

Fast Infrared Transceiver Module (FIR, 4 Mbit/s) for 2.4 V to 3.6 V Operation and Low-Voltage Logic (1.8 V)

DESCRIPTION

The TFDU6301 transceiver is an infrared transceiver module compliant to the latest IrDA® physical layer low-power standard for fast infrared data communication, supporting IrDA speeds up to 4 Mbit/s (FIR), HP-SIR®, Sharp ASK® and carrier based remote control modes up to 2 MHz. Integrated within the transceiver module is a photo PIN diode, an infrared emitter (IRED), and a low-power control IC to provide a total front-end solution in a single package.

This new Vishay FIR transceiver is built in a new smaller package using the experiences of the lead frame BabyFace technology. The transceivers are capable of directly interfacing with a wide variety of I/O devices, which perform the modulation/demodulation function. At a minimum, a $V_{\rm CC}$ bypass capacitor is the only external component required implementing a complete solution. TFDU6301 has a tri-state output and is floating in shutdown mode with a weak pull-up. An otherwise identical transceiver with supply voltage related logic levels is available as TFDU6301.

APPLICATIONS

- Notebook computers, desktop PCs, palmtop computers (Win CE, Palm PC), PDAs
- Digital cameras and video cameras
- · Printers, fax machines, photocopiers, screen projectors
- Telecommunication products (cellular phones, pagers)
- Internet TV boxes, video conferencing systems
- External infrared adapters (dongles)
- · Medical and industrial data collection

FEATURES

 Compliant to the latest IrDA physical layer specification (up to 4 Mbit/s) with an extended low power range of > 70 cm (typ. 1 m) and TV remote control (> 9 m)

- Operates from 2.4 V to 3.6 V within specification
- Low power consumption (1.8 mA typ. supply current)
- Power shutdown mode (0.01 μA typ. shutdown current)
- · Surface mount package
 - Universal (L 8.5 mm x H 2.5 mm x W 3.1 mm)
- Tri-state-receiver output, floating in shut down with a weak pull-up
- Low profile (universal) package capable of surface mount soldering to side and top view orientation
- Directly interfaces with various super I/O and controller devices
- Only one external component required
- Split power supply, transmitter and receiver can be operated from two power supplies with relaxed requirements saving costs
- Internal logic voltage reference of 1.8 V
- Qualified for lead (Pb)-free and Sn/Pb processing (MSL4)
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

PARTS TABLE								
PART	DESCRIPTION	QTY/REEL OR TUBE						
TFDU6301-TR3	Oriented in carrier tape for side view surface mounting	2500 pcs						
TFDU6301-TT3	Oriented in carrier tape for top view surface mounting	2500 pcs						
TFDU6301-TR1	Oriented in carrier tape for side view surface mounting	750 pcs						
TFDU6301-TT1	Oriented in carrier tape for top view surface mounting	750 pcs						

Vishay Semiconductors Fast Infrared Transceiver Module (FIR, 4 Mbit/s) for 2.4 V to 3.6 V Operation and Low-Voltage Logic (1.8 V)

PRODUCT SUMMARY								
PART NUMBER	DATA RATE (kbit/s)	DIMENSIONS H x L x W (mm x mm x mm)	LINK DISTANCE (m)	OPERATING VOLTAGE (V)	IDLE SUPPLY CURRENT (mA)			
TFDU6301	4000	2.5 x 8.5 x 3.1	0 to ≥ 0.7	2.4 to 3.6	2			

FUNCTIONAL BLOCK DIAGRAM

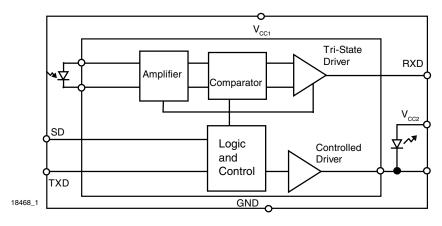


Fig. 1 - Functional Block Diagram

PIN DESC	PIN DESCRIPTION								
PINNUMBER	SYMBOL	DESCRIPTION	I/O	ACTIVE					
1	V _{CC2} IRED anode	IRED anode to be externally connected to V_{CC2} (V_{IRED}). For higher voltages than 3.6 V an external resistor might be necessary for reducing the internal power dissipation. This pin is allowed to be supplied from an uncontrolled power supply separated from the controlled V_{CC1} - supply							
2	IRED cathode	IRED cathode, internally connected to driver transistor							
3	TXD	This input is used to transmit serial data when SD is low. An on-chip protection circuit disables the IRED driver if the TXD pin is asserted for longer than 100 μs. When used in conjunction with the SD pin, this pin is also used to control the receiver mode. Logic reference: 1.8 V logic	I	High					
4	RXD	Received data output, push-pull CMOS driver output capable of driving standard CMOS. No external pull-up or pull-down resistor is required. Floating with a weak pull-up of 500 k Ω (typ.) in shutdown mode. High/low levels adapted to 1.8 V logic. RXD echoes the TXD signal	0	Low					
5	SD	Shutdown, also used for dynamic mode switching. Setting this pin active places the module into shutdown mode. On the falling edge of this signal, the state of the TXD pin is sampled and used to set receiver low bandwidth (TXD = low: SIR) or high bandwidth (TXD = high: MIR and FIR) mode	I	High					
6	V _{CC1}	Supply voltage							
7	NC	Internally not connected	I						
8	GND	Ground							

PINOUT

Weight 0.075 g

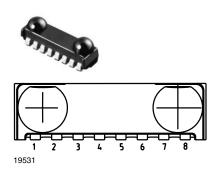


Fig. 2 - Pinning

Definitions:

In the Vishay transceiver datasheets the following nomenclature is used for defining the IrDA operating modes: SIR: 2.4 kbit/s to 115.2 kbit/s, equivalent to the basic serial infrared standard with the physical layer version IrPhy 1.0

MIR: 576 kbit/s to 1152 kbit/s

FIR: 4 Mbit/s VFIR: 16 Mbit/s

MIR and FIR were implemented with IrPhy 1.1, followed by IrPhy 1.2, adding the SIR low power standard. IrPhy 1.3 extended the low power option to MIR and FIR and VFIR was added with IrPhy 1.4. A new version of the standard in any case obsoletes the former version. With introducing the updated versions the old versions are obsolete. Therefore the only valid IrDA standard is the actual version IrPhy 1.4 (in Oct. 2002).

PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage range, transceiver	0 V < V _{CC2} < 6 V	V _{CC1}	- 0.5		6	V
Supply voltage range, transmitter	0 V < V _{CC1} < 6 V	V _{CC2}	- 0.5		6.5	V
Voltage at all I/O pins	tage at all I/O pins $V_{IN} < V_{CC1}$ is allowed - 0		- 0.5		6	V
Input currents	For all pins, except IRED anode pin				10	mA
Output sinking current					25	mA
Power dissipation		P _D			500	mW
Junction temperature		TJ			125	°C
Ambient temperature range (operating)		T _{amb}	- 25		+ 85	°C
Storage temperature range		T _{stg}	- 25		+ 85	°C
Soldering temperature	See section "Recommended Solder Profiles"				260	°C
Average output current		I _{IRED} (DC)			150	mA
Repetitive pulse output current	< 90 μs, t _{on} < 20 %	I _{IRED} (RP)			700	mA
ESD protection	Human body model		1			kV

Note

Reference point pin, ground unless otherwise noted.

Typical values are for design aid only, not guaranteed nor subject to production testing.

EYE SAFETY INFORMATION				
STANDARD	CLASSIFICATION			
IEC/EN 60825-1 (2007-03), DIN EN 60825-1 (2008-05) "SAFETY OF LASER PRODUCTS - Part 1: equipment classification and requirements", simplified method	Class 1			
IEC 62471 (2006), CIE S009 (2002) "Photobiological Safety of Lamps and Lamp Systems"	Exempt			
DIRECTIVE 2006/25/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 th April 2006 on the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artificial optical radiation) (19 th individual directive within the meaning of article 16(1) of directive 89/391/EEC)	Exempt			

Note

Vishay transceivers operating inside the absolute maximum ratings are classified as eye safe according the above table.

TFDU6301

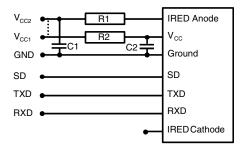
Vishay Semiconductors Fast Infrared Transceiver Module (FIR, 4 Mbit/s) for 2.4 V to 3.6 V Operation and Low-Voltage Logic (1.8 V)

PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
TRANSCEIVER		<u> </u>				
Supply voltage		V _{CC}	2.4		3.6	V
,,,,		Receive monode, add addition			ent.	
Dynamic supply current		XD output current	depending on I		1 0	
	SIR mode	I _{CC}		1.8	3	mA
	MIR/FIR mode	I _{CC}		2	3.3	mA
Shutdown supply current	SD = high T= 25 °C, not ambient light sensitive, detector is disabled in shutdown mode	I _{SD}		0.01		μΑ
Shutdown supply current	SD = high, full specified temperature range, not ambient light sensitive	I _{SD}			1	μΑ
Operating temperature range		T _A	- 25		+ 85	°C
Digital reference voltage	Internally generated	V _{dd}	1.62	1.8	1.98	V
Input voltage low (TXD, SD)		V _{IL}	- 0.5		0.5	V
Input voltage high ⁽²⁾ (TXD, SD)		V _{IH}	1.5	1.8	6	V
Input leakage current (TXD, SD)	V _{IN} > 1.6 V	lich	- 1		+ 1	μΑ
Input capacitance, TXD, SD		Cı			5	pF
Output voltage low	$I_{OL} = 500 \mu A$ $C_{load} = 15 pF$	V_{OL}			0.4	V
Output voltage high	I _{OH} = - 250 μA C _{load} = 15 pF	V _{OH}	0.8 x V _{dd}			V
Output RXD current limitation high state low state	Short to ground Short to V _{CC1}				20 20	mA mA
SD shutdown pulse duration	Activating shutdown		30		∞	μs
RXD to V _{CC1} impedance		R _{RXD}	400	500	600	kΩ
SD mode programming pulse duration	All modes	t _{SDPW}	200			ns

 ⁽¹⁾ T_{amb} = 25 °C, V_{CC1} = V_{CC2} = 2.4 V to 3.6 V unless otherwise noted.
 Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
 (2) The typical threshold level is 0.5 x V_{dd}. It is recommended to use the specified min./max. values to avoid increased operating current.

TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
			l		·
9.6 kbit/s to 115.2 kbit/s $\lambda = 850 \text{ nm to } 900 \text{ nm,}$ $V_{CC} = 2.4 \text{ V}$	E _e		50 (5)	80 (8)	mW/m² (μW/cm²
$\begin{array}{c} \text{1.152 Mbit/s} \\ \lambda = 850 \text{ nm to } 900 \text{ nm,} \\ \text{V}_{CC} = 2.4 \text{ V} \end{array}$	E _e		100 (10)		mW/m² (μW/cm²
$\begin{array}{c} 4 \text{ Mbit/s} \\ \lambda = 850 \text{ nm to } 900 \text{ nm,} \\ V_{CC} = 2.4 \text{ V} \end{array}$	E _e		130 (13)	200 (20)	mW/m² (μW/cm²
λ = 850 nm to 900 nm	E _e	5 (500)			kW/m ² (mW/cm ²
10 % to 90 %, C _L = 15 pF	t _{r (RXD)}	10		40	ns
90 % to 10 %, C _L = 15 pF	t _{f (RXD)}	10		40	ns
Input pulse length 1.4 μs < P _{Wopt} < 25 μs	t _{PW}	1.6	2.2	3	μs
Input pulse length P _{Wopt} = 217 ns, 1.152 Mbit/s	t _{PW}	105	250	275	ns
RXD pulse width of output signal, 50 %, FIR mode Input pulse length P _{Wopt} = 125 ns, 4 Mbit/s		105	125	145	ns
Input pulse length P _{Wopt} = 250 ns, 4 Mbit/s	t _{PW}	225	250	275	ns
Input irradiance = 100 mW/m², 4 Mbit/s 1.152 Mbit/s ≤ 115.2 kbit/s				25 80 350	ns ns ns
After completion of shutdown programming sequence power on delay				250	μѕ
	t _L		40	100	μs
Note: no external resistor current limiting resistor is needed	I _D	330	440	600	mA
Input pulse width t < 20 μs	t _{PW}		t		μs
	t _{PW}	18			μs
Input pulse width t ≥ 150 μs					μs
	I _{IRED}	- 1		1	μΑ
$V_{CC} = V_{IRED} = 3.3 \text{ V}, \ \alpha = 0^{\circ}$ TXD = high, SD = Low	l _e	65	180	468 ⁽⁵⁾	mW/sr
$V_{CC} = V_{IRED} = 3.3 \text{ V}, \ \alpha = 0^{\circ}, 15^{\circ}$ TXD = high, SD = Low	l _e	50	125	468 ⁽⁵⁾	mW/sr
$V_{CC1} = 3.3 \text{ V}, \alpha = 0^{\circ}, 15^{\circ}$ TXD = low or SD = high (receiver is inactive as long as SD = high)	l _e			0.04	mW/sr
	α		± 24		deg
	λ_{p}	875	886	900	nm
	Δλ		45		nm
	9.6 kbit/s to 115.2 kbit/s $\lambda = 850 \text{ nm to } 900 \text{ nm},$ $V_{CC} = 2.4 \text{ V}$ 1.152 Mbit/s $\lambda = 850 \text{ nm to } 900 \text{ nm},$ $V_{CC} = 2.4 \text{ V}$ 4 Mbit/s $\lambda = 850 \text{ nm to } 900 \text{ nm},$ $V_{CC} = 2.4 \text{ V}$ $\lambda = 850 \text{ nm to } 900 \text{ nm},$ $V_{CC} = 2.4 \text{ V}$ $\lambda = 850 \text{ nm to } 900 \text{ nm}$ $10 \% \text{ to } 90 \%, \text{ C}_L = 15 \text{ pF}$ $90 \% \text{ to } 10 \%, \text{ C}_L = 15 \text{ pF}$ $\text{Input pulse length}$ $1.4 \mu \text{s} < P_{Wopt} < 25 \mu \text{s}$ $\text{Input pulse length}$ $P_{Wopt} = 217 \text{ ns},$ 1.152 Mbit/s $\text{Input pulse length}$ $P_{Wopt} = 125 \text{ ns},$ 4 Mbit/s $\text{Input pulse length}$ $P_{Wopt} = 250 \text{ ns},$ 4 Mbit/s $\text{Input irradiance} = 100 \text{ mW/m}^2,$ 4 Mbit/s 1.152 Mbit/s 1.152 Mbit/s 1.152 kbit/s 4 Mbit/s 1.152 kbit/s $4 \text{ After completion of shutdown programming sequence power on delay}$ $\text{Note: no external resistor current limiting resistor is needed}$ $\text{Input pulse width } t < 20 \mu \text{s}$ $\text{Input pulse width } t \geq 20 \mu \text{s}$ $\text{Input pulse width } t \geq 150 \mu \text{s}$	9.6 kbit/s to 115.2 kbit/s $\lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V}$ 1.152 Mbit/s $\lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V}$ 4 Mbit/s $\lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V}$ $\lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V}$ $\lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V}$ $\lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V}$ $\lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V}$ $\lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V}$ $\lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V}$ $\lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V}$ $\lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 15 \text{ pF}, \\ V_{(RXD)}$ $1090 \text{ % to } 10 \text{ %, } C_L = 15 \text{ pF}, \\ V_{(RXD)}$ $1090 \text{ % to } 10 \text{ %, } C_L = 15 \text{ pF}, \\ V_{(RXD)}$ $1090 \text{ % to } 10 \text{ %, } C_L = 15 \text{ pF}, \\ V_{(RXD)}$ $1.152 \text{ Mbit/s}, \\ V_{DW} = 1.152 \text{ Mbit/s}, \\ V_{WW} = 1.152 \text{ Mbit/s}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 9.6 \text{ kbit/s to } 115.2 \text{ kbit/s} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V} \\ 1.152 \text{ Mbit/s} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V} \\ 2.4 \text{ W} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.4 \text{ V} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.5 \text{ W} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.5 \text{ V} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.5 \text{ V} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.5 \text{ V} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.5 \text{ V} \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.6 \text{ Ns}, \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.7 \text{ Ns}, \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ V_{CC} = 2.7 \text{ Ns}, \\ \lambda = 900 \text{ nm}, \\ \lambda = 850 \text{ nm to } 900 \text{ nm}, \\ \lambda = 8$

Fast Infrared Transceiver Module (FIR, 4 Mbit/s) for 2.4 V to 3.6 V Operation and Low-Voltage Logic (1.8 V)


OPTOELECTRONIC CHARACTERISTICS								
PARAMETER	TEST CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Optical output pulse duration	Input pulse width 217 ns, 1.152 Mbit/s	t _{opt}	207	217	227	ns		
Optical output pulse duration	Input pulse width 125 ns, 4 Mbit/s			133	ns			
Optical output pulse duration	Input pulse width 250 ns, 4 Mbit/s	t _{opt}	242	250	258	ns		
Optical overshoot					25	%		

Notes

- (1) T_{amb} = 25 °C, V_{CC1} = V_{CC2} = 2.4 V to 3.6 V unless otherwise noted. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. All timing data measured with 4 Mbit/s are measured using the IrDA FIR transmission header. The data given here are valid 5 µs after starting the preamble.
- (2) IrDA low power specification is 90 mW/m². Specification takes into account a window loss of 10 %.
- (3) IrDA sensitivity definition (equivalent to threshold irradiance): minimum irradiance E_e in angular range, power per unit area. The receiver must meet the BER specification while the source is operating at the minimum intensity in angular range into the minimum half-angular range at the maximum link length.
- (4) Maximum irradiance E_e in angular range, power per unit area. The optical delivered to the detector by a source operating at the maximum intensity in angular range at minimum link length must not cause receiver overdrive distortion and possible related link errors. If placed at the active output interface reference plane of the transmitter, the receiver must meet its bit error ratio (BER) specification. For more definitions see the document "Symbols and Terminology" on the Vishay website.
- (5) Maximum value is given by eye safety class 1, IEC 60825-1, simplified method.
- (6) Due to this wavelength restriction compared to the IrDA spec of 850 nm to 900 nm the transmitter is able to operate as source for the standard Remote control applications with codes as e.g. Philips RC5/RC6® or RECS 80. When operated under IrDA full range conditions (125 mW/sr) the RC range to be covered is in the range from 8 m to 12 m, provided that state of the art remote control receivers are used.

RECOMMENDED CIRCUIT DIAGRAM

Operated at a clean low impedance power supply the TFDU6301 needs no additional external components. However, depending on the entire system design and board layout, additional components may be required (see figure 3).

19307

Fig. 3 - Recommended Application Circuit

The capacitor C1 is buffering the supply voltage and eliminates the inductance of the power supply line. This one should be a tantalum or other fast capacitor to guarantee the fast rise time of the IRED current. The resistor R1 is only necessary for high operating voltages and elevated temperatures.

Vishay transceivers integrate a sensitive receiver and a built-in power driver. The combination of both needs a careful circuit board layout. The use of thin, long, resistive and inductive wiring should be avoided. The inputs (TXD,

SD) and the output RXD should be directly (DC) coupled to the I/O circuit.

The capacitor C2 combined with the resistor R2 is the low pass filter for smoothing the supply voltage.

R2, C1 and C2 are optional and dependent on the quality of the supply voltages V_{CCx} and injected noise. An unstable power supply with dropping voltage during transmission may reduce the sensitivity (and transmission range) of the transceiver.

The placement of these parts is critical. It is strongly recommended to position C2 as close as possible to the transceiver power supply pins. A tantalum capacitor should be used for C1 while a ceramic capacitor is used for C2.

In addition, when connecting the described circuit to the power supply, low impedance wiring should be used.

When extended wiring is used the inductance of the power supply can cause dynamically a voltage drop at V_{CC2} . Often some power supplies are not able to follow the fast current rise time. In that case another 4.7 μF (type, see table under C1) at V_{CC2} will be helpful.

Keep in mind that basic RF-design rules for circuit design should be taken into account. Especially longer signal lines should not be used without termination. See e.g. "The Art of Electronics" Paul Horowitz, Winfield Hill, 1989, Cambridge University Press, ISBN: 0521370957.

TABLE 1 - R	TABLE 1 - RECOMMENDED APPLICATION CIRCUIT COMPONENTS					
COMPONENT	RECOMMENDED VALUE	VISHAY PART NUMBER				
C1	4.7 μF, 16 V	293D 475X9 016B				
C2	0.1 μF, ceramic	VJ 1206 Y 104 J XXMT				
R1	No resistor necessary, the internal controller is able to control the current					
R2	10 Ω, 0.125 W	CRCW-1206-10R0-F-RT1				

I/O AND SOFTWARE

In the description, already different I/Os are mentioned. Different combinations are tested and the function verified with the special drivers available from the I/O suppliers. In special cases refer to the I/O manual, the Vishay application notes, or contact directly Vishay Sales, Marketing or Application.

MODE SWITCHING

The TFDU6301 is in the SIR mode after power on as a default mode, therefore the FIR data transfer rate has to be set by a programming sequence using the TXD and SD inputs as described below. The low frequency mode covers speeds up to 115.2 kbit/s. Signals with higher data rates should be detected in the high frequency mode. Lower frequency data can also be received in the high frequency mode but with reduced sensitivity. To switch the transceivers from low frequency mode to the high frequency mode and vice versa, the programming sequences described below are required.

SETTING TO THE HIGH BANDWIDTH MODE (0.576 Mbit/s to 4 Mbit/s)

- 1. Set SD input to logic "high".
- 2. Set TXD input to logic "high". Wait $t_s \ge 200$ ns.
- 3. Set SD to logic "low" (this negative edge latches state of TXD, which determines speed setting).
- 4. After waiting $t_h \ge 200$ ns TXD can be set to logic "low". The hold time of TXD is limited by the maximum allowed pulse length.

TXD is now enabled as normal TXD input for the high bandwidth mode.

SETTING TO THE LOWER BANDWIDTH MODE (2.4 kbit/s to 115.2 kbit/s)

- 1. Set SD input to logic "high".
- 2. Set TXD input to logic "low". Wait $t_s \ge 200$ ns.
- 3. Set SD to logic "low" (this negative edge latches state of TXD, which determines speed setting).
- 4. TXD must be held for $t_h \ge 200$ ns.

TXD is now enabled as normal TXD input for the high bandwidth mode.

Note

When applying this sequence to the device already in the lower bandwidth mode, the SD pulse is interpreted as shutdown. In this case the RXD output of the transceiver may react with a single pulse (going active low) for a duration less than 2 μs . The operating software should take care for this condition.

In case the applied SD pulse is longer than 4 μs , no RXD pulse is to be expected but the receiver startup time is to be taken into account before the device is in receive condition.

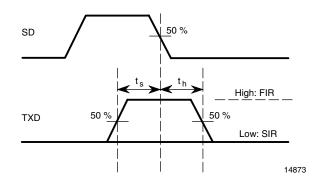


Fig. 4 - Mode Switching Timing Diagram

TABLE 2	2 - TRUTH TAI	BLE		
		INPUTS	OUTPUTS	1
SD	TXD	OPTICAL INPUT IRRADIANCE mW/m ²	RXD	TRANSMITTER
High	х	х	Weakly pulled (500 k Ω) to V _{CC1}	0
	High	х	Low (echo)	l _e
	High > 150 μs	х	High	0
Low	Low	< 4	High	0
LOW	Low	> min. detection threshold irradiance < max. detection threshold irradiance	Low (active)	0
	Low	> max. detection threshold irradiance	х	0

Fast Infrared Transceiver Module (FIR, 4 Mbit/s) for 2.4 V to 3.6 V Operation and Low-Voltage Logic (1.8 V)

RECOMMENDED SOLDER PROFILES

Solder Profile for Sn/Pb Soldering

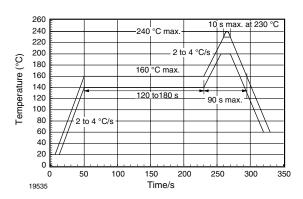


Fig. 5 - Recommended Solder Profile for Sn/Pb soldering

Lead (Pb)-free, Recommended Solder Profile

The TFDU6301 is a lead (Pb)-free transceiver and qualified for lead (Pb)-free processing. For lead (Pb)-free solder paste like $Sn_{(3.0-4.0)}Ag_{(0.5-0.9)}Cu$, there are two standard reflow profiles: Ramp-Soak-Spike (RSS) and Ramp-To-Spike (RTS). The Ramp-Soak-Spike profile was developed primarily for reflow ovens heated by infrared radiation. With widespread use of forced convection reflow ovens the Ramp-To-Spike profile is used increasingly. Shown in figure 6 and 7 are Vishay's recommended profiles for use with the TFDU6301 transceivers. For more details please refer to the application note "SMD Assembly Instructions". A ramp-up rate less than 0.9 °C/s is not recommended. Ramp-up rates faster than 1.3 °C/s could damage an optical part because the thermal conductivity is less than compared to a standard IC.

Wave Soldering

For TFDUxxxx and TFBSxxxx transceiver devices wave soldering is not recommended.

Manual Soldering

Manual soldering is the standard method for lab use. However, for a production process it cannot be recommended because the risk of damage is highly dependent on the experience of the operator. Nevertheless, we added a chapter to the above mentioned application note, describing manual soldering and desoldering.

Storage

The storage and drying processes for all Vishay transceivers (TFDUxxxx and TFBSxxx) are equivalent to MSL4.

The data for the drying procedure is given on labels on the packing and also in the application note "Taping, Labeling, Storage and Packing".

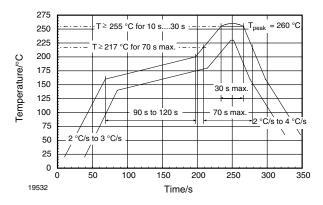


Fig. 6 - Solder Profile, RSS Recommendation

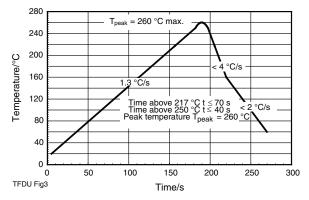
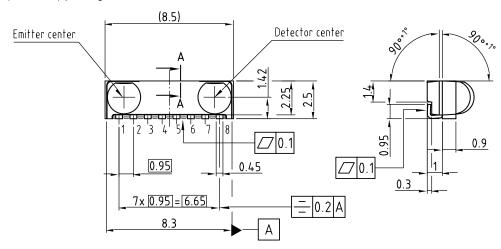



Fig. 7 - RTS Recommendation

PACKAGE DIMENSIONS in millimeters

TFDU6301 (universal) package

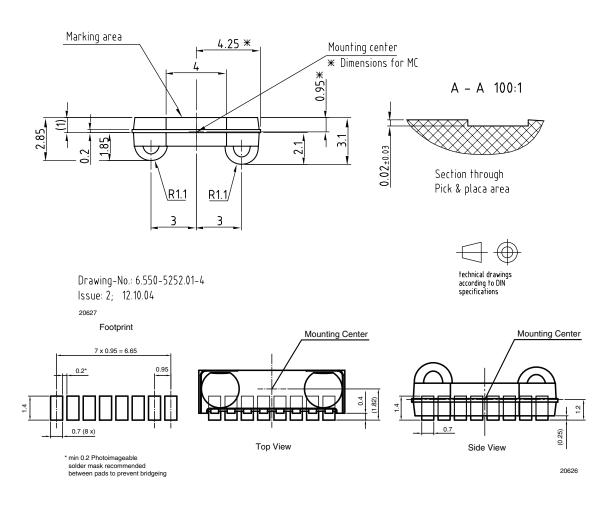
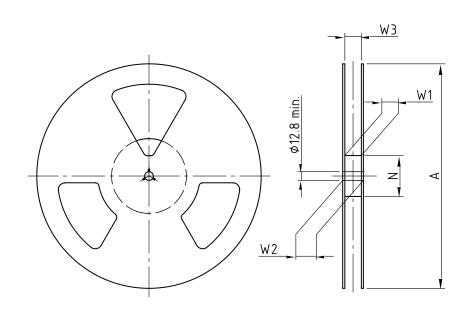



Fig. 8 - Package Drawing

Vishay Semiconductors Fast Infrared Transceiver Module (FIR, 4 Mbit/s) for 2.4 V to 3.6 V Operation and Low-Voltage Logic (1.8 V)

REEL DIMENSIONS in millimeters

Reel hub 2:1

....

Drawing-No.: 9.800-5090.01-4 Issue: 1; 29.11.05 Form of the leave open of the wheel is supplier specific.

Dimension acc. to IEC EN 60 286-3

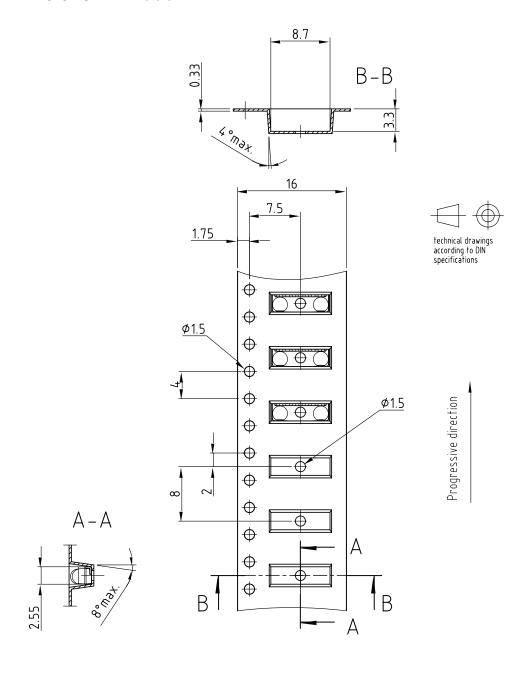

technical drawings according to DIN specifications

Fig. 9 - Reel Drawing

TAPE WIDTH (mm)	A MAX. (mm)	N (mm)	W ₁ MIN. (mm)	W ₂ MAX. (mm)	W ₃ MIN. (mm)	W ₃ MAX. (mm)
16	180	60	16.4	22.4	15.9	19.4
16	330	50	16.4	22.4	15.9	19.4

TAPE DIMENSIONS in millimeters

Drawing-No.: 9.700-5280.01-4

Issue: 1; 03.11.03

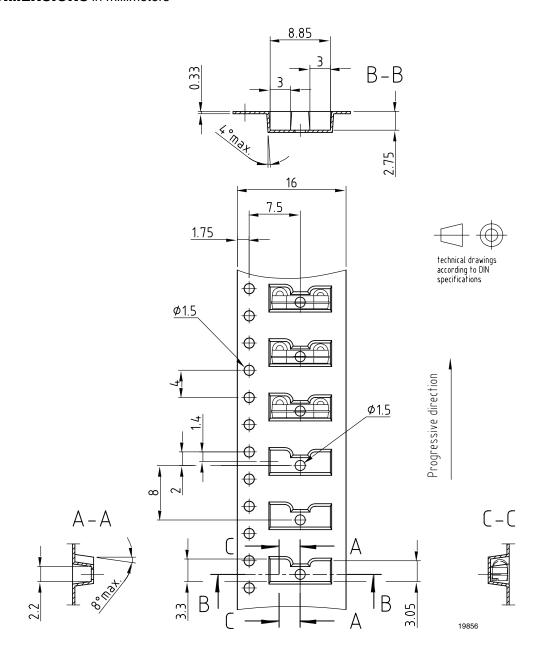

19855

Fig. 10 - Tape Drawing, TFDU6301 for Top View Mounting

Fast Infrared Transceiver Module (FIR, 4 Mbit/s) for 2.4 V to 3.6 V Operation and Low-Voltage Logic (1.8 V)

TAPE DIMENSIONS in millimeters

Drawing-No.: 9.700-5279.01-4

Issue: 1; 08.12.04

19856

Fig. 11 - Tape Drawing, TFDU6301 for Side View Mounting

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1