

IGBT Fourpack Module, 50 A

ECONO 2

PRIMARY CHARACTERISTICS			
V _{CES} 1200 V			
I _C at T _C = 66 °C	50 A		
V _{CE(on)} (typical)	3.49 V		
Speed	8 kHz to 30 kHz		
Package	ECONO 2		
Circuit configuration	4 pack		

FEATURES

- Square RBSOA
- HEXFRED® low Q_{rr}, low switching energy
- Positive V_{CE(on)} temperature coefficient
- · Copper baseplate
- Low stray inductance design
- · Designed and qualified for industrial market
- UL approved file E78996

 Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

BENEFITS

- Benchmark efficiency for SMPS appreciation in particular HF welding
- Rugged transient performance
- · Low EMI, requires less snubbing
- · Direct mounting to heatsink space saving
- PCB solderable terminals
- Low junction to case thermal resistance

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		1200	V	
0		T _C = 25 °C	66		
Continuous collector current	I _C	T _C = 80 °C	44		
Pulsed collector current See fig. C.T.5	I _{CM}		150		
Clamped inductive load current	I _{LM}		150	Α	
		T _C = 25 °C	40		
Diode continuous forward current	IF	T _C = 80 °C	25		
Diode maximum forward current	I _{FM}		150		
Gate to emitter voltage	V_{GE}		± 20	V	
Maximum power dissipation (IGBT)	P _D	T _C = 25 °C	330	W	
		T _C = 80 °C	180	VV	
Maximum operating junction temperature	TJ		150	°C	
Storage temperature range	T _{Stg}		-40 to +125		
Isolation voltage	V _{ISOL}		AC 2500 (min)	V	

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Collector to emitter breakdown voltage	BV _(CES)	V _{GE} = 0 V, I _C = 500 μA	1200	=.	-		
Collector to emitter voltage	V _{CE(ON)}	I _C = 50 A, V _{GE} = 15 V	-	3.49	3.9		
		I _C = 75 A, V _{GE} = 15 V -		4.15	4.5	.,	
		I _C = 50 A, V _{GE} = 15 V, T _J = 125 °C	-	4.16	4.5	V	
		I _C = 75 A, V _{GE} = 15 V, T _J = 125 °C	-	4.97	5.4		
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	4.0	4.9	6.0		
Threshold voltage temperature coefficient	$\Delta V_{GE(th)}/\Delta T_{J}$	$V_{CE} = V_{GE}$, $I_{C} = 1$ mA (25 °C to 125 °C)	-	-10	-	mV/°C	
7		V _{GE} = 0 V, V _{CE} = 1200 V	-	11	250		
Zero gate voltage collector current	I _{CES}	V _{GE} = 0 V, V _{CE} = 1200 V, T _J = 125 °C	-	600	1000	μΑ	
Diode forward voltage drop	V _{FM}	I _F = 50 A	-	3.30	4.5	- V	
		I _F = 75 A	-	3.90	5.0		
		I _F = 50 A, T _J = 125 °C	-	3.6	4.8		
		I _F = 75 A, T _J = 125 °C	-	4.37	5.5		
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V	-	-	± 200	nA	

PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Q_{G}	I _C = 50 A		-	400	-	nC
Gate to emitter charge (turn-on)	Q _{GE}	V _{CC} = 600 V			43	-	
Gate to collector charge (turn-on)	Q_{GC}	V _{GE} = 15 V			187	-	
Turn-on switching loss	E _{on}	$I_{\rm C} = 50 \text{A}, V_{\rm CC} = 60 \text{A}$	00 V	-	0.93	-	
Turn-off switching loss	E _{off}	$V_{GE} = 15 \text{ V}, R_{G} = 4$		-	1.20	-	
Total switching loss	E _{tot}	$T_{\rm J} = 25 ^{\circ}{\rm C}^{(1)}$		-	2.13	-	1
Turn-on switching loss	E _{on}	$I_{\rm C} = 50 \text{ A}, V_{\rm CC} = 60$	00 V	-	1.68	-	mJ _
Turn-off switching loss	E _{off}	$V_{GE} = 15 \text{ V}, R_{G} = 4$		-	1.77	-	
Total switching loss	E _{tot}	$T_{\rm J} = 125 ^{\circ}{\rm C}^{(1)}$	$T_{J} = 125 ^{\circ}C^{(1)}$		3.46	-	1
Turn-on delay time	t _{d(on)}	I_C = 50 A, V_{CC} = 600 V V_{GE} = 15 V, R_G = 4.7 Ω, L = 500 μH T_J = 125 °C		-	128	-	- ns
Rise time	t _r			-	56	-	
Turn-off delay time	t _{d(off)}			-	292	-	
Fall time	t _f			-	134	-	
Reverse bias safe operating area	RBSOA	$T_J = 150 ^{\circ}\text{C}, I_C = 150 \text{A}$ $R_G = 10 \Omega, V_{GE} = 15 \text{V} \text{to} 0 \text{V}$		Fullsquare			
Short circuit safe operating area	SCSOA	$T_J = 150 ^{\circ}\text{C}$ $V_{CC} = 900 \text{V}, V_P = 1200 \text{V}$ $R_G = 10 \Omega, V_{GE} = 15 \text{V} \text{ to 0 V}$		10	-	-	μs
Diada and an art and an art and art are		T _J = 25 °C	<u> </u>	-	1.3	2.3	^
Diode peak reverse recovery current	I _{rr}	T _J = 125 °C		-	2.0	3	A
Diode reverse recovery time		T _J = 25 °C	$V_{CC} = 600 \text{ V}$	-	0.453	0.49	μs
	t _{rr}	T _J = 125 °C	I _F = 50 A dI/dt = 7 A/μs	-	0.74	0.82	
Total various vasculari abavas	0	T _J = 25 °C	-	-	0.12	0.3	μС
Total reverse recovery charge	Q_{rr}	T _J = 125 °C		-	0.4	1.5	

Note

⁽¹⁾ Energy losses include "tail" and diode reverse recovery

www.vishay.com Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
Junction to case IGBT	R _{thJC} (IGBT)	=	-	0.38	
Junction to case DIODE	R _{thJC} (DIODE)	-	-	1.00	°C/W
Case to sink, flat, greased surface	R _{thCS} (MODULE)	-	0.05	-	
Mounting torque (M5)		2.7	-	3.3	Nm
Weight		-	170	ī	g

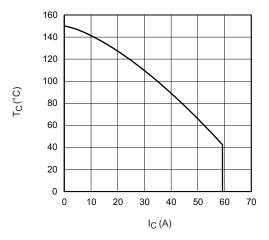


Fig. 1 - Maximum DC Collector Current vs.
Case Temperature

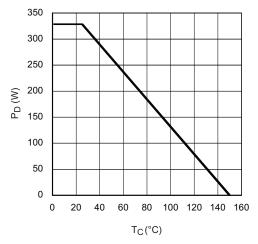


Fig. 2 - Power Dissipation vs. Case Temperature

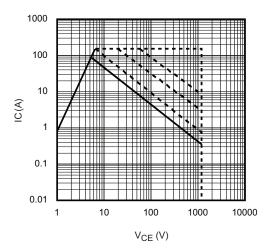


Fig. 3 - Forward SOA T_C = 25 °C; $T_J \le$ 150 °C

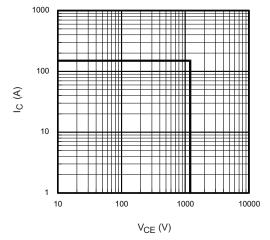


Fig. 4 - Reverse Bias SOA $T_J = 150 \,^{\circ}\text{C}$; $V_{GE} = 15 \,^{V}$

www.vishay.com

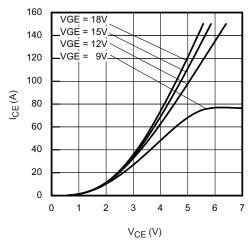


Fig. 5 - Typical IGBT Output Characteristics $T_J = 25 \, ^{\circ}\text{C}; \, t_p = 500 \, \mu\text{s}$

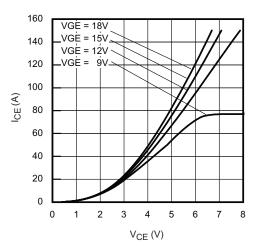


Fig. 6 - Typical IGBT Output Characteristics $T_J = 125$ °C; $t_p = 500 \mu s$

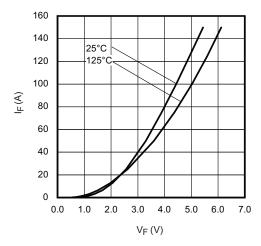


Fig. 7 - Typical Diode Forward Characteristics $t_{\text{p}} = 500~\mu\text{s}$

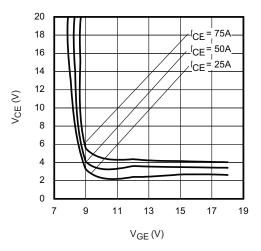


Fig. 8 - Typical V_{CE} vs. V_{GE} T_{J} = 25 °C

Fig. 9 - Typical V_{CE} vs. V_{GE} T_{J} = 125 °C

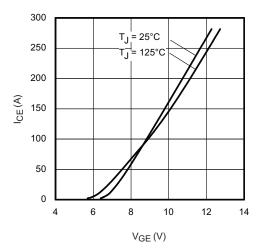


Fig. 10 - Typical Transfer Characteristics $V_{CE} = 20 \ V; \ t_p = 500 \ \mu s$

www.vishay.com

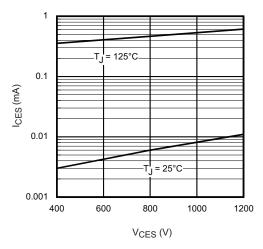


Fig. 11 - Typical Zero Gate Voltage Collector Current

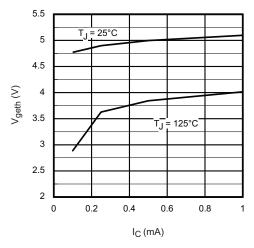


Fig. 12 - Typical Threshold Voltage

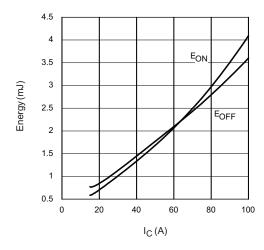


Fig. 13 - Typical Energy Loss vs. I_{C} T $_{J}$ = 125 °C; L = 200 $\mu H;$ V $_{CE}$ = 600 V, R $_{G}$ = 5 $\Omega;$ V $_{GE}$ = 15 V

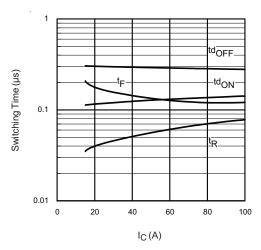


Fig. 14 - Typical Switching Time vs. I_C T_J = 125 °C; L = 200 $\mu H;$ V_{CE} = 600 V, R_G = 5 $\Omega;$ V_{GE} = 15 V

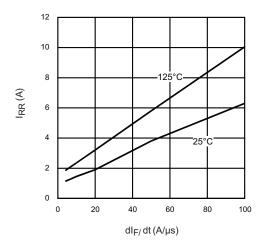


Fig. 15 - Typical Diode I_{REC} vs. dI_{F}/dt $V_{CC} = 600 \ V; \ I_{F} = 50 \ A$

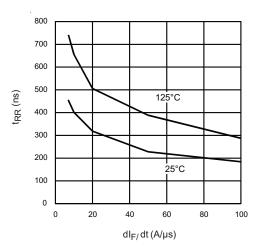


Fig. 16 - Typical Diode t_{rr} vs. dI_F/dt $V_{CC} = 600 \text{ V}$; $I_F = 50 \text{ A}$

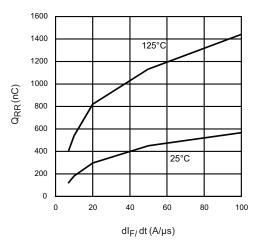


Fig. 17 - Typical Diode Q_{rr} vs. dI_F/dt V_{CC} = 600 V; I_F = 50 A

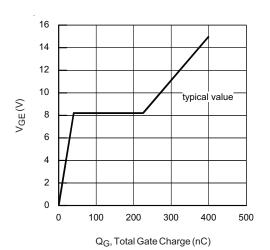


Fig. 18 - Typical Gate Charge vs. V_{GE} I_{CE} = 5.0 A; L = 600 μH

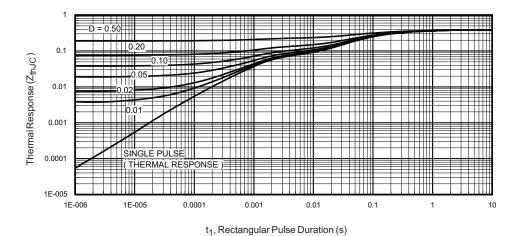


Fig. 19 - Maximum Transient Thermal Impedance, Junction to Case (IGBT)

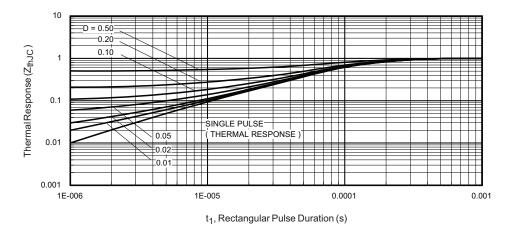
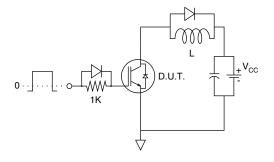



Fig. 20 - Maximum Transient Thermal Impedance, Junction to Case (DIODE)

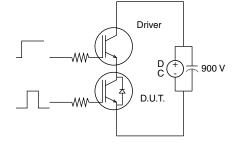
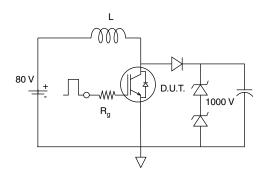



Fig. 21 - Gate Charge Circuit (Turn-Off)

Fig. 23 - S.C. SOA Circuit

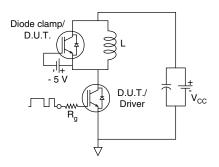


Fig. 22 - RBSOA Circuit

Fig. 24 - Switching Loss Circuit

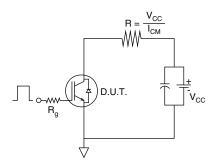
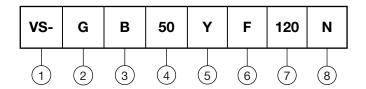
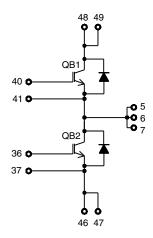
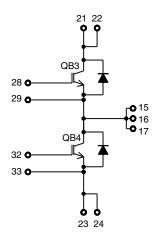



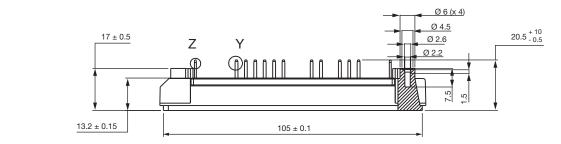
Fig. 25 - Resistive Load Circuit

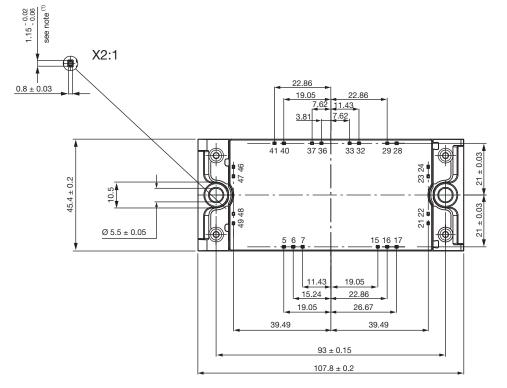

ORDERING INFORMATION TABLE

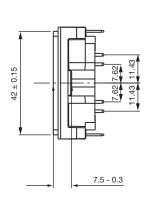

Device code

- Vishay Semiconductors product
- Insulated gate bipolar transistor (IGBT)
- **3** B = IGBT Gen 5 NPT
- 4 Current rating (50 = 50 A)
- **5** Circuit configuration (Y = 4 pack)
- 6 Package indicator (F = ECONO 2)
- 7 Voltage rating (120 = 1200 V)
- 8 Speed/type (N = ultrafast with reduced diode, speed 8 kHz to 60 kHz)

CIRCUIT CONFIGURATION


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95539			




ECONO2 4PACK N Series

DIMENSIONS in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED