

Data Sheet

150kHz 3A BUCK DC-DC CONVERTER

AP3003

General Description

The AP3003 series of regulators are fixed frequency PWM buck (step-down) DC/DC converter, capable of driving a 3A load with excellent line and load regulation. These regulators include internal frequency compensation and a fixed frequency oscillator so that they are easy to use. A system adopting AP3003 requires a minimum number of external components to work.

A standard series of inductors, optimized for use with the AP3003 series, are available from several manufacturers. This feature greatly simplifies the design of switch-mode power supplies.

These ICs are available in TO-220-5 and TO-263-5 packages.

Features

- 3.3V, 5V, 12V Fixed (±4% Tolerance) and Adjustable (±3% Tolerance) Output Versions
- Guaranteed 3A Output Load Current
- 150kHz Fixed Frequency Internal Oscillator
- Input Voltage Range up to 32V
- Requires only 4 external components
- High Efficiency up to 90%
- Excellent Line and Load Regulation
- TTL Shutdown Capability
- Low Power Standby Mode, IO Typically 80µA
- Built-in Current Limit Protection and Thermal Shutdown Circuit

Applications

- LCD Monitor and LCD TV
- On-Card DC-DC Converter
- DVD Recorder
- PDP

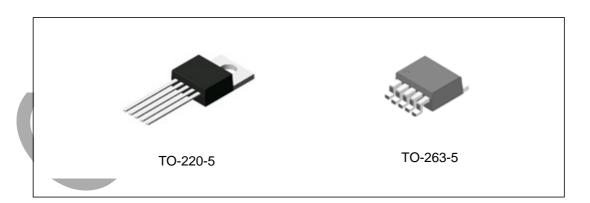


Figure 1. Package Types of AP3003

May 2019 Rev. 2 - 4

Pin Configuration

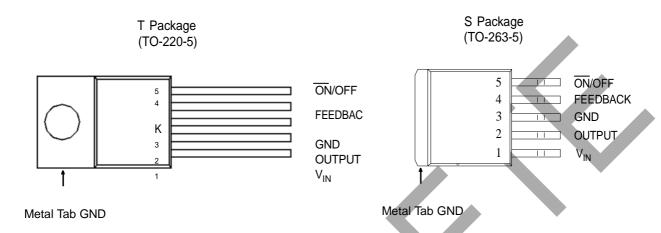


Figure 2. Pin Configuration of AP3003 (Top View)

Pin Description

Pin Number	Pin Name	Function
1	V _{IN}	Unregulated input voltage
2	OUTPUT	Switch driver output
3	GND	Ground
4	FEEDBACK	Feedback Pin. For fixed version, connect it to system output. For adjustable version, connect it with an external resistor and capacitor feedback network to program the system output voltage
5	ON/OFF	The TTL logic compatible input to control the regulator on or off

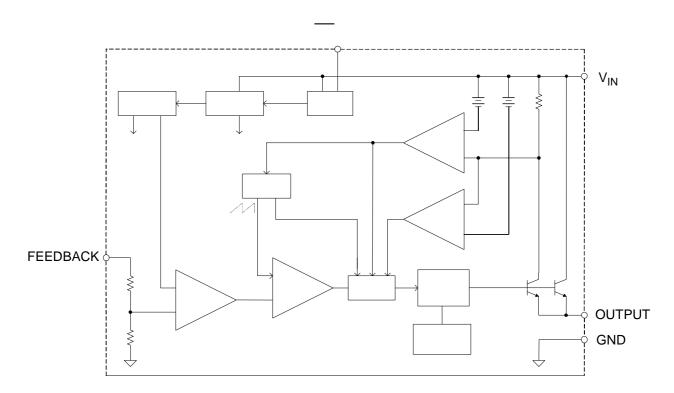
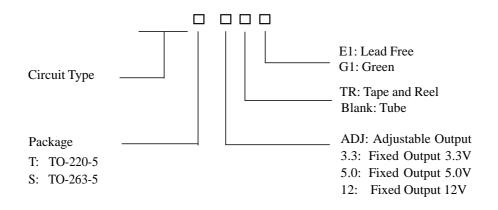



Figure 3. Functional Block Diagram of AP3003

Package	Temperature	Part N	lumber	Mark	Packing	
Package	Range	Lead Free	Green	Lead Free	Green	Туре
		AP3003T-ADJE1	AP3003T-ADJG1	AP3003T-ADJE1	AP3003T-ADJG1	Tube
TO-220-5	-40 to 85°C	AP3003T-3.3E1	AP3003T-3.3G1	AP3003T-3.3E1	AP3003T-3.3G1	Tube
10-220-3	-40 to 65 °C	AP3003T-5.0E1	AP3003T-5.0G1	AP3003T-5.0E1	AP3003T-5.0G1	Tube
		AP3003T-12E1	AP3003T-12G1	AP3003T-12E1	AP3003T-12G1	Tube
		AP3003S-ADJE1	AP3003S-ADJG1	AP3003S-ADJE1	AP3003S-ADJG1	Tube
		AP3003S-ADJTRE1	AP3003S-ADJTRG1	AP3003S-ADJE1	AP3003S-ADJG1	Tape & Reel
		AP3003S-3.3E1	AP3003S-3.3G1	AP3003S-3.3E1	AP3003S-3.3G1	Tube
TO-263-5	40 to 850C	AP3003S-3.3TRE1	AP3003S-3.3TRG1	AP3003S-3.3E1	AP3003S-3.3G1	Tape & Reel
10 20						
						æl
						æl

BCD Se with "G1" suf

Aug. 2008 Rev. 1. 2

приг чонаде		v IN	4∪	,
ON/OFF Pin Voltage	V _{ON/OFF}	40	V	
Feedback Pin Voltage	V_{FB}	40	V	
Operating Junction Temperature	T_{J}	150	°C	
Thermal Resistance	TO-220-5	$R_{ heta JA}$	60	°C/W
(Junction to Ambient, No Heatsink)	TO-263-5	NejjA	00	*C/W
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260	°C	
Storage Temperature Range	T _{STG}	-65 to 150	°C	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Rec

Para				
Maxim				
	ADJ (V _{OUT} =2.5V)		25	
Operating Junction Temperature	T_{J}	-40 to 125	°C	

Note 2: For ADJ version, the recommended supply voltage depends on the needed output voltage.

Aug. 2008 Rev. 1. 2

Temperature Range.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	5.5V≤V _{IN} ≤32V, 0.2A≤I _{LOAD} ≤3A	3.168 3.135	3.3	3.432 3.465	V
Efficiency	η	V_{IN} =12V, I_{LOAD} =3A		75		%

For 5V Output Voltage Version

Unless otherwise specified, T_J =25°C. The specifications with **boldface type** apply over Full Operating Junction Temperature Range.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	7V≤V _{IN} ≤32V, 0.2A≤I _{LOAD} ≤3A	4.800 4.750	5	5.200 5.250	V
Efficiency	η	V_{IN} =12V, I_{LOAD} =3A		80		%

For 12V Output Voltage Version

Unless otherwise specified, T_J =25°C. The specifications with **boldface type** apply over Full Operating Junction Temperature Range.

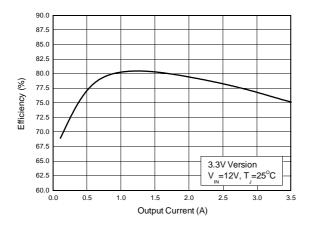
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Outŗ						
Effic						

For A

Unless ion

Tempei

Param						it
Feedback Voltage	V _{FB}	4.5V≤V _{IN} ≤25V, 0.2A≤I _{LOAD} ≤3A, V _{OUT} programmed for 2.5V	1.193 1.18	1.23	1.267 1.28	V
Efficiency	η	V_{IN} =12V, I_{LOAD} =3A, V_{OUT} =2.5V		73		%


 I_{LOAD} =500mA, T_J =25°C. Specifications with **boldface type** apply over Full Operating Junction Temperature Range.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Feedback Bias Current	I_{FB}	Adjustable Version Only, V _{FB} =1.3V		10	50 100	nA	
Oscillator Frequency	f	(Note 3)	127 110	150	173 173	kHz	
Saturation Voltage	V _{SAT}	I_{LOAD} =3A (No output devices, V_{FB} =0V)		1.2	1.5 1.6	V	
Maximum Duty Cycle	D _{MAX}	V _{FB} =0V		100		%	
Minimum Duty Cycle	D _{MIN}	V _{FB} =1.3V		0		%	
Current Limit	I _{CL}	Peak Current , No output devices, V _{FB} =0V	3.6 3.4	4.5	6.9 7.5	A	
Output Leakage Current	I _{SWL}	Output=0V, No output devices, V_{FB} =1.3V, V_{IN} =32V		50		μA	
Output Leakage Current	ISWL	Output=-1V, No output devices, V _{FB} =1.3V, V _{IN} =32V		2	30	mA	
Quiescent Current	I _Q	V _{FB} =1.3V		5	10	mA	
Stanc	-	_			200		
ŌN/(
Thre							
ŌN/OI						1	
						٨	

Note 3:						
Note 4:	 F	 	 	 ,	 - ,	 <i>,</i>

Aug. 2008 Rev. 1. 2

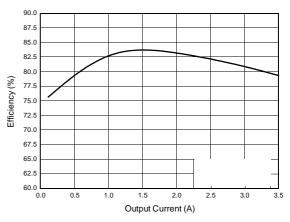
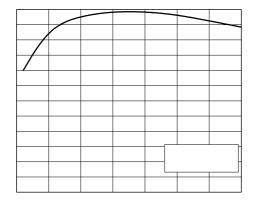



Figure 4. Efficiency vs. Output Current

Figure 5. Efficiency vs. Output Current

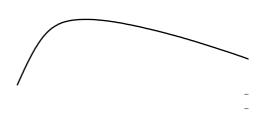
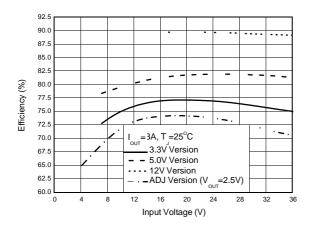


Figure 6. Efficiency vs. Output Current

Figure 7. Efficiency vs. Output Current


Aug. 2008 Rev. 1. 2

150kHz 3A BUCK DC-DC CONVERTER

AP3003

Typical Performance Characteristics (Continued)

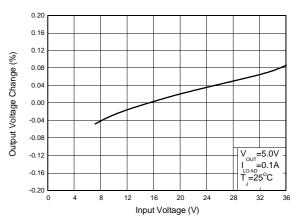


Figure 8. Efficiency vs. Input Voltage

Figure 9. Line Regulation

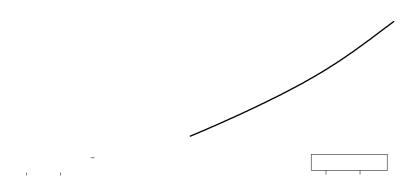
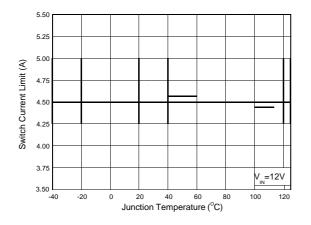


Figure 10. Load Regulation

Figure 11. Switch Saturation Voltage vs. Switch Current


Aug. 2008 Rev. 1. 2

150kHz 3A BUCK DC-DC CONVERTER

AP3003

Typical Performance Characteristics (Continued)

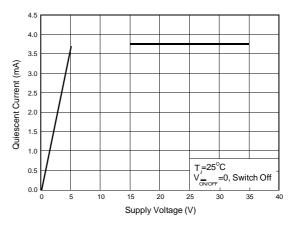
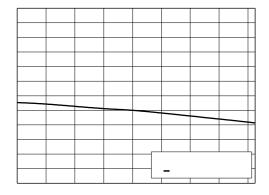



Figure 12. Switch Current Limit vs. Junction Temperature

Figure 13. Quiescent Current vs. Supply Voltage

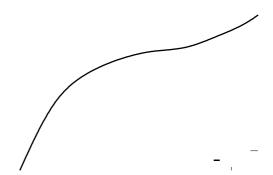
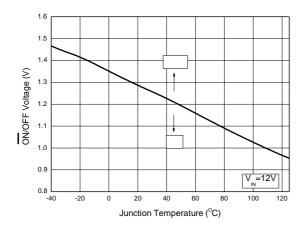



Figure 14. Quiescent Current vs. Junction Temperature

Figure 15. Shutdown Quiescent Current vs. Input Voltage

Aug. 2008 Rev. 1. 2

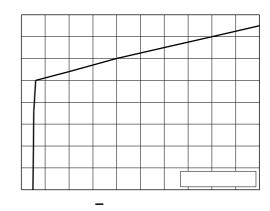
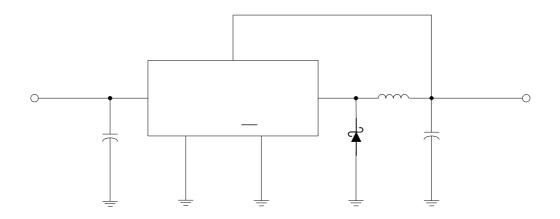


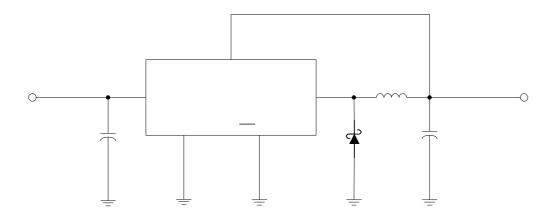
Figure 16. On/Off Threshold Voltage vs. Junction Temperature

Figure 17. $\overline{\text{On}}/\text{Off}$ Pin Current vs. $\overline{\text{On}}/\text{Off}$ Pin Voltage


Figure 18. Switching Frequency vs. Junction Temperature

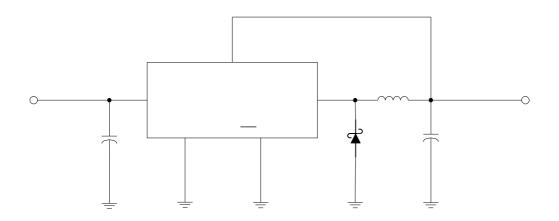
Aug. 2008 Rev. 1. 2

BCD Semiconductor Manufacturing Limited


I

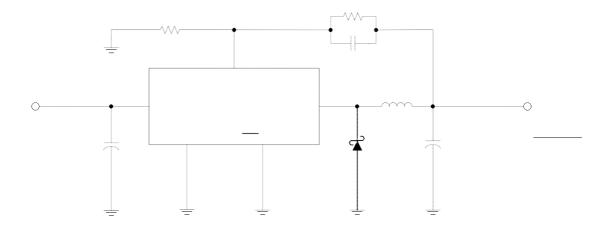
L1: Sumida CDRH127/LDNP-220MC or Equivalent

Figure 19. Typical Application of AP3003-3.3V



L1

Figure 20. Typical Application of AP3003-5.0V


Aug. 2008 Rev. 1. 2

L1: Sumida CDRH127/LDNP-220MC or Equivalent

Figure 19. Typical Application of AP3003-12V

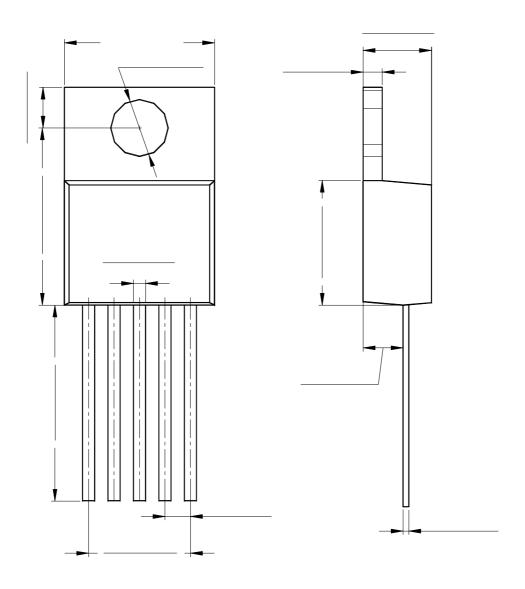
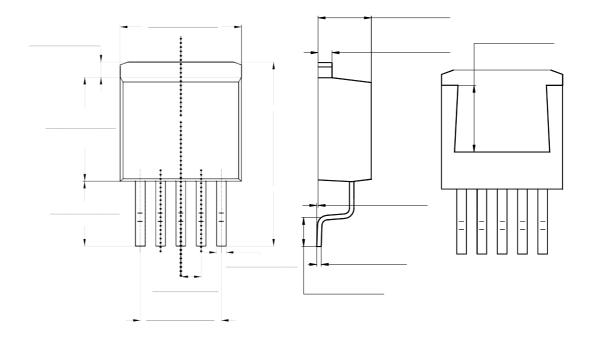

L1

Figure 20. Typical Application of AP3003-ADJ

Aug. 2008 Rev. 1. 2


` '

Aug. 2008 Rev. 1. 2

•

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited
No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China

Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office **BCD Semiconductor Corp.** 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988

Fax: +1-510-324-2788