

AZ432

General Description

The AZ432 series ICs are low voltage three-terminal adjustable regulators with guaranteed thermal stability over a full operation range. These ICs feature sharp turn-on characteristics, low temperature coefficient and low output impedance, which make them ideal substitutes for Zener diodes in applications such as switching power supply, charger, motherboard and other adjustable regulators.

The output voltage can be set to any value between 1.25V and 18V with two external resistors.

The AZ432 precision reference is offered in two voltage tolerance: 0.5% and 1.0%.

These ICs are available in 4 packages: TO-92 (bulk or ammo packing), SOT-23, SOT-23-5 and SOT-89.

Features

- Wide Programmable Precise Output Voltage from 1.25V to 18V
- · High Stability under Capacitive Load
- Low Temperature Deviation: 3mV Typical
- Low Equivalent Full-Range Temperature Coefficient: 20PPM/°C Typical
- Low Dynamic Output Resistance: 0.05Ω Typical
- High Sink Current Capacity from 0.1mA to 100 mA
- Low Output Noise
- Wide Operating Range of -40 to 125°C

Applications

- · Graphic Card
- · PC Motherboard
- Voltage Adapter
- Switching Power Supply
- Charger

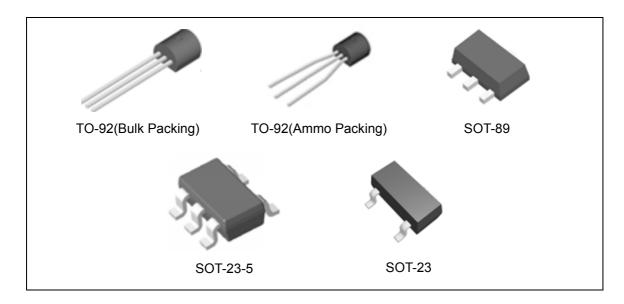


Figure 1. Package Types of AZ432

AZ432

Pin Configuration

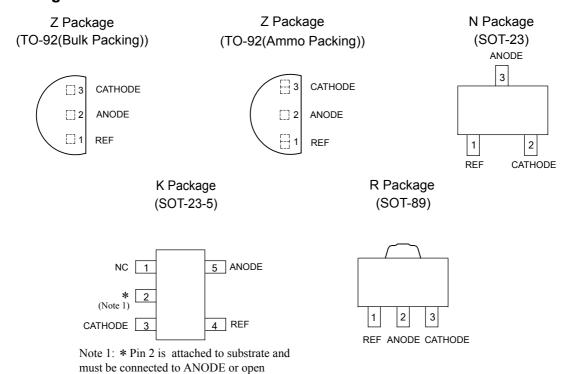


Figure 2. Pin Configuration of AZ432 (Top View)

Functional Block Diagram

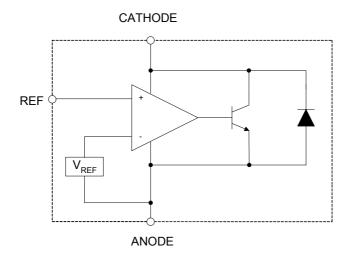
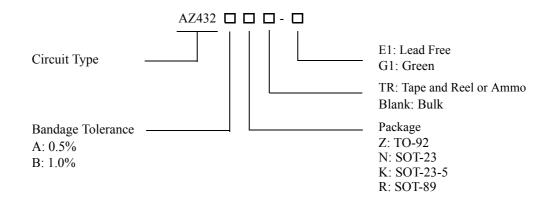



Figure 3. Functional Block Diagram of AZ432

AZ432

Ordering Information

Package	Tempera-	Voltage Tolerance	Part I	Number	Mark	Packing	
гаскаде	ture Range		Lead Free	Green	Lead Free	Green	Type
TO-92	-40 to 125°C	0.5%	AZ432AZ-E1	AZ432AZ-G1	AZ432AZ-E1	AZ432AZ-G1	Bulk
		0.5%	AZ432AZTR-E1	AZ432AZTR-G1	AZ432AZ-E1	AZ432AZ-G1	Ammo
		1.0%	AZ432BZ-E1	AZ432BZ-G1	AZ432BZ-E1	AZ432BZ-G1	Bulk
		1.0%	AZ432BZTR-E1	AZ432BZTR-G1	AZ432BZ-E1	AZ432BZ-G1	Ammo
SOT-23	-40 to 125°C	0.5%	AZ432ANTR-E1	AZ432ANTR-G1	EA8	GA8	Tape & Reel
		1.0%	AZ432BNTR-E1	AZ432BNTR-G1	EA9	GA9	Tape & Reel
SOT-23-5	-40 to 125°C	0.5%	AZ432AKTR-E1	AZ432AKTR-G1	E7A	G7A	Tape & Reel
		1.0%	AZ432BKTR-E1	AZ432BKTR-G1	E8A	G8A	Tape & Reel
SOT-89	-40 to 125°C	0.5%	AZ432ARTR-E1	AZ432ARTR-G1	E42A	G42A	Tape & Reel
		1.0%	AZ432BRTR-E1	AZ432BRTR-G1	E42B	G42B	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

AZ432

Absolute Maximum Ratings (Note 2)

Parameter	Symbol	Value		Unit	
Cathode Voltage	V_{KA}	20		V	
Cathode Current Range (Continuous)	I _{KA}	-100 to 100		mA	
Reference Input Current Range	$I_{ m REF}$	10		mA	
Power Dissipation	P_{D}	Z, R Package	770	mW	
Tower Dissipation	I D	N, K Package	370		
Junction Temperature	T _J	150		°C	
Storage Temperature Range	T_{STG}	-65 to 150		°C	

Note 2: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operation Ratings

Parameter	Symbol	Min	Max	Unit
Cathode Voltage	V_{KA}	V_{REF}	18	V
Cathode Current	I_{KA}	0.1	100	mA
Operating Ambient Temperature Range		-40	125	°C

AZ432

Electrical Characteristics

(Typical and limits apply for T_A =25°C, unless otherwise noted.)

Parameter		Test Circuit	Symbol	Conditions		Min	Тур	Max	Unit
Reference Voltage	0.5%	4	V _{REF}	V _{KA} =V _{REF,} I _{KA} =10mA		1.244	1.250	1.256	V
Reference voltage	1.0%					1.238	1.250	1.262	
Deviation of Reference Voltage Over Full Temperature Range			$\Delta V_{ m REF}$	V _{KA} =V _{REF} I _{KA} =10mA	0 to 70°C		2	10	mV
		4			-40 to 85°C		3	10	
					-40 to 125°C		4	15	
Ratio of Change in V _{REF} to the Change in Cathode Voltage		5	$\frac{\Delta V_{REF}}{\Delta V_{KA}}$	I_{KA} =10mA, ΔV_{KA} : V_{REF} to 16V			-0.5	-1.5	mV/V
Reference Input Curr	5	I_{REF}	I _{KA} =10mA, R1=10KΩ, R2=∞			0.15	0.4	μΑ	
Deviation of Referent Over Full Temperature	5	ΔI_{REF}	I_{KA} =10mA, R1=10KΩ, R2=∞ T_{A} =-40 to 125°C			0.1	0.4	μΑ	
Minimum Cathode Current for Regulation		4	I _{KA} (MIN)	$V_{KA} = V_{REF}$			55	80	μА
Off-state Cathode Current		6	I _{KA} (OFF)	$V_{REF} = 0, V_{KA} = 18V$			0.04	0.10	μА
				$V_{KA}=6V, V_{REF}=0$			0.01	0.05	
Dynamic Impedance		4	Z _{KA}	$V_{KA}=V_{REF}$, $I_{KA}=1$ to 100mA f \leq 1.0kHz			0.05	0.15	Ω
Thermal Resistance (Junction to Case)				SOT-23			84.84		°C/W
			$\theta_{ m JC}$	SOT-23-5			84.84	34.84	
				TO-92			140.80		
				SOT-89			88.00		

Electrical Characteristics (Continued)

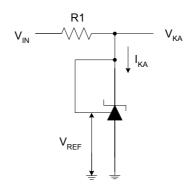


Figure 4. Test Circuit 4 for $V_{KA}=V_{REF}$

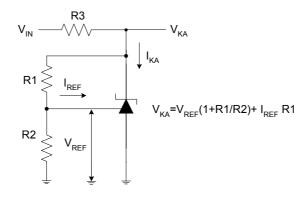


Figure 5. Test Circuit 5 for V_{KA} > V_{REF}

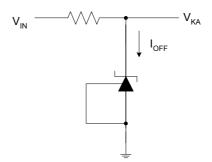



Figure 6. Test Circuit 6 for $I_{\mbox{OFF}}$

Typical Performance Characteristics

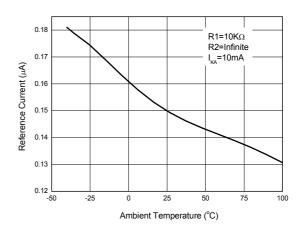
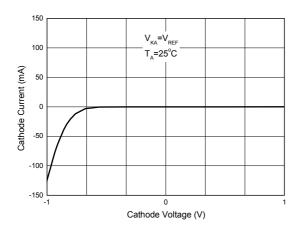



Figure 7. Reference Voltage vs. Ambient Temperature

Figure 8. Reference Current vs. Ambient Temperature

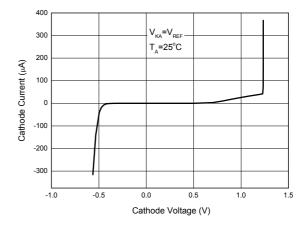
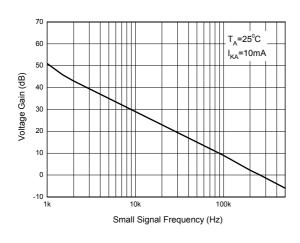



Figure 9. Cathode Current vs. Cathode Voltage

Figure 10. Cathode Current vs. Cathode Voltage

Typical Performance Characteristics (Continued)

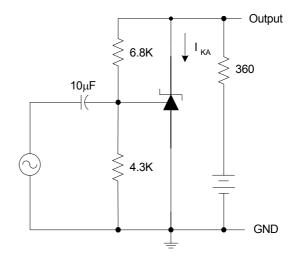
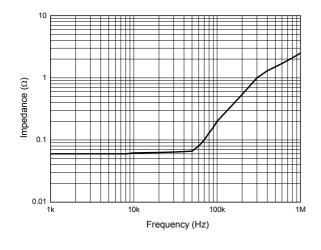



Figure 11. Small Signal Voltage Gain vs. Frequency

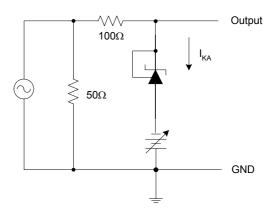
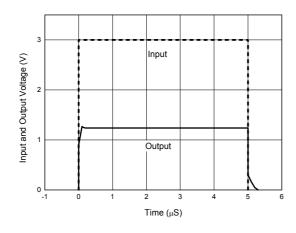



Figure 12. Dynamic Impedance vs. Frequency

Typical Performance Characteristics (Continued)

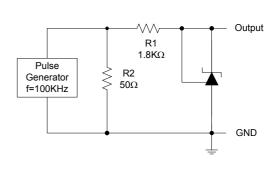


Figure 13. Pulse Response of Input and Output Voltage

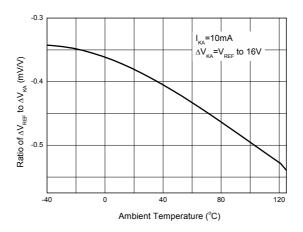


Figure 14. Ratio of Delta Reference Voltage to the Ratio of Delta Cathode Voltage vs. Ambient Temperature

Typical Applications

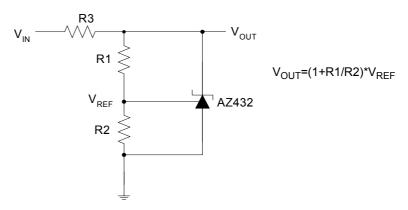


Figure 15. Shunt Regulator

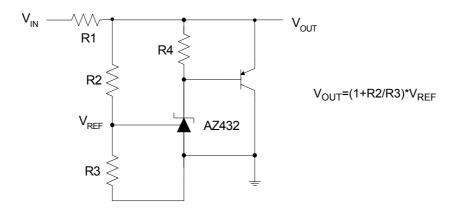


Figure 16. High Current Shunt Regulator

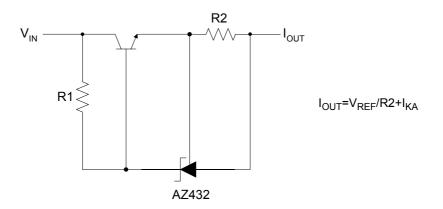


Figure 17. Current Source or Current Limit

Typical Application (Continued)

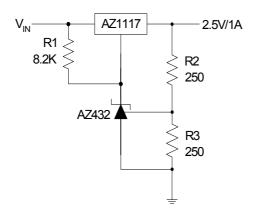


Figure 18. Precision 2.5V/1A Regulator

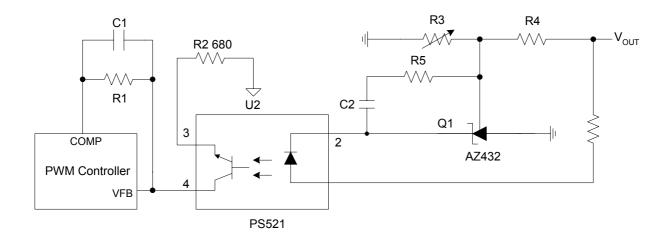
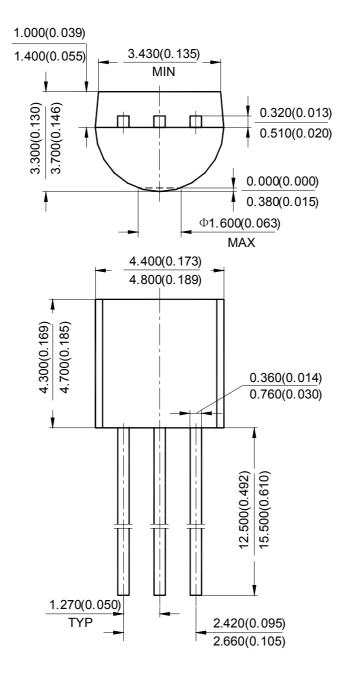


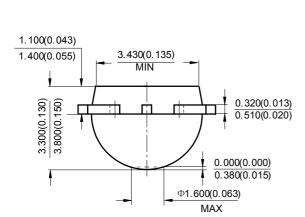
Figure 19. PWM Converter with Reference

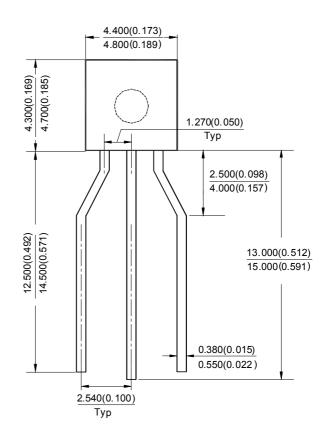

Unit: mm(inch)

LOW VOLTAGE (1.25V) ADJUSTABLE PRECISION SHUNT REGULATOR

Mechanical Dimensions

TO-92(Bulk Packing)

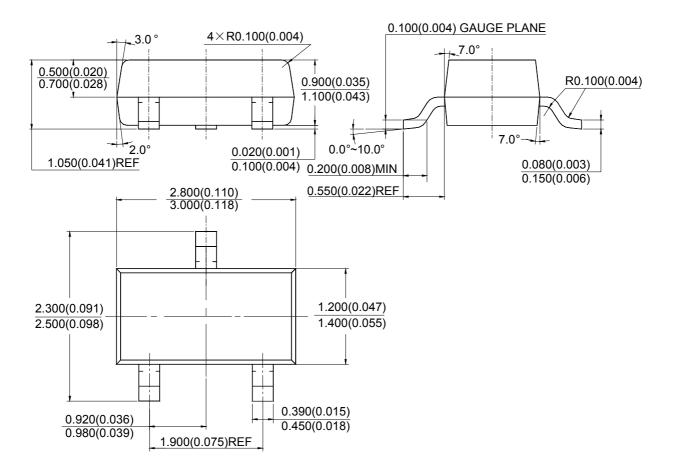

Unit: mm(inch)


LOW VOLTAGE (1.25V) ADJUSTABLE PRECISION SHUNT REGULATOR

AZ432

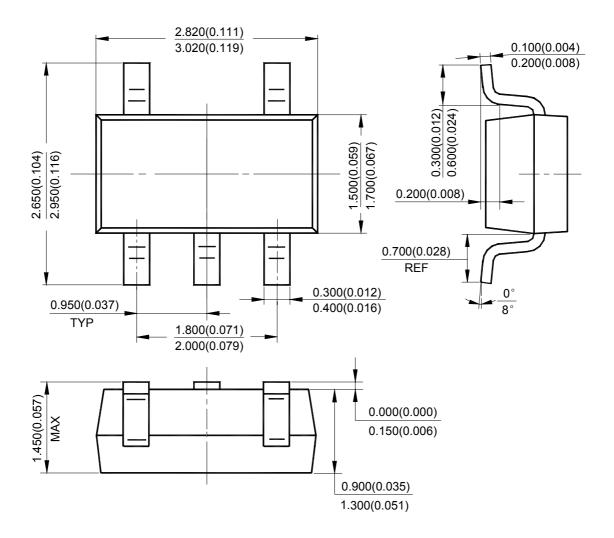
Mechanical Dimensions (Continued)

TO-92(Ammo Packing)

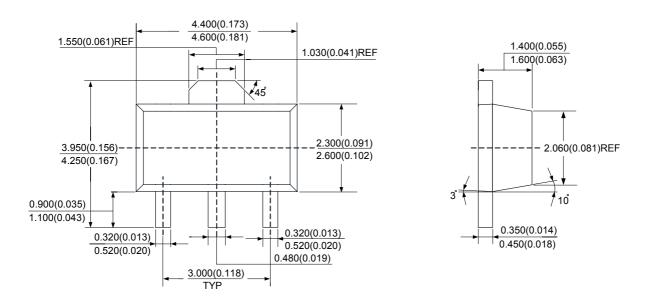


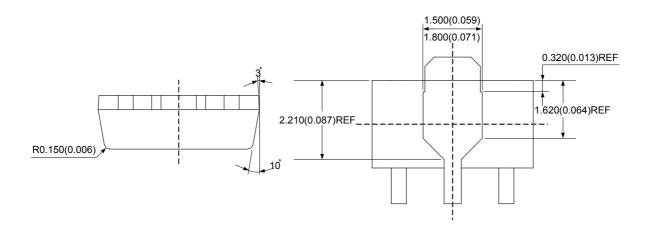
AZ432

Mechanical Dimensions (Continued)


SOT-23 Unit: mm(inch)

Mechanical Dimensions (Continued)


SOT-23-5 Unit: mm(inch)



Mechanical Dimensions (Continued)

SOT-89 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951

Tel: +86-755-8826 7951 Fax: +86-755-8826 7865 - Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806 USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788