

General Description

The AP3406A is a 1.1MHz fixed frequency, current mode, PWM synchronous buck (step-down) DC-DC converter, capable of driving a 800mA load with high efficiency, excellent line and load regulation. The device integrates a main switch and a synchronous switch without an external Schottky diode. It is ideal for powering portable equipment that runs from a single Li-ion battery.

A standard series of inductors are available from several different manufacturers optimized for use with the AP3406A. This feature greatly simplifies the design of switch-mode power supplies.

This IC is available in TSOT-23-5, MSOP-10 and DFN- 2×2 -6(1) packages.

Features

- High Efficiency: up to 95%
- Output Current: 800mA
- Input Voltage Range: 2.5V to 5.5V
- Fixed 1.1MHz Frequency
- Current Mode Control
- 100% Duty Cycle in Dropout
- Built-in Short Circuit Protection
- Built-in Thermal Shutdown Function
- Built-in Current Limit Function
- Shutdown Current: <1 µA

Applications

- GPS
- WiFi Card
- Portable Media Player
- Digital Still and Video Cameras

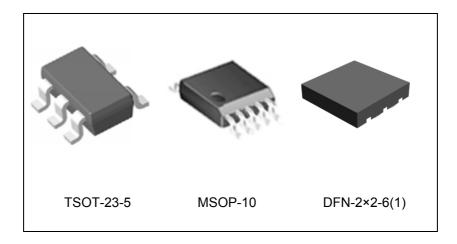


Figure 1. Package Types of AP3406A

Pin Configuration

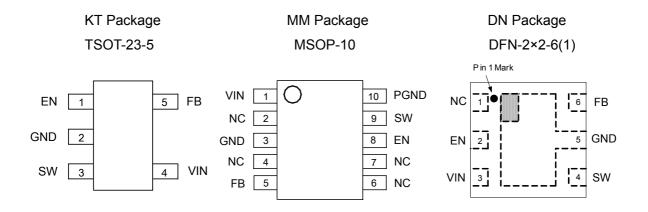


Figure 2. Pin Configuration of AP3406A (Top View)

Pin Description

Pin Number		Din Nama	E		
TSOT-23-5	MSOP-10	DFN-2×2-6(1)	Pin Name	Function	
1	8	2	EN	Control input pin. Forcing this pin above 1.5V enables the IC. Forcing this pin below 0.6V shuts down the IC. When the IC is in shutdown mode, all functions are disabled to decrease the supply current below 1µA	
2	3	5	GND	Ground pin	
3	9	4	SW	Power switch output pin. Inductor connection to drain of the internal PFET and NFET switches	
4	1	3	VIN	Supply input pin. Bypass to GND with a 10µF or greater ceramic capacitor	
5	5	6	FB	Feedback pin. Connect it with an external resistor divider network to program the system output voltage	
	2, 4, 6, 7	1	NC	No connection	
	10		PGND	Power ground pin	

Functional Block Diagram

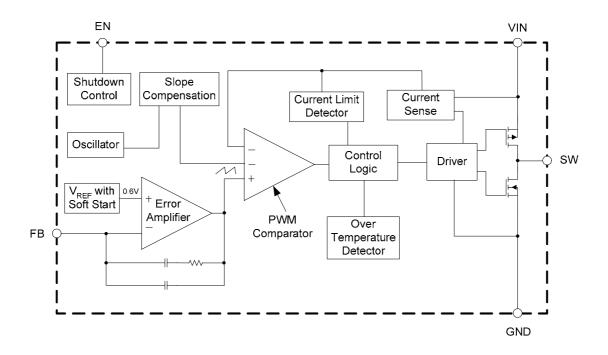
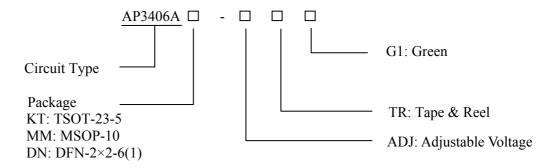



Figure 3. Functional Block Diagram of AP3406A

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type	
TSOT-23-5		AP3406AKT-ADJTRG1	L2A	Tape & Reel	
MSOP-10	-40 to 85°C AP3406AMM-ADJTRG1 3406AMM-G1		3406AMM-G1	Tape & Reel	
DFN-2×2-6(1)		AP3406ADN-ADJTRG1	BA	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit
Input Voltage	$ m V_{IN}$	-0.3 to 6		V
Feedback Voltage	V_{FB}	-0.3 to V _{IN} +0.3		V
EN Pin Voltage	V _{EN}	-0.3 to V _{IN} +0.3		V
SW Pin Voltage	V_{SW}	-0.3 to V _{IN} +0.3		V
	$ heta_{ m JA}$	TSOT-23-5	250	°C/W
Thermal Resistance		MSOP-10	135	
		DFN-2×2-6(1)	100	
Operating Junction Temperature	T_{J}	150		°C
Storage Temperature	T_{STG}	-65 to 150		°C
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260		°C

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	$V_{\rm IN}$	2.5	5.5	V
Maximum Output Current	I _{OUT (MAX)}	800		mA
Operating Ambient Temperature	T _A	-40	85	°C

Electrical Characteristics

 V_{IN} = V_{EN} =3.6V, T_A =25°C, unless otherwise specified. Specifications with **boldface type** apply over full operating temperature range from -40 to 85°C.

Parameters	Symbol	Conditions	Min	Тур	Max	Unit
Supply Current	I_{CC}	V _{FB} =0.55V		400	600	μΑ
Shutdown Supply Current	I_{SHDN}	$V_{EN}=0V, V_{IN}=5.5V$		0.01	1	μΑ
Under Voltage Lockout Threshold	$V_{\rm UVLO}$	Rising edge		2.27		V
Under Voltage Lockout Hysteresis	V _{HUVLO}			200		mV
Feedback Bias Current	I_{FB}	V _{FB} =0.65V	-50	0.5	50	nA
Feedback Voltage	V_{FB}	I _{OUT} =100mA	0.588/ 0.582	0.600	0.612/ 0.618	V
		V _{IN} =2.5V, V _{OUT} =0.9V	800			
Maximum Output Current	I _{OUT (MAX)}	V _{IN} =3.6V, V _{OUT} =1.2V	800			mA
		V _{IN} =4.6V, V _{OUT} =3.3V	800			
Switch Current Limit	I_{LIM}	V _{FB} =0.55V	0.95	1.25		A
Oscillator Frequency	f_{OSC}		0.8	1.1	1.4	MHz
EN Pin Threshold	V _{ENL}				0.6	V
EN I III TIII ESHOIQ	V _{ENH}		1.5			
EN Pin Input Leakage	I_{H}	V _{EN} =3.6V	-0.1		0.1	μΑ
Current	$I_{\rm L}$	V _{EN} =0V	-0.1		0.1	μΑ
Internal PFET On Resistance	R_{DSONP}	I _{SW} =100mA		0.44		Ω
Internal NFET On Resistance	R _{DSONN}	I _{sw} =-100mA		0.29		Ω
Maximum Duty Cycle	D_{MAX}	V _{FB} =0.55V		100		%
Soft-start Time	T_{SS}	V_{EN} =0V to V_{IN} I_{OUT} =50mA		220		μs
Thermal Shutdown Threshold	T_{OTSD}			160		°C
Thermal Shutdown Hysteresis	T_{HYS}			30		°C

Typical Performance Characteristics

L=10 μ H, C_{IN}=C_{OUT}=10 μ F, T_A=25 $^{\circ}$ C, unless otherwise noted.

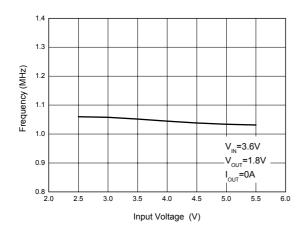
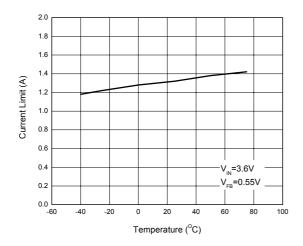
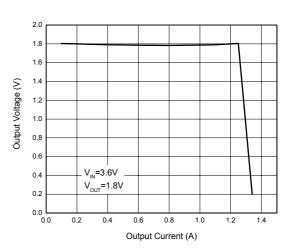
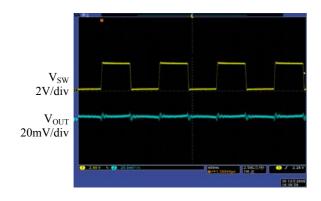



Figure 4. Frequency vs. Input Voltage

Figure 5. Supply Current vs. Temperature

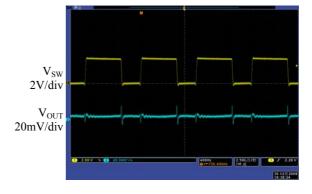
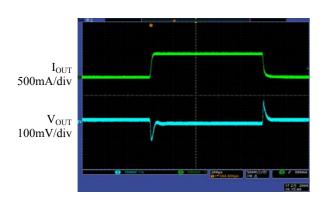

Figure 6. Current Limit vs. Temperature

Figure 7. Output Voltage vs. Output Current

Typical Performance Characteristics (Continued)


400ns/div

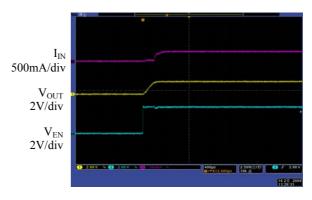
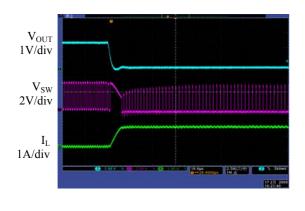

 $(V_{IN}=3.6V, V_{OUT}=1.8V, I_{OUT}=0mA)$

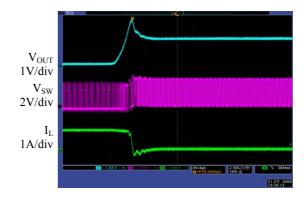
Figure 8. Light Load Operation

400ns/div

Figure 9. Heavy Load Operation (V_{IN} =3.6V, V_{OUT} =1.8V, I_{OUT} =800mA)

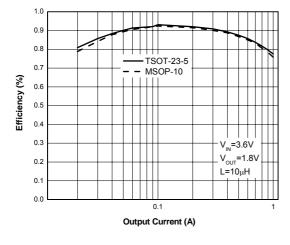
200µs/div


 $\label{eq:figure 10. Load Transient} Figure 10. Load Transient \\ (V_{IN}=3.6V, V_{OUT}=1.8V, I_{OUT}=0mA to 800mA)$


Figure 11. Start up from Shutdown (V_{IN} =3.6V, V_{OUT} =1.8V, R_{LOAD} =2.5 Ω)

400µs/div

Typical Performance Characteristics (Continued)



10µs/div

Figure 12. Short Circuit Protection (V_{IN}=3.6V, V_{OUT}=1.8V, no load)

Figure 13. Short Circuit Recovery (V_{IN}=3.6V, V_{OUT}=1.8V, no load)

 $40\mu s/div$

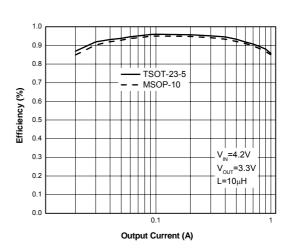


Figure 14. Efficiency vs. Output Current

Figure 15. Efficiency vs. Output Current

Typical Performance Characteristics (Continued)

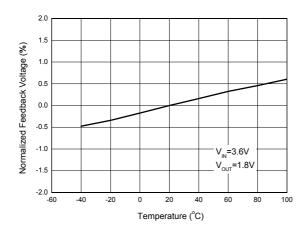


Figure 16. Normalized Feedback Voltage vs. Temperature

Typical Application

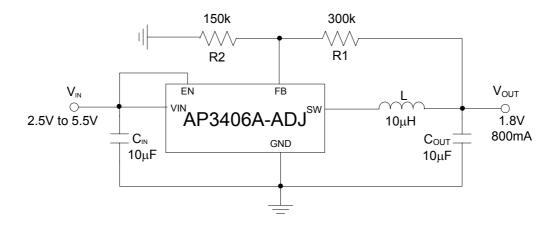
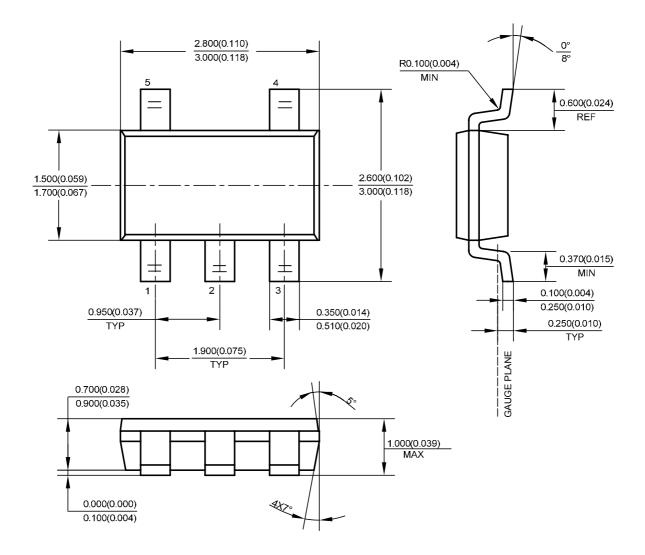
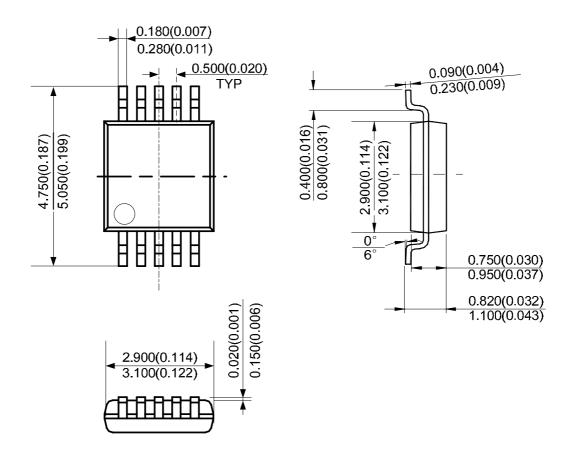



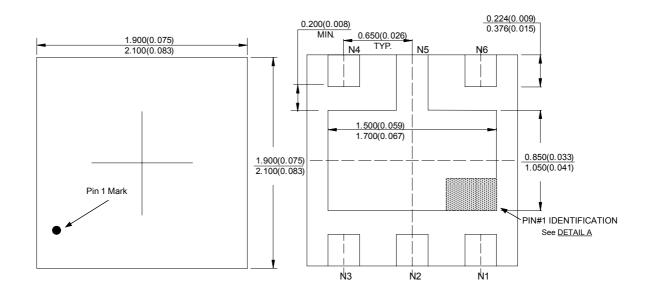
Figure 17. Typical Application of AP3406A

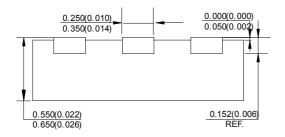
Mechanical Dimensions

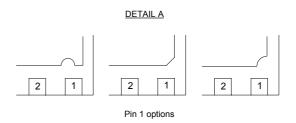

TSOT-23-5 Unit: mm(inch)

Mechanical Dimensions (Continued)

MSOP-10 Unit: mm(inch)




Note: Eject hole, oriented hole and mold mark is optional.



Mechanical Dimensions (Continued)

DFN-2×2-6(1) Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951

Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788