temperature

Rev. 2.0, 25-Oct-12

6 For technical questions, contact: <u>optocoupleranswers@vishay.com</u> Document Number: 84607

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

www.vishay.com

Fig. 10 - High Level Supply Current vs. Ambient Temperature

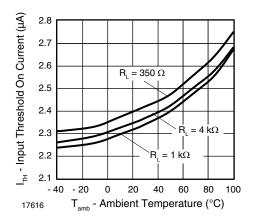


Fig. 11 - Input Threshold On Current vs. Ambient Temperature

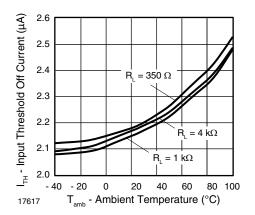


Fig. 12 - Input Threshold Off Current vs. Ambient Temperature

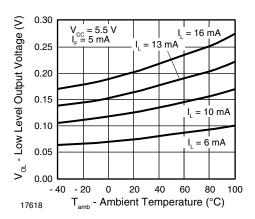


Fig. 13 - Low Level Output Voltage vs. Ambient Temperature

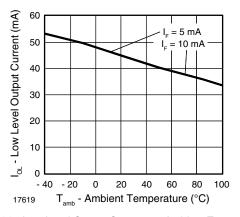


Fig. 14 - Low Level Output Current vs. Ambient Temperature

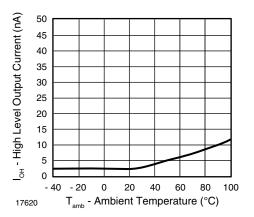
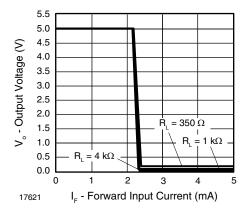


Fig. 15 - High Level Output Current vs. Ambient Temperature


Rev. 2.0, 25-Oct-12

7 For technical questions, contact: <u>optocoupleranswers@vishay.com</u> Document Number: 84607

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

www.vishay.com

Fig. 16 - Output Voltage vs. Forward Input Current



Fig. 17 - Propagation Delay vs. Ambient Temperature

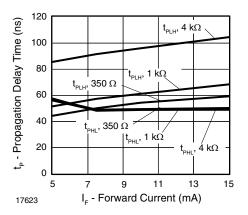


Fig. 18 - Propagation Delay vs. Forward Current

Fig. 19 - Pulse Width Distortion vs. Ambient Temperature

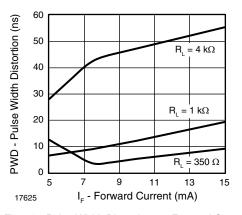


Fig. 20 - Pulse Width Distortion vs. Forward Current

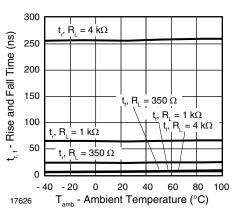
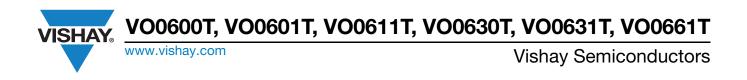
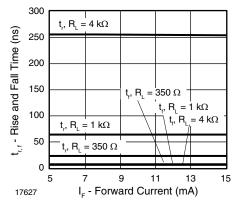
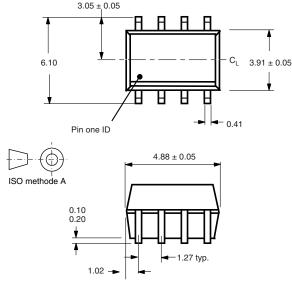



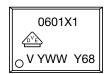
Fig. 21 - Rise and Fall Time vs. Ambient Temperature

Rev. 2.0, 25-Oct-12

8 For technical questions, contact: <u>optocoupleranswers@vishay.com</u> Document Number: 84607

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000


Fig. 22 - Rise and Fall Time vs. Forward Current

i178020-3

PACKAGE MARKING (example)

Notes

- The VDE Logo is only marked on option1 parts.
- Tape and reel suffix (T) is not part of the package marking.

ESD CAUTION

This is an ESD (electro static discharge) sensitive device. Electrostatic charges accumulate on the human body and test equipment and can discharge without detection. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. ESD withstand voltage of this device is up to 1500 V acc. to JESD22-A114-B.

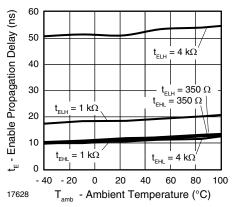
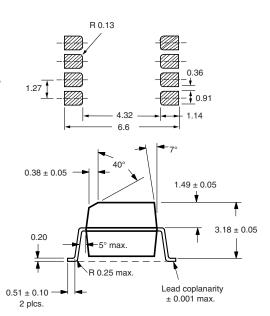



Fig. 23 - Enable Propagation Delay vs. Ambient Temperature

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.