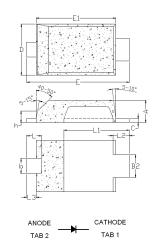


FB330M ~ FB340M

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER

REVERSE VOLTAGE – 40Volts FORWARD CURRENT – 3.0 Ampere


FEATURES

- Very low profile package 0.80mm
- · High efficiency
- · Low forward voltage drop, low power loss
- For use in low voltage, high frequency inverters, free wheeling, dc-to-dc converters and polarity protection applications
- ESD Capability: Machine Model, C (> 400 V) Human Body Model, 3B (> 8 kV)

MECHANICAL DATA

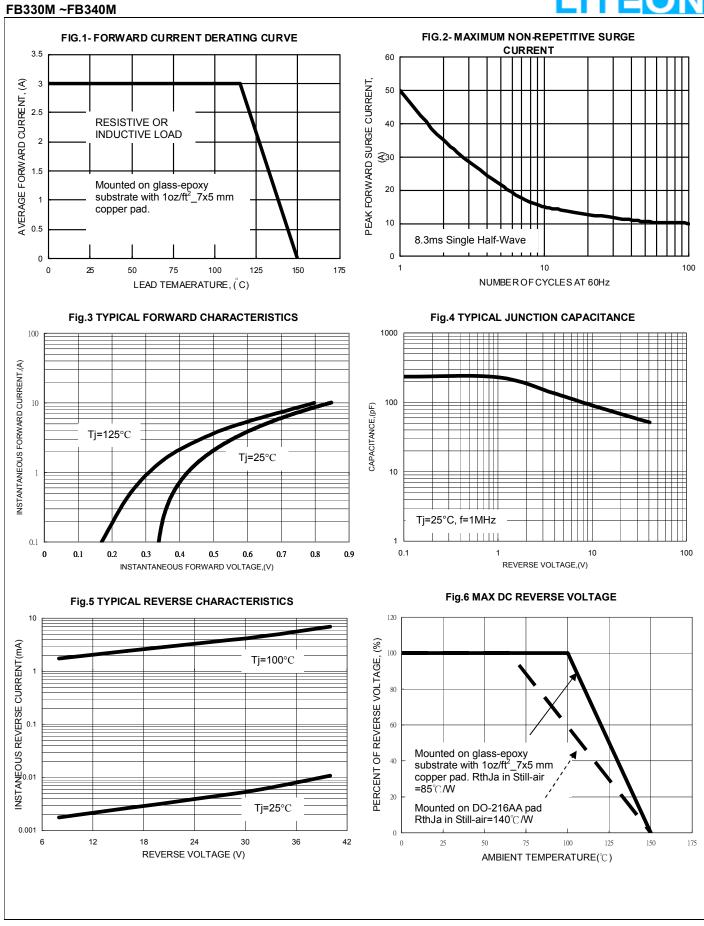
- Case: JEDEC DO-222AA
- Case Material: "Green" molding compound, UL flammability classification 94V-0, (No Br. Sb. Cl.)
- Moisture Sensitivity: Level 1 per J-STD-020C
- Terminals: Lead Free Plating (Matte Tin Finish.)
- · Reliability tested in accordance with AEC-Q101
- Component in accordance to RoHs 2002/95/EC

Mite Flat

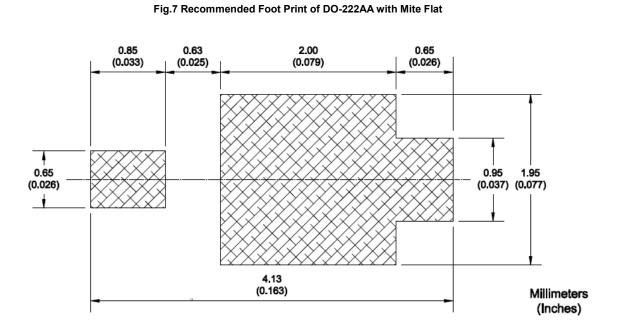
DO-222AA						
DIM.	MIN.	MAX.				
Α	0.80	0.95				
b	0.40	0.65				
b2	0.70	1.00				
С	0.10	0.25				
D	1.75	2.05				
Е	3.60	3.90				
E1	2.80	3.10				
h	0.35	0.50				
L	0.50	0.80				
L1	2.10	2.60				
L2	0.45	0.75				
L3	0.20	0.50				
All Dimension in millimeter						

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified.


PARAMETER			SYMBOL	FB330M	FB340M	UNIT
Device marking code			Note	B33	B34	
Maximum Repetitive Peak Reverse Voltage			V_{RRM}	30	40	V
Maximum RMS Voltage			V _{RMS}	21	28	V
Maximum DC Blocking Voltage			V_{DC}	30	40	V
Average Rectified Output Current @T _L =115°C,(Fig.1)			I _(AV)	3.0		А
Peak Forward Surge Current 8.3ms single half sine-wave			I _{FSM}	5	50	
Operating junction and storage temperature range		T _{STG} ,T _J	-55 to +150		°C	
PARAMETER	TEST CO	TEST CONDITIONS		Тур.	Max.	UNIT
Forward Voltage (1)	IF=3.0A	Tj=25°C Tj=125°C	V _F	0.52 0.45	0.58 0.48	V
Leakage Current (1)	VDC=Rated	Tj=25°C Tj=100°C	I _R		200 15	uA mA
THERMAL CHARACTERISTIC		SYMBOL	Typical		UNIT	
Typical junction capacitance (2)		CJ	135		pF	
Typical thermal resistance_Junction to Case (3)			R⊕ _{JC}	15		°C/W
Typical thermal resistance_Junction to Ambient(3)			R⊖ _{JA}	85		°C/W
Typical thermal resistance_Junction to Lead (3)			R⊖JL	20		°C/W
DEV.E. May 2012 VOI						

Note:


REV.5, Mar-2012, KSHP01

- 1) 300us Pulse width, 2% Duty cycle.
- (2) Measured at 1.0MHz and applied reverse voltage of 4.0V DC.
- (3) Thermal Resistance test performed in accordance with JESD-51. Unit mounted on glass-epoxy substrate with 1oz/ft²_7x5 mm copper pad. R_{ejL} is measured at the lead of cathode band, R_{ejC} is measured at the top centre of body, R_{eja} is measured at top surface of the package to surrounding natural convection (Still air) ambient.

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.