

ZXTP25020BFH 20V, SOT23, PNP medium power transistor

Summary

$$\begin{split} &\mathsf{BV}_{\mathsf{CEX}} > -40\mathsf{V} \\ &\mathsf{BV}_{\mathsf{CEO}} > -20\mathsf{V} \\ &\mathsf{BV}_{\mathsf{ECO}} > -7\mathsf{V} \\ &\mathsf{I}_{\mathsf{C(cont)}} = -4\mathsf{A} \\ &\mathsf{R}_{\mathsf{CE(sat)}} = 32\ \mathsf{m}\Omega \\ &\mathsf{V}_{\mathsf{CE(sat)}} < -60\mathsf{m}\mathsf{V}\ @\ \mathsf{1A} \\ &\mathsf{P}_{\mathsf{D}} = 1.25\mathsf{W} \\ &\mathsf{Complementary\ part\ number\ \mathsf{ZXTN25020BFH}} \end{split}$$

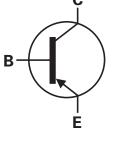
Description

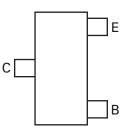
Advanced process capability and package design have been used to maximize the power handling and performance of this small outline transistor. The compact size and ratings of this device make it ideally suited to applications where space is at a premium.

Features

- High power dissipation SOT23 package
- High peak current
- Low saturation voltage
- 40V forward blocking voltage
- 7V reverse blocking voltage

Applications


- MOSFET and IGBT gate driving
- DC DC converters
- Motor drive
- High side driver
- Battery charging


Ordering information

Device	Reel size (inches)	Tape width (mm)	Quantity per reel
ZXTP25020BFHTA	7	8	3,000

Device marking

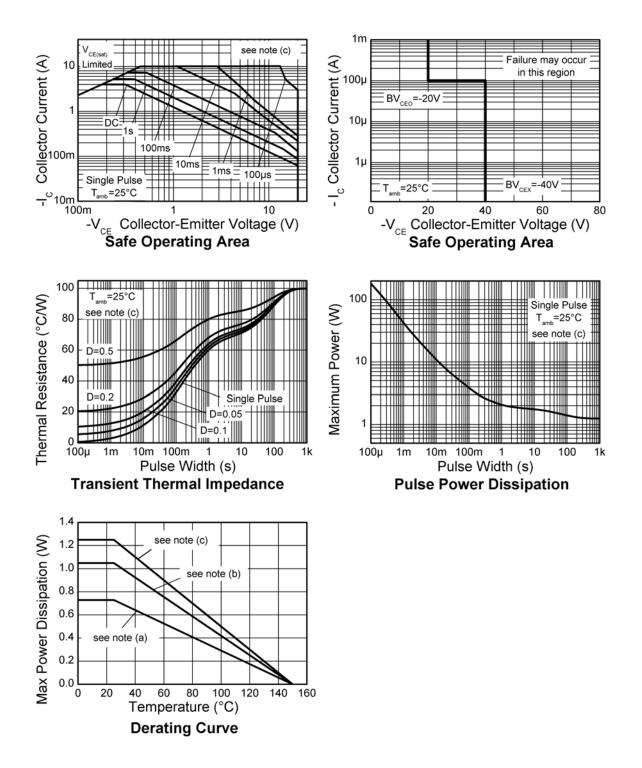
1A9

Pinout - top view

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Collector-base voltage	V _{CBO}	-40	V
Collector-emitter voltage (forward blocking)	V _{CEX}	-40	V
Collector-emitter voltage	V _{CEO}	-20	V
Emitter-collector voltage (reverse blocking)	V _{ECO}	-7	V
Emitter-base voltage	V _{EBO}	-7	V
Continuous collector current ^(b)	Ι _C	-4	А
Peak pulse current	I _{CM}	-10	А
Power dissipation at T _{amb} =25°C ^(a)	P _D	0.73	W
Linear derating factor		5.84	mW/°C
Power dissipation at T _{amb} =25°C ^(b)	P _D	1.05	W
Linear derating factor		8.4	mW/°C
Power dissipation at T _{amb} =25°C ^(c)	P _D	1.25	W
Linear derating factor		9.6	mW/°C
Power dissipation at $T_{amb} = 25^{\circ}C^{(d)}$	P _D	1.81	W
Linear derating factor		14.5	mW/°C
Operating and storage temperature range	T _j , T _{stg}	-55 to 150	°C

Thermal resistance


Parameter	Symbol	Limit	Unit
Junction to ambient ^(a)	$R_{\Theta J A}$	171	°C/W
Junction to ambient ^(b)	$R_{\Theta J A}$	119	°C/W
Junction to ambient ^(c)	$R_{\Theta J A}$	100	°C/W
Junction to ambient ^(d)	$R_{\Theta JA}$	69	°C/W

NOTES:

(a) For a device surface mounted on 15mm x 15mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.

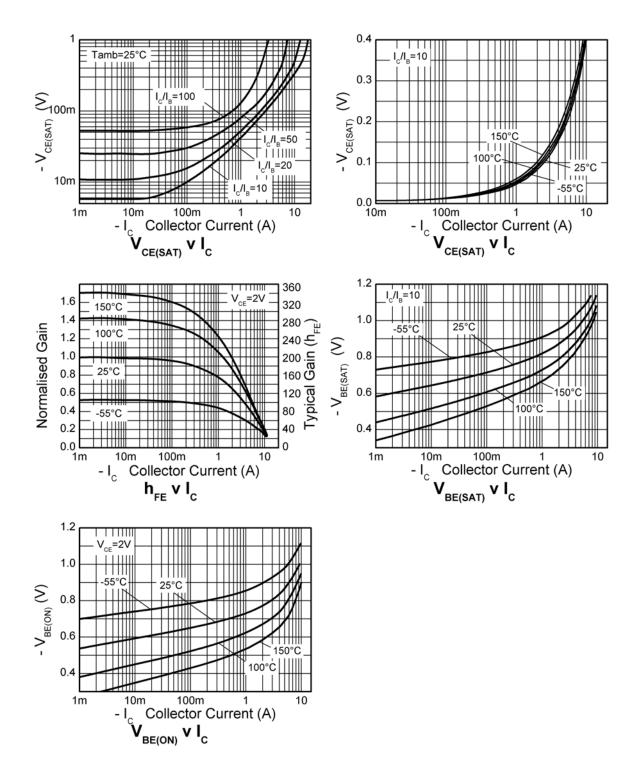
(b) Mounted on $25mm \times 25mm \times 1.6mm$ FR4 PCB with a high coverage of single sided 2 oz copper in still air conditions. (c) Mounted on $50mm \times 50mm \times 1.6mm$ FR4 PCB with a high coverage of single sided 2 oz copper in still air conditions. (d) As (c) above measured at t<5secs.

Characteristics

Issue 2 - March 2008 © Zetex Semiconductors plc 2008

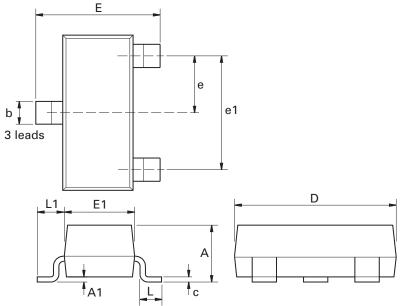
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Collector-base breakdown voltage	BV _{CBO}	-40	-60		V	I _C = -100μA
Collector-emitter breakdown voltage (forward blocking)	BV _{CEX}	-40	-60		V	I_{E} = -100 μ A ^(*) R _{BE} < 1k Ω or 1V < V _{BE} < -0.25V
Collector-emitter breakdown voltage (base open)	BV _{CEO}	-20	-35		V	I _C = -10mA ^(*)
Emitter-base breakdown voltage	BV _{EBO}	-7	-8.2		V	I _E = -100μA
Emitter-collector breakdown voltage (reverse blocking)	BV _{ECX}	-6	-8		V	$I_{E} = -100 \mu A \stackrel{(*)}{}{}^{R}R_{BC} < 10 k \Omega$ or 0.25 < V $_{BC} < -0.25 V$
Emitter-collector breakdown voltage (base open)	BV _{ECO}	-7	-8.6		V	$I_{E} = -100 \mu A^{(*)}$
Collector-base cut-off current	I _{CBO}		<-1	-50	nA	V _{CB} = -32V
				-20	μA	$V_{CB} = -32V, T_{amb} = 100^{\circ}C$
Collector-emitter cut-off current	I _{CEX}		-	100	nA	V_{CE} = -32V; R_{BE} < 1k Ω or 1V < V_{BE} < -0.25V
Emitter-base cut-off current	I _{EBO}		<-1	-50	nA	V _{EB} = -5.6V
Collector-emitter saturation	V _{CE(sat)}		-44	-60	mV	I _C = -1A, I _B = -100mA ^(*)
voltage			-80	-110	mV	I _C = -1A, I _B = -20mA ^(*)
			-125	-190	mV	$I_{\rm C} = -2A, I_{\rm B} = -40 {\rm mA}^{(*)}$
			-160	-210	mV	I _C = -4A, I _B = -200mA ^(*)
			-160	-210	mV	I _C = -5A, I _B = -500mA ^(*)
Base-emitter saturation voltage	V _{BE(sat)}		-930	-1000	mV	$I_{\rm C}$ = -4A, $I_{\rm B}$ = -200mA ^(*)
Base-emitter turn-on voltage	V _{BE(on)}		-820	-900	mV	$I_{C} = -4A, V_{CE} = -2V^{(*)}$
Static forward current	h _{FE}	100	200	300		$I_{C} = -10 \text{mA}, V_{CE} = -2V^{(*)}$
transfer ratio		80	160			I _C = -1A, V _{CE} = -2V ^(*)
		50	100			$I_{C} = -4A, V_{CE} = -2V^{(*)}$
			45			I _C = -10A, V _{CE} = -2V ^(*)
Transition frequency	f _T		250		MHz	I _C = -50mA, V _{CE} = -10V f = 100MHz
Output capacitance	C _{OBO}		32.5	40	pF	V _{CB} = -10V, f = 1MHz ^(*)
Delay time	t _d		53		ns	V _{CC} = -15V,
Rise time	t _r		63		ns	l _C = -750mA,
Storage time	t _s		128		ns	I _{B1} = I _{B2} = -15mA
Fall time	t _f		50		ns	

Electrical characteristics (at $T_{amb} = 25^{\circ}C$ unless otherwise stated)


NOTES:

(*) Measured under pulsed conditions. Pulse width \leq 300 μs ; duty cycle \leq 2%.

Issue 2 - March 2008


 $\ensuremath{\mathbb{C}}$ Zetex Semiconductors plc 2008

Typical characteristics

Issue 2 - March 2008 © Zetex Semiconductors plc 2008

Package outline - SOT23

Dim.	Millimeters		Inches		Dim.	Millimeters		Inches	
	Min.	Max.	Min.	Max.		Min.	Max.	Min.	Max.
А	-	1.12	-	- 0.044 e1 1.90 NOM 0.075 N		1.90 NOM		NOM	
A1	0.01	0.10	0.0004	0.004	E	2.10	2.64	0.083	0.104
b	0.30	0.50	0.012	0.020	E1	1.20	1.40	0.047	0.055
С	0.085	0.20	0.003	0.008	L	0.25	0.60	0.0098	0.0236
D	2.80	3.04	0.110	0.120	L1	0.45	0.62	0.018	0.024
е	0.95	NOM	0.037	NOM	-	-	-	-	-

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Europe	
Zetex GmbH	
Kustermann-Park	
D-81541 München	
Germany	

Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49 europe.sales@zetex.com Americas Zetex Inc 700 Veterans Memorial Highway Hauppauge, NY 11788 USA

Telephone: (1) 631 360 2222 Fax: (1) 631 360 8222 usa.sales@zetex.com

Asia Pacific

Zetex (Asia Ltd) 3701-04 Metroplaza Tower 1 Hing Fong Road, Kwai Fong Hong Kong Telephone: (852) 26100 611 Fax: (852) 24250 494

i Fong Oldham, OL9 9LL United Kingdom 0 611 Telephone: (44) 161 622 4444

Corporate Headquarters

Zetex Semiconductors plc

Zetex Technology Park, Chadderton

Fax: (852) 24250 494 Fax: (44) 161 622 4446 asia.sales@zetex.com hq@zetex.com

For international sales offices visit www.zetex.com/offices

Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork

This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

Issue 2 - March 2008

© Zetex Semiconductors plc 2008

www.zetex.com