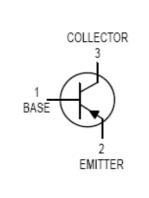
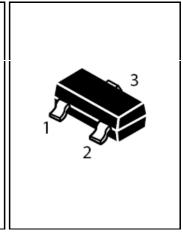


MMST2907A


PNP General Purpose Transistor

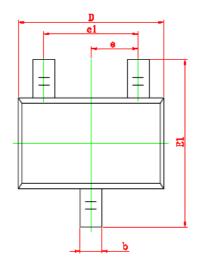

FEATURES

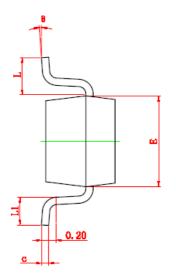
- Ideal for Medium Power Amplification and Switching
- Complementary NPN Type available(MMST2222A)

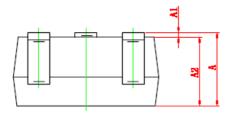
MECHANICAL DATA

- Case: SOT-323 Plastic
- Case material: "Green" molding compound, UL flammability classification 94V-0, (No Br. Sb. Cl)
- Lead Free in RoHS 2002/95/EC and Halogen Free Compliant

Maximum Ratings @ $T_A = 25^{\circ}C$

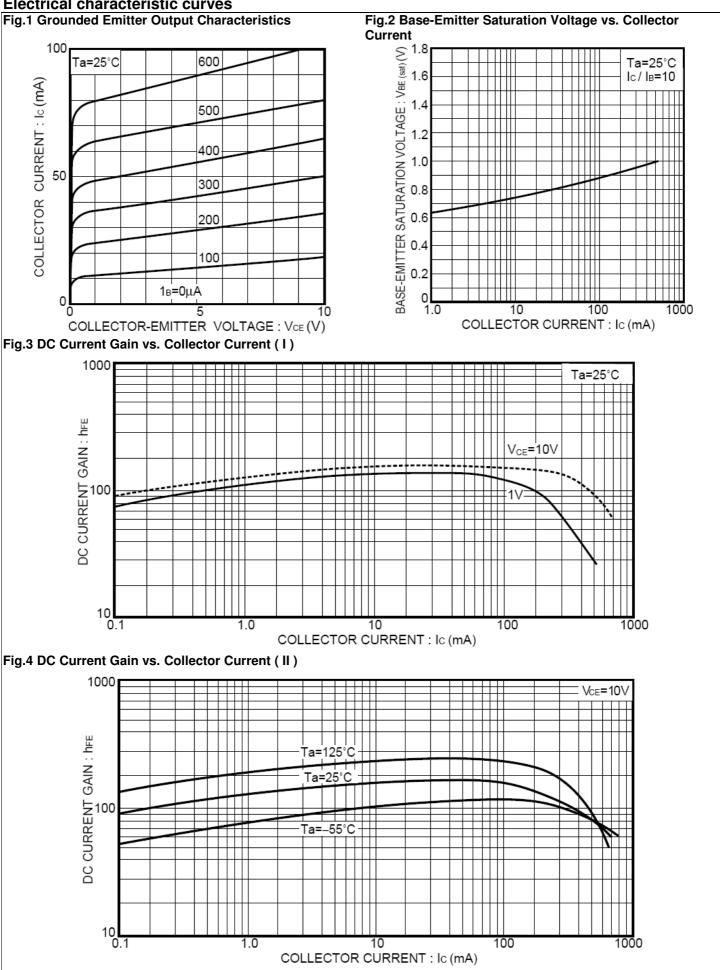

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-60	V
Collector-Emitter Voltage	V _{CEO}	-60	V
Emitter-Base Voltage	V _{EBO}	-5	V
Collector Current -Continuous	I _C	-600	mA
Collector Power Dissipation	P _C	200	mW
Thermal Resistance, junction to Ambient	R⊖ _{JA}	500	°C/W
Junction Temperature	T _J	150	$^{\circ}\mathbb{C}$
Storage Temperature Range	T _{STG}	-55~+150	$^{\circ}\!\mathbb{C}$

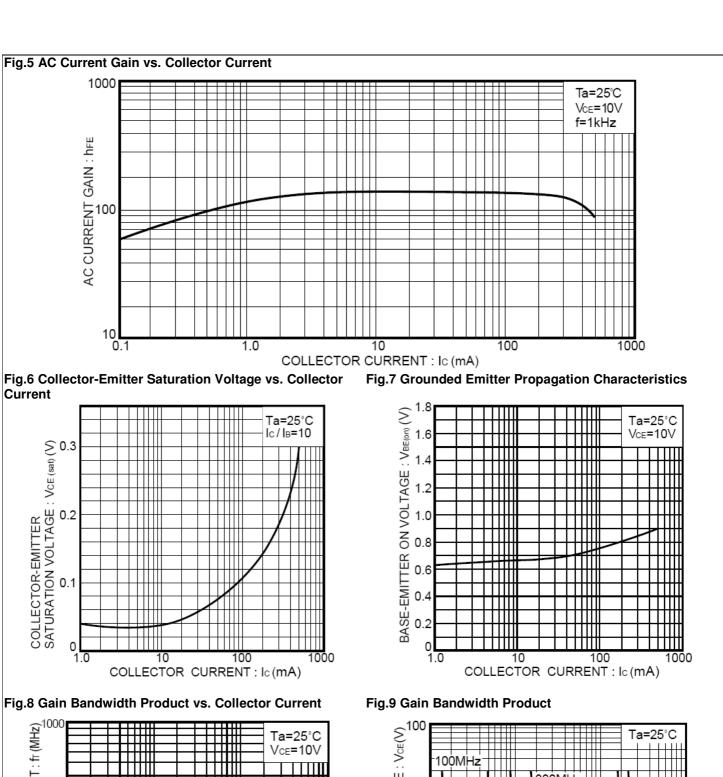

Electrical Characteristics @ T_A = 25 °C unless otherwise specified

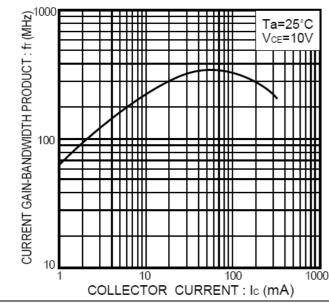

Characteristic	Test Condition	Symbol	Min.	Тур.	Max.	Unit
Collector-base breakdown voltage	$I_{C}=-10\mu A, I_{E}=0$	V_{CBO}	-60			V
Collector-emitter breakdown voltage	I _C =-10mA,I _B =0	V_{CEO}	-60			V
Emitter-base breakdown voltage	$I_{E}=-10\mu A, I_{C}=0$	V_{EBO}	-5			V
Collector-base cut-off current	$V_{CB} = -50V, I_{E} = 0$	I _{CBO}			-100	nA
Collector-emitter cut-off current	V_{CE} =-30 V , I_{B} =0	I _{CEO}			-100	nA
Emitter-base cut-off current	$V_{EB}=-3V,I_{C}=0$	I _{EBO}			-100	nA
	V _{CE} =-10V,I _C =-0.1mA	h _{FE1}	75			
	V _{CE} =-10V,I _C =-1mA	h _{FE2}	100			
DC current gain	V _{CE} =-10V,I _C =-10mA	h _{FE3}	100			
	V _{CE} =-10V,I _C =-150mA	h _{FE4}	100		300	
	V _{CE} =-10V,I _C =-500mA	h _{FE5}	50			
Collector emitter acturation voltage	I _C =-150mA,I _B =-15mA	V _{CE} (sat)1			-0.4	V
Collector-emitter saturation voltage	I _C =-500mA,I _B =-50mA	V _{CE} (sat)2			-1.6	V
Dana amittar acturation valtage	I _C =-150mA,I _B =-15mA	V _{BE} (sat)1			-1.3	V
Base-emitter saturation voltage	I _C =-500mA,I _B =-50mA	V _{BE} (sat)2			-2.6	V
Transition frequency V_{CE} =-20V,I _C =-50mA f=100MHz		f _T	200			MHz
Output capacitance	V _{CB} =-10V,I _E =0,f=0.1MHz	C_{obo}			8	рF
Input capacitance	V _{EB} =-2V,I _C =0,f=0.1MHz	Cib			30	pF
Delay time	V _{CC} =-30V, V _{BE(off)} =-1.5V,	T _d			10	nS
Rise time	I _C =-150mA , I _{B1} =-15mA	T _r			40	nS
Storage time	V _{CC} =-30V, I _C =-150mA	T _s			80	nS
Fall time	$I_{B1} = -I_{B2} = -15 \text{mA}$	T_f			30	nS
	•				0017 KG	

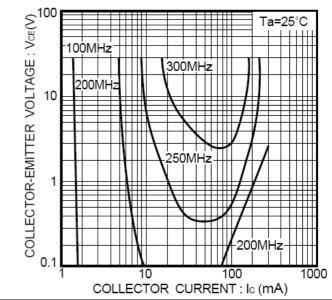
REV. 4, Sep-2017, KSPR18

SOT-323 Outline Dimension




Cymhol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	0.900	1.100	0.035	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.000	0.035	0.039	
b	0.200	0.400	0.008	0.016	
С	0.080	0.150	0.003	0.006	
D	2.000	2.200	0.079	0.087	
E	1.150	1.350	0.045	0.053	
E1	2.150	2.450	0.085	0.096	
е	0.650 TYP		0.026 TYP		
e1	1.200	1.400	0.047	0.055	
L	0.525 REF		0.021 REF		
L1	0.260	0.460	0.010	0.018	
θ	0°	8°	0°	8°	


Device Marking:


Device P/N	Marking code
MMST2907A	K3F

Electrical characteristic curves

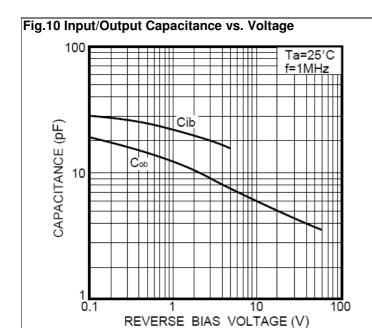


Fig.12 Rise Time vs. Collector Current

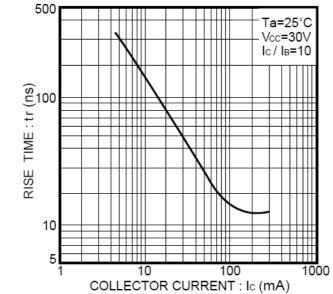


Fig.14 Fall Time vs. Collector Current



Fig.11 Turn-on Time vs. Collector Current

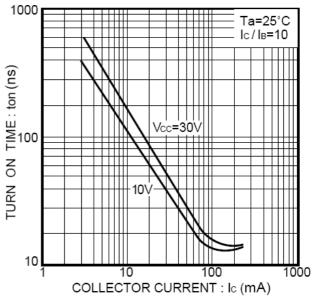
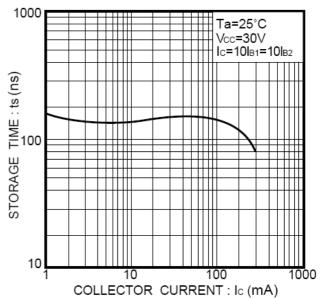



Fig.13 Storage Time vs. Collector Current

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.